-
Notifications
You must be signed in to change notification settings - Fork 8
/
emerson21.html
880 lines (587 loc) · 24.3 KB
/
emerson21.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
<!DOCTYPE html>
<html>
<head>
<title>Emerson '21</title>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<link rel="stylesheet" href="fonts/quadon/quadon.css">
<link rel="stylesheet" href="fonts/gentona/gentona.css">
<link rel="stylesheet" href="slides_style_i.css">
<script type="text/javascript" src="assets/plotly/plotly-latest.min.js"></script>
</head>
<body>
<textarea id="source">
### Biomedical Data Science: <br>Big Data Science Gone Sideways
<br>
<center>
<!-- ![:scale 25%](images/neurodata_blue.png) -->
<img src="images/neurodata_blue.png", width="30%">
</center>
Joshua T. Vogelstein | <img src="assets/img/email-logo.png" align='top' width=25>[[email protected]](mailto:[email protected]),
<img src="assets/img/twitter-logo.png" align='top' width=25><a href="https://twitter.com/neuro_data" >@neuro_data</a>, <img src="assets/img/home-logo.png" align='top' width=21>[neurodata](https://neurodata.io/)
<br>
[Biomedical Engineering](https://www.bme.jhu.edu/) | [Johns Hopkins University](https://www.jhu.edu/)
---
class:middle
# (Big) Data Science
---
### Data Science Definition <br>(paraphrasing wikipedia)
a field that develops and uses computational statistics to extract knowledge from (big) data, and applies that knowledge across a broad range of applications
---
### What is 'Big Data'?
- Consider Amazon ledger
- Billions of records/samples/rows (eg, transactions)
- Hundreds of features (eg, user, time, $, location, payment, etc...)
![](images/tall_skinny.png)
"Tall & Skinny"
---
### What are the big data challenges?
- Basically an infinite amount of data
- Need compute systems that can store/process it
- Existing ML framework theory is perfect for this
---
### Formal Classical ML Framework
- Let $X_i$ be a feature vector (e.g., a cancer genome for subject $i$)
- Let $Y_i$ be a class label (e.g., pancreatic cancer)
- Given $n$ samples of training data, $(X_i, Y_i)$
- Assumption 1: training data sampled from some distribution
- Given a new test sample, $(X,Y)$
- Assumption 2: test data are sampled from the same distribution
- Find an algorithm that predicts $Y$ accurately with a huge amount of data
---
### Classical ML Theory
- Under the above two assumptions
- if we get an infinite amount of data
- then we have algorithms that will perform optimally
.ye[Implication: just keep getting more and more data, and build bigger machines]
- And that works great for many 'web-scale' problems
- $>$10B USD invested annually
- ~3M data scientists
---
### What are the issues?
--
- Anti-democratic
--
- Anti-environment
--
- Racist chatbots
--
- Biomedical data
---
class:middle
# Biomedical Data Science
---
### Biomedical Data Science Definition <br>(according to wikipedia)
--
<br><br><br><br><br>
(crickets)
---
### Scale of biomedical data science
--
- \# of people would benefit from better biomedical data science?
--
- ~10,000,000,000
--
- \# of webpages with "biomedical data science"?
--
- ~100,000
--
- \# of "biomedical data scientists" are there?
--
- ~100
--
.ye[Implications: Biomedical data science is the most important non-discipline in the world, imho.]
---
### What is 'Biomedical Data'?
- Consider CancerSEEK
- Billions of features (eg, base pairs)
- Hundreds of samples/subjects (eg, patients)
![:scale 45%](images/short_fat.png)
![:scale 45%](images/CancerSEEK.png)
"Short & Fat" (we will call this .r[$D_{care}$])
---
### What is the main challenge?
.pull-left[
![:scale 100%](images/Alices_Restaurant.jpeg)
<!-- Alice's restaurant theorem! -->
]
.pull-right[
Existing ML
1. framework
2. theory
3. algorithms
are designed for tall & skinny (web-scale) data, and are therefore .ye[inappropriate and inadequate] for many real world biomedical data science problems.
