-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
executable file
·459 lines (434 loc) · 21.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
#!/usr/bin/env python3
import sys
import os
import argparse
import json
import random
import shutil
import copy
from collections import defaultdict
import torch
from torch import cuda
import numpy as np
import time
import logging
from data import Dataset
from utils import *
from models import CompPCFG, LexicalizedCompPCFG
from torch.nn.init import xavier_uniform_
from torch.utils.tensorboard import SummaryWriter
try:
from apex import amp
APEX_AVAILABLE = True
except ModuleNotFoundError:
APEX_AVAILABLE = False
import pdb
import warnings
warnings.filterwarnings("ignore")
parser = argparse.ArgumentParser()
# Program options
parser.add_argument('--mode', default='train', help='train/test')
parser.add_argument('--test_file', default='data/preprocessed/ptb-test.pkl')
# Data path options
parser.add_argument('--train_file', default='data/preprocessed/ptb-train.pkl')
parser.add_argument('--val_file', default='data/preprocessed/ptb-val.pkl')
parser.add_argument('--save_path', default='compound-pcfg.pt', help='where to save the model')
parser.add_argument('--pretrained_word_emb', default="", help="word emb file")
# Model options
parser.add_argument('--model', default='LexicalizedCompPCFG', type=str, help='model name')
parser.add_argument('--load_model', default='', type=str, help='checkpoint file of stored model')
parser.add_argument('--init_gain', default=1., type=float, help='gain of xaviar initialization')
parser.add_argument('--init_model', default='', help='initial lexicalized pcfg with compound pcfg')
# Generative model parameters
parser.add_argument('--z_dim', default=64, type=int, help='latent dimension')
parser.add_argument('--t_states', default=60, type=int, help='number of preterminal states')
parser.add_argument('--nt_states', default=30, type=int, help='number of nonterminal states')
parser.add_argument('--state_dim', default=256, type=int, help='symbol embedding dimension')
parser.add_argument('--nt_emission', action="store_true", help='allow a single word span with a non-terminal')
parser.add_argument('--scalar_dir_scores', action="store_true", help='using scalar dir scores instead neural ones')
parser.add_argument('--seperate_nt_emb_for_emission', action="store_true", help='seperate nt embeddings for emission probability')
parser.add_argument('--head_first', action="store_true", help="first generate head and direction")
parser.add_argument('--tie_word_emb', action="store_true", help="tie the word embeddings")
parser.add_argument('--flow_word_emb', action="store_true", help="emit words via invertible flow")
parser.add_argument('--freeze_word_emb', action="store_true", help="freeze word embeddings")
# Inference network parameters
parser.add_argument('--h_dim', default=512, type=int, help='hidden dim for variational LSTM')
parser.add_argument('--w_dim', default=512, type=int, help='embedding dim for variational LSTM')
# Optimization options
parser.add_argument('--num_epochs', default=10, type=int, help='number of training epochs')
parser.add_argument('--lr', default=0.001, type=float, help='starting learning rate')
parser.add_argument('--delay_step', default=1, type=int, help='number of backprop before step')
parser.add_argument('--max_grad_norm', default=3, type=float, help='gradient clipping parameter')
parser.add_argument('--max_length', default=30, type=float, help='max sentence length cutoff start')
parser.add_argument('--len_incr', default=1, type=int, help='increment max length each epoch')
parser.add_argument('--final_max_length', default=40, type=int, help='final max length cutoff')
parser.add_argument('--eval_max_length', default=None, type=int, help='max length in evaluation. set to the same as final_max_length by default')
parser.add_argument('--beta1', default=0.75, type=float, help='beta1 for adam')
parser.add_argument('--beta2', default=0.999, type=float, help='beta2 for adam')
parser.add_argument('--gpu', default=0, type=int, help='which gpu to use')
parser.add_argument('--seed', default=3435, type=int, help='random seed')
parser.add_argument('--print_every', type=int, default=1000, help='print stats after N batches')
parser.add_argument('--supervised_signals', nargs="*", default = [], help="supervised signals to use")
parser.add_argument('--opt_level', type=str, default="O0", help="mixed precision")
