-
Notifications
You must be signed in to change notification settings - Fork 8
/
datascience19.html
474 lines (306 loc) · 12.5 KB
/
datascience19.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
<!DOCTYPE html>
<html>
<head>
<title>data science</title>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
<link rel="stylesheet" href="fonts/quadon/quadon.css">
<link rel="stylesheet" href="fonts/gentona/gentona.css">
<link rel="stylesheet" href="slides_style.css">
<script type="text/javascript" src="assets/plotly/plotly-latest.min.js"></script>
</head>
<body>
<textarea id="source">
name:opening
### Biomedical Big Data and Data Science
Joshua T. Vogelstein
<img src="images/neurodata_blue.png" style="height:150px;float:right;"/>
<br><br><br><br><br><br><br><br><br><br>
<img src="images/funding/jhu_bme_blue.png" STYLE="HEIGHT:95px;"/>
<img src="images/funding/KNDI.png" STYLE="HEIGHT:95px;"/>
.foot[[jovo@jhu.edu](mailto:[email protected]) | <http://neurodata.io/talks/> | [@neuro_data](https://twitter.com/neuro_data)]
---
### History of Data Science
- 1900s: correlation (Pearson)
- 1910s: standard deviation (Galton)
- 1920s: design of experiments (Fisher)
- 1930s: confidence intervals, NP testing (Neyman-Pearson)
- 1940s: Bayesian stats (Jeffreys), resampling (von Neumann)
- 1950s: information theory (Shannon), decision theory (Wald)
- 1960s: robust statistics (Wilcox, Huber), perceptrons (Rosenblatt)
- 1970s: exploratory data analysis (Tukey), regression (Stone)
- 1980s: decision trees (Stone), wavelets (Daubechies)
- 1990s: random forests (Geman, Breiman), SVM (Vapnik)
- 2000s: nonparametrics (Devroye), causal inference (Pearl)
- 2010s: deep learning (Hinton)
---
### Definitions (according to wikipedia)
1. **Statistics** is a branch of mathematics dealing with data collection, organization, analysis, interpretation and presentation.
2. **Data science** is an interdisciplinary field that uses scientific methods, processes, algorithms and systems to extract knowledge and insights from data in various forms, both structured and unstructured.
3. **Pattern recognition** is the automated recognition of patterns and regularities in data.
4. **Data mining** is the process of discovering patterns in large data sets involving methods at the intersection of machine learning, statistics, and database systems.
5. **Machine learning** is the scientific study of algorithms and statistical models that computer systems use to effectively perform a specific task without using explicit instructions, relying on patterns and inference instead.
<!-- 6. Computer science defines **artificial intelligence** research as the study of "intelligent agents": any device that perceives its environment and takes actions that maximize its chance of successfully achieving its goals. -->
---
### What is Biomedical Data Science?
1. the study of biomedical data and information, of how such data and information may be structured, and of how analysis and processing of biomedical data and information will lead to new discoveries and to advances in health and healthcare. -- stanford
--
3. the interdisciplinary field that encompasses the study and pursuit of the effective uses of biomedical data, information, and knowledge for scientific inquiry, problem-solving, and decision-making, driven by efforts to improve human health. -- madison
--
1. an interdisciplinary field that uses algorithms, statistical models, and (database) systems to manage, visualize, wrangle, summarize, generalize, and control biomedical data driven by efforts to improve health and healthcare. -- jovo
---
### Why is it hard?
1. volume: data are large, sometimes millions or billions of "records"
2. variety: data are multi-modal, including structured and unstructured data, text, images, etc.
3. velocity: in some contexts, data are streaming (e.g., in ER)
4. veracity: data are noisy (sensors are broken, crappy, etc.)
5. domain knowledge
The first four are the `4 V's of Big Data`
---
### General Principles
1. Keep it Simple Stupid (KISS)
2. [Look at it](https://www.youtube.com/watch?v=EF8GhC-T_Mo)
---
### What "system tools" are required?
1. Manage: create, read, edit, delete (crud)
2. Visualize: charts, tables, infographics, sculptures
3. Wrangle: outliers, imputation, deconvolution
3. Summarize: point estimation, quantization, object localization
4. Generalize: hypothesis test, model, simulate,
5. Predict: classify, regress, forecast
5. Control: reinforcement learning, experimental design
---
### Manage
Data management systems enable users to create, read, edit, and delete "records".