]
---
### What will we do?
1. Devise formal framework for biomedical data science
2. Develop theory to guide algorithmic & experimental design
3. Design algorithms with provable guarantees
4. Demonstrate success in real world biomedical data experiments
---
class: middle
# Devise Framework
---
### Formal Biomedical ML Framework
- Let $X_i$ be a feature vector (e.g., a cancer genome for subject $i$)
- Let $Y_i$ be a class label (e.g., pancreatic cancer)
- Given $n$ samples of training data, $(X_i, Y_i)$
- Assumption 1: training data sampled from some distribution
- Given a new test sample, $(X,Y)$
- Assumption 2: test data are sampled from the same distribution
- Find an algorithm that predicts $Y$ accurately with a <del>huge</del>
.ye[tiny] amount of data
---
### How is that even possible?
Transfer information from
- subject matter experts
- other related datasets
---
### Learning Efficiency
Let
- $f$ be some learning algorithm (eg, deep net)
- .ye[$\mathcal{E}_f$] be some .ye[error metric] we care about (eg, squared error)
- .r[$D_{care}$] be some dataset we .r[care] about (eg, pancreatic cancer)
- .green[$D_{other}$] be an .green[other] dataset (eg, all other cancer data)
<img src="images/LE.png" style="position:absolute; left:150px; width:620px;"/>
<br><br><br>
<!-- $$LE\_f( D\_0,D\_1)= \frac{ \mathcal{E}_f(D_0) }{ \mathcal{E}_f(D_0 \cup D_1)}$$ -->
- If $f$ is able to reduce .ye[error] via .green[$D_{other}$],
- then $f$ learned from .green[$D_{other}$] (aka, $f$ transferred)
.footnote[Geisa et al. [Towards a theory of out-of-distribution learning](https://arxiv.org/abs/2109.14501), arXiv, 2021.
]
---
### Transfer is the key
- Efficient .ye[transfer] is the key to biomedical data science success.
- Literature has .ye[never] evaluated algorithms on this basis
- fixated on accuracy
- In real world biomedical data science challenges (eg, cancer datasets), .r[$D_{care}$] is small
Learning efficiency emerges from a .ye[general theoretical framework] we have introduced, which is better suited for real-world biomedical data science challenges.
--
.r[Take home message 1: For biomedical data science<br>
- algorithms that simply improve with more data are inadequate;
- we require algorithms that transfer information more efficiently.]
---
class: middle
# Develop Theory
---
### Classical ML Theory
- Weak learning: $f$ can do better than chance with sufficient data
- Strong learning: $f$ can do arbitrarily close to optimal with sufficient data
- Weak learner theorem: if a problem is weakly learnable, it is also strongly learnable
- Implications: if $f$ is doing better than chance, get more data to improve performance
But this does not deal at all with the need to transfer...
---
### Out-of-Distribution Learning Theory
- Let $X_i$ be a feature vector (e.g., a cancer genome for subject $i$)
- Let $Y_i$ be a class label (e.g., pancreatic cancer)
- Given $n$ samples of training .r[$D_{care}$] data, .r[$(X_i, Y_i)$]
- Assumption 1: training data sampled from some distribution
- Given a new .lb[test] sample, .lb[$(X,Y)$]
- Assumption 2: .lb[test] data are sampled from the same distribution
- Given a $m$ other samples .green[$D_{other}$], .green[$(X_j,Y_j)$]
- Assumption 3: <em style="color:red">$D\_{care}$</em>
and
<em style="color:#00cc44">$D\_{other}$</em>
are sampled from the <del>same</del> .ye[different] distributions
- Find an algorithm that predicts .lb[$Y$] accurately leveraging both <em style="color:red">$D\_{care}$</em>
and
<em style="color:#00cc44">$D\_{other}$</em>
.
.footnote[Geisa et al. [Towards a theory of out-of-distribution learning](https://arxiv.org/abs/2109.14501), arXiv, 2021.
]
---
### OOD Learning Theory
- Weak learning: $f$ can do better using
<em style="color:red">$D\_{care}$</em>
and
<em style="color:#00cc44">$D\_{other}$</em>
than using
<em style="color:red">$D\_{care}$</em>
alone
- Strong learning: $f$ can do arbitrarily close to optimal with sufficiently large .green[$D_{other}$]
- Weak OOD learner theorem: if a problem is weakly learnable, it is .ye[not necessarily] strongly learnable
- Implications: if $f$ is doing better than chance, getting more data is .ye[not] guaranteed to improve performance
--
.r[Take home message 2: For biomedical data science
- more data are inadequate;
- we require more informative data + algorithms that transfer information more efficiently.]