parser.add_argument('--t_emb_init', type=str, default="", help="initial value of t_emb")
parser.add_argument('--vocab_mlp_identity_init', action='store_true', help="initialize vocab_mlp as identity function")
# Evaluation optiones
parser.add_argument('--evaluate_dep', action='store_true', help='evaluate dependency parsing results')
parser.add_argument('--log_dir', type=str, default="", help='tensorboard logdir')
args = parser.parse_args()
if(args.eval_max_length is None):
args.eval_max_length = args.final_max_length
# tensorboard
if(args.log_dir == ""):
writer = SummaryWriter()
else:
writer = SummaryWriter(log_dir=args.log_dir)
global_step = 0
def add_scalars(main_tag, tag_scalar_dict, global_step):
for tag in tag_scalar_dict:
writer.add_scalar("{}/{}".format(main_tag, tag), tag_scalar_dict[tag], global_step)
def main(args):
global global_step
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if(args.mode == 'train'):
train_data = Dataset(args.train_file, load_dep=args.evaluate_dep)
val_data = Dataset(args.val_file, load_dep=args.evaluate_dep)
train_sents = train_data.batch_size.sum()
vocab_size = int(train_data.vocab_size)
max_len = max(val_data.sents.size(1), train_data.sents.size(1))
print('Train: %d sents / %d batches, Val: %d sents / %d batches' %
(train_data.sents.size(0), len(train_data), val_data.sents.size(0), len(val_data)))
if(not args.pretrained_word_emb == ""):
pretrained_word_emb_matrix = get_word_emb_matrix(args.pretrained_word_emb, train_data.idx2word)
else:
pretrained_word_emb_matrix = None
else:
test_data = Dataset(args.test_file, load_dep=args.evaluate_dep)
vocab_size = int(test_data.vocab_size)
max_len = test_data.sents.size(1)
print("Test: %d sents / %d batches" % (test_data.sents.size(0), len(test_data)))
if(not args.pretrained_word_emb == ""):
pretrained_word_emb_matrix = get_word_emb_matrix(args.pretrained_word_emb, test_data.idx2word)
else:
pretrained_word_emb_matrix = None
print('Vocab size: %d, Max Sent Len: %d' % (vocab_size, max_len))
print('Save Path', args.save_path)
cuda.set_device(args.gpu)
if(args.model == 'CompPCFG'):
model = CompPCFG(vocab = vocab_size,
state_dim = args.state_dim,
t_states = args.t_states,
nt_states = args.nt_states,
h_dim = args.h_dim,
w_dim = args.w_dim,
z_dim = args.z_dim)
init_model = None
elif(args.model == 'LexicalizedCompPCFG'):
if args.init_model != '':
init_model = CompPCFG(vocab = vocab_size,
state_dim = args.state_dim,
t_states = args.t_states,
nt_states = args.nt_states,
h_dim = args.h_dim,
w_dim = args.w_dim,
z_dim = args.z_dim)
init_model.load_state_dict(torch.load(args.init_model)["model"])
args.supervised_signals = ["phrase", "tag", "nt"]
else:
init_model = None
model = LexicalizedCompPCFG(vocab = vocab_size,
state_dim = args.state_dim,
t_states = args.t_states,
nt_states = args.nt_states,
h_dim = args.h_dim,
w_dim = args.w_dim,
z_dim = args.z_dim,
nt_emission=args.nt_emission,
scalar_dir_scores=args.scalar_dir_scores,
seperate_nt_emb_for_emission=args.seperate_nt_emb_for_emission,
head_first=args.head_first,
tie_word_emb=args.tie_word_emb,
flow_word_emb=args.flow_word_emb,
freeze_word_emb=args.freeze_word_emb,
pretrained_word_emb=pretrained_word_emb_matrix,
supervised_signals=args.supervised_signals)
else:
raise NotImplementedError
for name, param in model.named_parameters():
if param.dim() > 1:
xavier_uniform_(param, args.init_gain)
if(args.t_emb_init != ""):
t_emb_init = np.loadtxt(args.t_emb_init)
model.t_emb.data.copy_(torch.from_numpy(t_emb_init))
if(args.vocab_mlp_identity_init):
model.vocab_mlp[0].bias.data.copy_(torch.zeros(args.state_dim))
model.vocab_mlp[0].weight.data.copy_(torch.cat([torch.eye(args.state_dim, args.state_dim), torch.zeros(args.state_dim, args.z_dim)], dim=1))
if(args.load_model != ''):
print("Loading model from {}.".format(args.load_model))
model.load_state_dict(torch.load(args.load_model)["model"])
print("Model loaded from {}.".format(args.load_model))
print("model architecture")
print(model)
model.train()
model.cuda()
if init_model:
init_model.eval()
init_model.cuda()
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, betas = (args.beta1, args.beta2))
if args.opt_level != "O0":
model.pcfg.huge = 1e4
model, optimizer = amp.initialize(
model, optimizer, opt_level=args.opt_level,
keep_batchnorm_fp32=True, loss_scale="dynamic"
)
if(args.mode == "test"):
print('--------------------------------')
print('Checking validation perf...')