- little data: store on local hard drive in file system
- big data: too large to store on local hard drive (eg, Dropbox), and/or too complex to keep track of everything (eg, Google Photos)
Tools include various kinds of databases:
- relational database
- NoSQL database - stores JSON files lacking schema
- Spatial database - stores 2D+ images for fast access
---
#### Example: NeuroData Cloud
<img src="images/bossDB.png" STYLE="width:100%;"/>
- 200+ teravoxels
- 100+ public & private datasets
- 30+ collaborators
- All 3D+ data (no ephys, etc.)
.footnote[https://neurodata.io/ndcloud/]
---
### Visualize
Data visualization systems generate charts and tables to highlight/illustrate insightful perspectives on the data.
- little data: preview, ImageJ
- big data: graphics libraries with applies
Tools include:
- WebGL
- D3.js
---
#### Example: NeuroGlancer
<img src="images/AT_rorb.png" style="position:absolute; left:0px; top:0px; width: 100%;"/>
.footnote[https://github.com/neurodata/neuroglancer]
---
### Wrangle
Data wrangling (as defined by me) consists of any operation one applies to the data that maintains its representation, such as outlier detection, missing value imputation, and deconvolution
- little data: matlab/python/R scripts
- big data: distributed pipelines
Scientific workflow management tools include:
- Galaxy
- NiPype
- Luigi
---
#### Example: NDReg
<img src="images/ndreg.png" style="width: 100%;"/>
- Large deformation diffeomorphic metric mapping (LDDMM)
- Fully automatic (no landmarks)
- Modalities: iDisco, CLARITY, MRI, histology, etc.,
- Species: human, rat, mouse, zebrafish...
.footnote[https://neurodata.io/ndreg/]
---
### Summarize
Data summaries include point estimates, confidence intervals, clusters, principle components analysis, etc. There are two qualitatively different kinds of summaries:
1. "maintain representation", eg, mean
2. map into new representation, eg, image --> graph or name
Examples:
1. the average height of the sample was 8'
2. the tree is in the upper left quadrant
---
#### Example: COBALT
<img src="images/clarity_cells.png" style="position:absolute; left:0px; top:0px; height: 100%;"/>
.footnote[https://github.com/neurodata/cobalt]
---
### Generalize
The goal of data collection is often not merely to characterize the sample, but rather, infer properties of a "population". Requires assumptions about
- sample data
- measurement bias and variance
- estimators
Generalization tools include:
- hypothesis testing
- modeling
- simulation
Example: the average African-American female is 8' tall (under Gaussian model of heights)
---
<!-- #### Example: MGC -->
<img src="images/FigHDPower.png" style="width: 100%;"/>
.footnote[https://neurodata.io/mgc]
---
### Predict
Prediction can be thought of as a special case of generalization, and is often associated with "machine learning". Three general kinds of prediction:
- classify: X is of type A
- regress: given X, Y is expected to be 6
- forecase: X is expected to be 6 tomorrow
Example tools:
- sklearn
- tensorflow
---
### Example: RerF
<img src="images/rerf_perf.png" style="width: 100%;"/>
- generalization of random forests
- significantly improve over best machine learning algs on >100 benchmark problems
.footnote[https://neurodata.io/rerf/]
---
### Control
Data control is about choosing which measurements to make, and includes:
- classical control theory: dynamic modeling, kalman, etc.
- reinforcement learning: training actors with trials
- design of experiments: case-control study, randomized control trial, active learning, etc.