---
class: middle
# Design Algorithms
---
### Algorithm Schemata
![:scale 90%](images/learning_schema_new.png)
A. Single learners: SVM, decision tree, deep nets <br>
B. Ensembling decisions: random forest, gradient boosting tree, network ensembles (win all challenges and deployed in practice) <br>
C. Ensembling representations: new idea
.footnote[Vogelstein et al. [Ensembling Representations for Synergistic Lifelong Learning with Quasilinear Complexity](https://arxiv.org/abs/2004.12908), arXiv, 2020.]
---
## CIFAR 10x10
- CIFAR 100 is an image dataset with 100 categories of images.
- We create 10 tasks, each with 10 categories of images.
- We train a separate internal representation for each task.
- We ensemble the internal representations across tasks.
- We evaluate performance sequentially.
<!-- ![:scale 50%](images/l2m_18mo/cifar-10.png) -->
<img src="images/l2m_18mo/cifar-10.png" style="position:absolute; left:150px; width:420px;"/>
---
### Ensembling Representations<br>Positive Forward Transfer
![:scale 49%](images/slide_fte.png)
![:scale 49%](images/slide_bte.png)
<!-- --- -->
<!-- ### Ensembling Representations<br>Positive Backward Transfer -->
<!-- ![:scale 80%](images/slide_bte.png) -->
.r[Take home message 3: For biomedical data science
- prior state of the art algorithms algorithms fail to transfer;
- ensembling representations uniquely achieves both forward and backward transfer.]
---
class: middle
# Demonstrate Success
---
### What are the real-world problems?
A Concrete Example: COVID-19
1. Volume: multiple short & fat datasets, instead of 1 tall & skinny
2. Variety: data includes historical diagnoses, procedures, etc.
3. Velocity: standards of care were changing rapidly
4. Veracity: data manually labeled, no codes, missing data, etc.
5. Variability: data came from multiple disparate sources
6. priVacy: we could not legally/ethically share across datasets
These are the .ye[6 Vs] of biomedical data
---
### Background: 2018
![:scale 100%](images/Staedtke18.png)
![:scale 100%](images/Staedtke18_Fig6a.png)
---
### Background: 2020
- Jan: COVID hits the world
- Feb: Evidence grows that cytokine release syndrome is associated with death
- Mar: Dad realizes treatment plan may already be available
- alpha blockers are cheap, generic, orally administered, globally available, with very low side-effects
- April-June: Jovo tries to get a large enough .r[$D_{care}$] and fails
- July: Jovo finds multiple "short & fat" .r[$D_{care}$] datasets
- Aug: Jovo++ designs new methods to combine these datasets based on our framework
---
### Our Strategy
- Transfer from subject matter experts, by identifying relevant:
- procedures,
- diagnoses,
- drugs,
- timelines,
- etc.
- Transfer from other data:
- Learn a separate causal model on multiple small datasets.
<!-- - Variety, Velocity, Veracity, Variability: Adjust for time-varying practices, missing data, noisy labels, etc. -->
- Rather than sharing data, share internal representations.
Now we have federated nonlinear causal models that respect patient privacy.
---
### Alpha-Blocker Study
![:scale 60%](images/MS_Optum_Federated_Emerson.png)
- Ensembling decisions yields an impossible result.
- Ensembling representations improves estimated effect size.
- This motivated two ongoing COVID-19 trials using alpha blockers.
- This treatment will also work on COVID-22, MERS-24, flu, etc.
.r[Take home message 4: These ideas solve life-threatening, real-world data problems for which classical methods fail.]
---
class: middle
# Discussion
---
### Summary
- Biomedical data science is wide open
- it impacts literally everyone
- it is not an established field
- it has unique challenges unmet by other approaches.
- We leverage biomedical expertise with statistical insight to:
1. devise framework for biomedical data science
2. develop theory to guide experiments & algorithms
3. design algorithms with provable guarantees
- We successfully applied these ideas to real-world COVID data addressing each of the 6 V's of biomedical data
---
### Future Implications
- Our application shows methods are nimble
- Many cancers afflict a small number of people
- All cancer (and any other biomedical data science application) could benefit from this kind of approach
- Our work is imminently commercializable
- Lots of consulting
- Multiple start-ups
- Google and Microsoft deploy our algorithms already
---
### Existing funding challenges
- NIH does not grok data science
- NSF will not fund medicine
- DARPA does not care about ailments that don't kill soldiers
- Foundations are our only hope
- This work is expensive (the data are still big, just 'gone sideways')
---
### Theory & Methods Publications
1. A Geisa, et al. [Towards a theory of out-of-distribution learning](https://arxiv.org/abs/2109.14501), arXiv, 2021.
1. JT Vogelstein, et al. [Ensembling Representations for Synergistic Lifelong Learning with Quasilinear Complexity](https://arxiv.org/abs/2004.12908), arXiv, 2020.