test_ppl, test_f1 = eval(test_data, model)
print('--------------------------------')
return
best_val_ppl = 1e5
best_val_f1 = 0
epoch = 0
while epoch < args.num_epochs:
start_time = time.time()
epoch += 1
print('Starting epoch %d' % epoch)
train_nll = 0.
train_kl = 0.
num_sents = 0.
num_words = 0.
all_stats = [[0., 0., 0.]]
if(args.evaluate_dep):
dep_stats = [[0., 0., 0.]]
b = b_ = 0
optimization_delay_count_down = args.delay_step
for i in np.random.permutation(len(train_data)):
b += 1
gold_tree = None
if(not args.evaluate_dep):
sents, length, batch_size, _, _, gold_spans, gold_binary_trees, _ = train_data[i]
else:
sents, length, batch_size, gold_tags, gold_actions, gold_spans, gold_binary_trees, _, heads = train_data[i]
if(len(args.supervised_signals)):
gold_tree = []
for j in range(len(heads)):
gold_tree.append(get_span2head(gold_spans[j], heads[j], gold_actions=gold_actions[j], gold_tags=gold_tags[j]))
for span, (head, label) in gold_tree[j].items():
if(span[0] == span[1]):
gold_tree[j][span] = (head, PT2ID[label])
else:
f = lambda x : x[:x.find('-')] if x.find('-') != -1 else x
g = lambda y : y[:y.find('=')] if y.find('=') != -1 else y
gold_tree[j][span] = (head, NT2ID[f(g(label))])
if length > args.max_length or length == 1: #length filter based on curriculum
continue
b_ += 1
sents = sents.cuda()
if init_model:
gold_tree = []
with torch.no_grad():
_, _, _, argmax_spans = init_model(sents, argmax=True)
for j in range(len(argmax_spans)):
gold_tree.append({})
for span in argmax_spans[j]:
if(span[0] == span[1]):
gold_tree[j][(span[0], span[1])] = (-1, span[2] - args.nt_states)
else:
gold_tree[j][(span[0], span[1])] = (-1, span[2])
nll, kl, binary_matrix, argmax_spans = model(sents, argmax=True, gold_tree=gold_tree)
loss = (nll + kl).mean()
if(args.opt_level != "O0"):
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
train_nll += nll.sum().item()
train_kl += kl.sum().item()
if(optimization_delay_count_down == 1):
if args.max_grad_norm > 0:
if args.opt_level == "O0":
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
else:
torch.nn.utils.clip_grad_norm_(amp.master_params(
optimizer), args.max_grad_norm)
optimizer.step()
optimizer.zero_grad()
optimization_delay_count_down = args.delay_step
else:
optimization_delay_count_down -= 1
num_sents += batch_size
num_words += batch_size * (length + 1) # we implicitly generate </s> so we explicitly count it
for bb in range(batch_size):
span_b = [(a[0], a[1]) for a in argmax_spans[bb] if a[0] != a[1]] #ignore labels
span_b_set = set(span_b[:-1])
update_stats(span_b_set, [set(gold_spans[bb][:-1])], all_stats)
if(args.evaluate_dep):
update_dep_stats(argmax_spans[bb], heads[bb], dep_stats)
if b_ % args.print_every == 0:
all_f1 = get_f1(all_stats)
dir_acc, undir_acc = get_dep_acc(dep_stats) if args.evaluate_dep else (0., 0.)