Example tools:
- Google's Dopamine
- OpenAI Gym
---
### We got nuthin'
---
### Next Vistas: Modeling meets Representation Learning
<img src="images/not-so-clevr.png" style="width: 100%;"/>
---
### References
1. Vogelstein et al. *Nature Methods* (2018) [[manage]](https://rdcu.be/banSS)
2. Kutten et al. *MICCAI* (2018) [[wrangle]](https://link.springer.com/chapter/10.1007%2F978-3-319-66182-7_32)
3. Vogelstein et al. *eLife* (2019) [[generalize]](https://elifesciences.org/articles/41690)
4. Tomita et al. *arXiv* (2015) [[predict]](https://arxiv.org/abs/1506.03410)
---
### Acknowledgements
<div class="small-container">
<img src="faces/cep.png"/>
<div class="centered">Carey Priebe</div>
</div>
<div class="small-container">
<img src="faces/randal.jpg"/>
<div class="centered">Randal Burns</div>
</div>
<div class="small-container">
<img src="faces/mim.jpg"/>
<div class="centered">Michael Miller</div>
</div>
<div class="small-container">
<img src="faces/dtward.jpg"/>
<div class="centered">Daniel Tward</div>
</div>
<div class="small-container">
<img src="faces/ebridge.jpg"/>
<div class="centered">Eric Bridgeford</div>
</div>
<div class="small-container">
<img src="faces/vikram.jpg"/>
<div class="centered">Vikram Chandrashekhar</div>
</div>
<div class="small-container">
<img src="faces/drishti.jpg"/>
<div class="centered">Drishti Mannan</div>
</div>
<div class="small-container">
<img src="faces/jesse.jpg"/>
<div class="centered">Jesse Patsolic</div>
</div>
<div class="small-container">
<img src="faces/falk_ben.jpg"/>
<div class="centered">Benjamin Falk</div>
</div>
<div class="small-container">
<img src="faces/kwame.jpg"/>
<div class="centered">Kwame Kutten</div>
</div>
<div class="small-container">
<img src="faces/perlman.jpg"/>
<div class="centered">Eric Perlman</div>
</div>
<div class="small-container">
<img src="faces/loftus.jpg"/>
<div class="centered">Alex Loftus</div>
</div>
<div class="small-container">
<img src="faces/bcaffo.jpg"/>
<div class="centered">Brian Caffo</div>
</div>
<div class="small-container">
<img src="faces/minh.jpg"/>
<div class="centered">Minh Tang</div>
</div>
<div class="small-container">
<img src="faces/avanti.jpg"/>
<div class="centered">Avanti Athreya</div>
</div>
<div class="small-container">
<img src="faces/vince.jpg"/>
<div class="centered">Vince Lyzinski</div>
</div>
<div class="small-container">
<img src="faces/dpmcsuss.jpg"/>
<div class="centered">Daniel Sussman</div>
</div>
<div class="small-container">
<img src="faces/youngser.jpg"/>
<div class="centered">Youngser Park</div>
</div>
<div class="small-container">
<img src="faces/cshen.jpg"/>
<div class="centered">Cencheng Shen</div>
</div>
<div class="small-container">
<img src="faces/shangsi.jpg"/>
<div class="centered">Shangsi Wang</div>
</div>
<div class="small-container">
<img src="faces/tyler.jpg"/>
<div class="centered">Tyler Tomita</div>
</div>
<div class="small-container">
<img src="faces/james.jpg"/>
<div class="centered">James Brown</div>
</div>
<div class="small-container">
<img src="faces/disa.jpg"/>
<div class="centered">Disa Mhembere</div>
</div>
<div class="small-container">
<img src="faces/pedigo.jpg"/>
<div class="centered">Ben Pedigo</div>
</div>
<div class="small-container">
<img src="faces/jaewon.jpg"/>
<div class="centered">Jaewon Chung</div>
</div>
<div class="small-container">
<img src="faces/gkiar.jpg"/>
<div class="centered">Greg Kiar</div>
</div>
<div class="small-container">
<img src="faces/jeremias.png"/>
<div class="centered">Jeremias Sulam</div>
</div><span style="font-size:200%; color:red;">♥, 🦁, 👪, 🌎, 🌌</span>
<img src="images/funding/nsf_fpo.png" STYLE="HEIGHT:95px;"/>
<img src="images/funding/nih_fpo.png" STYLE="HEIGHT:95px;"/>
<img src="images/funding/darpa_fpo.png" STYLE=" HEIGHT:95px;"/>
<img src="images/funding/iarpa_fpo.jpg" STYLE="HEIGHT:95px;"/>
<img src="images/funding/KAVLI.jpg" STYLE="HEIGHT:95px;"/>
<img src="images/funding/schmidt.jpg" STYLE="HEIGHT:95px;"/>
---
class:center
<img src="images/lion_cartoon2.jpg" style="position:absolute; top:0px; left:0px; height:100%;"/>
</textarea>
<!-- <script src="https://gnab.github.io/remark/downloads/remark-latest.min.js"></script> -->
<script src="remark-latest.min.js"></script>
<script type="text/javascript">
var options = {};
var slideshow = remark.create(options)
</script>
</body>
</html>