1. X, Haoyin, et al. [Streaming Decision Trees and Forests](https://arxiv.org/abs/2110.08483), arXiv, 2021.
1. CE Priebe, et al. [Modern Machine Learning: Partition and Vote](https://doi.org/10.1101/2020.04.29.068460), bioRxiv, 2020.
1. R Guo, et al. [Estimating Information-Theoretic Quantities with Uncertainty Forests](https://arxiv.org/abs/1907.00325). arXiv, 2019.
1. R Perry, et al. [Manifold Forests: Closing the Gap on Neural Networks](https://openreview.net/forum?id=B1xewR4KvH). arXiv, 2019.
1. C Shen and J. T. Vogelstein. [Decision Forests Induce Characteristic Kernels](https://arxiv.org/abs/1812.00029). arXiv, 2019.
1. M Madhya, et al. [BLOCKSET: Reducing Inference Latency for Tree Ensemble Deployment](https://dl.acm.org/doi/10.1145/3447548.3467368). KDD '21.
<!-- 1. M Madhya, et al. [Geodesic Forests](https://dl.acm.org/doi/10.1145/3394486.3403094). KDD '20. -->
1. R Xiong, et al. [Federated Causal Inference in Heterogeneous Observational Data](https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3888599). SSRN, 2021.
---
### Real-World Data Publications
.small[
1. J Cohen, et al. [Detection and localization of surgically resectable cancers with a multi-analyte blood test](https://www.science.org/doi/10.1126/science.aar3247). Science, 218.
2. M Powell, et al. [Ten Rules for Conducting Retrospective Pharmacoepidemiological Analyses: Example COVID-19 Study](https://www.frontiersin.org/articles/10.3389/fphar.2021.700776/full), Frontiers in Pharmacology, 2021.
3. A Koenecke, et al. [Alpha-1 adrenergic receptor antagonists to prevent hyperinflammation and death from lower respiratory tract infection](https://elifesciences.org/articles/61700), Elife, 2021.
4. L Rose, et al. [The association between Alpha-1 adrenergic receptor antagonists and in-hospital mortality from COVID-19](https://www.frontiersin.org/articles/10.3389/fmed.2021.637647/full), Frontiers in Medicine, 2021.
5. MF Konig, et al. [Preventing cytokine storm syndrome in COVID-19 using alpha-1 adrenergic receptor antagonists](https://www.jci.org/articles/view/139642). The Journal of Clinical Investigation, (7)130:3345-3347, 2020.
6. MA Haendel, et al. [The National COVID Cohort Collaborative (N3C): Rationale, design, infrastructure, and deployment](https://academic.oup.com/jamia/article/28/3/427/5893482), Journal of the American Medical Informatics Association, 2020.
7. S Li, et al. [COVID-19 outcomes among hospitalized men with or without exposure to alpha-1-adrenergic receptor blocking agents](https://www.medrxiv.org/content/10.1101/2021.04.08.21255148v1.full), medRxiv, 2021.
8. T Zuzul, et al. [Dynamic Silos: Increased Modularity in Intra-organizational Communication Networks during the Covid-19 Pandemic](https://arxiv.org/abs/2104.00641), arXiv, 2021.
]
---
### Acknowledgements
<!-- <div class="small-container">
<img src="faces/ebridge.jpg"/>
<div class="centered">Eric Bridgeford</div>
</div>
<div class="small-container">
<img src="faces/pedigo.jpg"/>
<div class="centered">Ben Pedigo</div>
</div>
<div class="small-container">
<img src="faces/jaewon.jpg"/>
<div class="centered">Jaewon Chung</div>
</div> -->
<div class="small-container">
<img src="faces/yummy.jpg"/>
<div class="centered">yummy</div>
</div>
<div class="small-container">
<img src="faces/lion.jpg"/>
<div class="centered">lion</div>
</div>
<div class="small-container">
<img src="faces/owl.png"/>
<div class="centered">owl</div>
</div>
<div class="small-container">
<img src="images/family3.png"/>
<div class="centered">family</div>
</div>
<div class="small-container">
<img src="faces/earth.jpg"/>
<div class="centered">earth</div>
</div>
<div class="small-container">
<img src="faces/milkyway.jpg"/>
<div class="centered">milkyway</div>
</div>
##### JHU Collaborators
<div class="small-container">
<img src="faces/cep.png"/>
<div class="centered">Carey Priebe</div>
</div>
<div class="small-container">
<img src="faces/alig.jpg"/>
<div class="centered">Ali Geisa</div>
</div>
<!-- <div class="small-container">
<img src="faces/randal.jpg"/>
<div class="centered">Randal Burns</div>
</div> -->
<!-- <div class="small-container">
<img src="faces/cshen.jpg"/>
<div class="centered">Cencheng Shen</div>
</div> -->
<!-- <div class="small-container">
<img src="faces/bruce_rosen.jpg"/>
<div class="centered">Bruce Rosen</div>
</div>
<div class="small-container">
<img src="faces/kent.jpg"/>
<div class="centered">Kent Kiehl</div>
</div> -->
<!-- <div class="small-container">
<img src="faces/mim.jpg"/>
<div class="centered">Michael Miller</div>
</div>
<div class="small-container">
<img src="faces/dtward.jpg"/>
<div class="centered">Daniel Tward</div>
</div> -->
<!-- <div class="small-container">
<img src="faces/vikram.jpg"/>
<div class="centered">Vikram Chandrashekhar</div>
</div>
<div class="small-container">
<img src="faces/drishti.jpg"/>
<div class="centered">Drishti Mannan</div>
</div> -->
<!-- <div class="small-container">
<img src="faces/jesse.jpg"/>
<div class="centered">Jesse Patsolic</div>
</div> -->
<!-- <div class="small-container">
<img src="faces/falk_ben.jpg"/>
<div class="centered">Benjamin Falk</div>
</div> -->
<!-- <div class="small-container">
<img src="faces/kwame.jpg"/>
<div class="centered">Kwame Kutten</div>
</div> -->
<!-- <div class="small-container">
<img src="faces/perlman.jpg"/>
<div class="centered">Eric Perlman</div>
</div> -->
<!-- <div class="small-container">
<img src="faces/loftus.jpg"/>
<div class="centered">Alex Loftus</div>
</div> -->
<!-- <div class="small-container">
<img src="faces/bcaffo.jpg"/>
<div class="centered">Brian Caffo</div>
</div> -->
<!-- <div class="small-container">
<img src="faces/minh.jpg"/>
<div class="centered">Minh Tang</div>
</div> -->
<!-- <div class="small-container">
<img src="faces/avanti.jpg"/>
<div class="centered">Avanti Athreya</div>
</div> -->
<!-- <div class="small-container">
<img src="faces/vince.jpg"/>
<div class="centered">Vince Lyzinski</div>
</div> -->
<!-- <div class="small-container">
<img src="faces/dpmcsuss.jpg"/>
<div class="centered">Daniel Sussman</div>
</div> -->
<!-- <div class="small-container">
<img src="faces/youngser.jpg"/>
<div class="centered">Youngser Park</div>
</div> -->
<!-- <div class="small-container">
<img src="faces/shangsi.jpg"/>
<div class="centered">Shangsi Wang</div>
</div> -->
<!-- <div class="small-container">
<img src="faces/tyler.jpg"/>
<div class="centered">Tyler Tomita</div>
</div> -->
<!-- <div class="small-container">
<img src="faces/james.jpg"/>
<div class="centered">James Brown</div>
</div> -->
<!-- <div class="small-container">
<img src="faces/disa.jpg"/>
<div class="centered">Disa Mhembere</div>
</div> -->
<!-- <div class="small-container">
<img src="faces/gkiar.jpg"/>
<div class="centered">Greg Kiar</div>
</div> -->
<!-- <div class="small-container">
<img src="faces/jeremias.png"/>
<div class="centered">Jeremias Sulam</div>
</div> -->
<div class="small-container">
<img src="https://raw.githubusercontent.com/neurodata/neurodata.io/deploy/source/images/people/mike-powell.jpg"/>
<div class="centered">Mike Powell</div>
</div>
<div class="small-container">
<img src="faces/meghana.png"/>
<div class="centered">Meghana Madhya</div>
</div>
<!-- <div class="small-container">
<img src="faces/percy.png"/>
<div class="centered">Percy Li</div>
</div>
-->
<!-- <div class="small-container">
<img src="faces/hayden.png"/>
<div class="centered">Hayden Helm</div>
</div> -->
<div class="small-container">
<img src="faces/rguo.jpg"/>
<div class="centered">Richard Gou</div>
</div>
<div class="small-container">
<img src="faces/ronak.jpg"/>
<div class="centered">Ronak Mehta</div>
</div>
<div class="small-container">
<img src="faces/jayanta.jpg"/>
<div class="centered">Jayanta Dey</div>
</div>
<div class="small-container">
<img src="faces/will.jpg"/>
<div class="centered">Will LeVine</div>
</div>
##### Microsoft Research
<div class="small-container">
<img src="faces/chwh-180x180.jpg"/>
<div class="centered">Chris White</div>
</div>
<div class="small-container">
<img src="faces/weiwei.jpg"/>
<div class="centered">Weiwei Yang</div>
</div>
<div class="small-container">
<img src="faces/jolarso150px.png"/>
<div class="centered">Jonathan Larson</div>
</div>
<div class="small-container">
<img src="faces/brtower-180x180.jpg"/>
<div class="centered">Bryan Tower</div>
</div>
##### Funding: MSR, DARPA L2M, NSF {CAREER, AI Institute Planning}
<!-- Hava, Ben, Robert, Jennifer, Ted. -->
##### Affiliations: {[BME](https://www.bme.jhu.edu/),[CIS](http://cis.jhu.edu/), [ICM](https://icm.jhu.edu/), [KNDI](http://kavlijhu.org/)}@[JHU](https://www.jhu.edu/)
<!-- <br> -->
<!-- [jovo@jhu.edu](mailto:[email protected]) | <http://neurodata.io/talks> | <img src="assets/img/twitter-logo.png" align='top' width=25>[@neuro_data](https://twitter.com/neuro_data) -->
##### Contact: <img src="assets/img/email-logo.png" align='bottom' width=25>[[email protected]](mailto:[email protected]) | <img src="assets/img/twitter-logo.png" align='bottom' width=25>[@neuro_data](https://twitter.com/neuro_data) | <img src="assets/img/home-logo.png" align='bottom' width=21>[neurodata](https://neurodata.io)
</div>
<!-- <img src="images/funding/nsf_fpo.png" STYLE="HEIGHT:95px;"/> -->
<!-- <img src="images/funding/nih_fpo.png" STYLE="HEIGHT:95px;"/> -->
<!-- <img src="images/funding/darpa_fpo.png" STYLE=" HEIGHT:95px;"/> -->
<!-- <img src="images/funding/iarpa_fpo.jpg" STYLE="HEIGHT:95px;"/> -->
<!-- <img src="images/funding/KAVLI.jpg" STYLE="HEIGHT:95px;"/> -->
<!-- <img src="images/funding/schmidt.jpg" STYLE="HEIGHT:95px;"/> -->
---
<!-- background-image: url(images/) -->
<img src="images/kids_2021nov.png" style="position:absolute; left:250px; width:420px; top:0px;"/>
.footnote[Questions?]
</textarea>
<!-- <script src="https://gnab.github.io/remark/downloads/remark-latest.min.js"></script> -->
<!-- <script src="remark-latest.min.js"></script> -->
<script src="remark-latest.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.5.1/katex.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.5.1/contrib/auto-render.min.js"></script>
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.5.1/katex.min.css">
<script type="text/javascript">
var options = {};
var renderMath = function () {
renderMathInElement(document.body);
// or if you want to use $...$ for math,
renderMathInElement(document.body, {
delimiters: [ // mind the order of delimiters(!?)
{ left: "$$", right: "$$", display: true },
{ left: "$", right: "$", display: false },
{ left: "\\[", right: "\\]", display: true },
{ left: "\\(", right: "\\)", display: false },
]
});
}
// remark.macros.scale = function (percentage) {
// var url = this;
// return '<img src="' + url + '" style="width: ' + percentage + '" />';
// };
// var slideshow = remark.create({
// Set the slideshow display ratio
// Default: '4:3'
// Alternatives: '16:9', ...
// {
// ratio: '16:9',
// });
var slideshow = remark.create(options, renderMath);
</script>
</body>
</html>