param_norm = sum([p.norm()**2 for p in model.parameters()]).item()**0.5
gparam_norm = sum([p.grad.norm()**2 for p in model.parameters()
if p.grad is not None]).item()**0.5
log_str = 'Epoch: %d, Batch: %d/%d, |Param|: %.6f, |GParam|: %.2f, LR: %.4f, ' + \
'ReconPPL: %.2f, NLLloss: %.4f, KL: %.4f, PPLBound: %.2f, ValPPL: %.2f, ValF1: %.2f, ' + \
'CorpusF1: %.2f, DirAcc: %.2f, UndirAcc: %.2f, Throughput: %.2f examples/sec'
print(log_str %
(epoch, b, len(train_data), param_norm, gparam_norm, args.lr,
np.exp(train_nll / num_words), train_nll / num_words, train_kl /num_sents,
np.exp((train_nll + train_kl)/num_words), best_val_ppl, best_val_f1,
all_f1[0], dir_acc, undir_acc, num_sents / (time.time() - start_time)))
# print an example parse
tree = get_tree_from_binary_matrix(binary_matrix[0], length)
action = get_actions(tree)
sent_str = [train_data.idx2word[word_idx] for word_idx in list(sents[0].cpu().numpy())]
if(args.evaluate_dep):
print("Pred Tree: %s" % get_tagged_parse(get_tree(action, sent_str), argmax_spans[0]))
else:
print("Pred Tree: %s" % get_tree(action, sent_str))
print("Gold Tree: %s" % get_tree(gold_binary_trees[0], sent_str))
# tensorboard
global_step += args.print_every
add_scalars(main_tag="train",
tag_scalar_dict={"ParamNorm": param_norm,
"ParamGradNorm": gparam_norm,
"ReconPPL": np.exp(train_nll / num_words),
"KL": train_kl /num_sents,
"PPLBound": np.exp((train_nll + train_kl)/num_words),
"CorpusF1": all_f1[0],
"DirAcc": dir_acc,
"UndirAcc": undir_acc,
"Throughput (examples/sec)": num_sents / (time.time() - start_time),
"GPU memory usage": torch.cuda.memory_allocated()},
global_step=global_step)
if(args.evaluate_dep):
writer.add_text("Pred Tree", get_tagged_parse(get_tree(action, sent_str), argmax_spans[0]), global_step)
else:
writer.add_text("Pred Tree", get_tree(action, sent_str), global_step)
writer.add_text("Gold Tree", get_tree(gold_binary_trees[0], sent_str), global_step)
args.max_length = min(args.final_max_length, args.max_length + args.len_incr)
print('--------------------------------')
print('Checking validation perf...')
val_ppl, val_f1 = eval(val_data, model)
print('--------------------------------')
if val_ppl < best_val_ppl:
best_val_ppl = val_ppl
best_val_f1 = val_f1
checkpoint = {
'args': args.__dict__,
'model': model.cpu().state_dict(),
'word2idx': train_data.word2idx,
'idx2word': train_data.idx2word
}
print('Saving checkpoint to %s' % args.save_path)
torch.save(checkpoint, args.save_path)
model.cuda()
def eval(data, model):
global global_step
model.eval()
num_sents = 0
num_words = 0
total_nll = 0.
total_kl = 0.
corpus_f1 = [0., 0., 0.]
corpus_f1_by_cat = [defaultdict(int), defaultdict(int), defaultdict(int)]
dep_stats = [[0., 0., 0.]]
sent_f1 = []
# f = open("tmp.txt", "w")
with torch.no_grad():
for i in range(len(data)):
if(not args.evaluate_dep):
sents, length, batch_size, _, gold_actions, gold_spans, gold_binary_trees, other_data = data[i]
else:
sents, length, batch_size, gold_tags, gold_actions, gold_spans, gold_binary_trees, other_data, heads = data[i]
span_dicts = []
for j in range(batch_size):
span_dict = {}
for l, r, nt in get_nonbinary_spans_label(gold_actions[j])[0]:
span_dict[(l, r)] = nt
span_dicts.append(span_dict)
if length == 1 or length > args.eval_max_length:
continue
sents = sents.cuda()
# note that for unsuperised parsing, we should do model(sents, argmax=True, use_mean = True)
# but we don't for eval since we want a valid upper bound on PPL for early stopping
# see eval.py for proper MAP inference
nll, kl, binary_matrix, argmax_spans = model(sents, argmax=True)
total_nll += nll.sum().item()
total_kl += kl.sum().item()
num_sents += batch_size
num_words += batch_size*(length +1) # we implicitly generate </s> so we explicitly count it
gold_tree = []
for j in range(len(heads)):
gold_tree.append(get_span2head(gold_spans[j], heads[j], gold_actions=gold_actions[j], gold_tags=gold_tags[j]))
for span, (head, label) in gold_tree[j].items():
if(span[0] == span[1]):
gold_tree[j][span] = (head, PT2ID[label])
else:
f = lambda x : x[:x.find('-')] if x.find('-') != -1 else x
g = lambda y : y[:y.find('=')] if y.find('=') != -1 else y
gold_tree[j][span] = (head, f(g(label)))
for b in range(batch_size):
# for a in argmax_spans[b]:
# if((a[0], a[1]) in span_dicts[b]):
# f.write("{}\t{}\n".format(a[2], span_dicts[b][(a[0], a[1])]))
span_b = [(a[0], a[1]) for a in argmax_spans[b] if a[0] != a[1]] #ignore labels
span_b_set = set(span_b[:-1])
gold_b_set = set(gold_spans[b][:-1])
tp, fp, fn = get_stats(span_b_set, gold_b_set)
corpus_f1[0] += tp
corpus_f1[1] += fp
corpus_f1[2] += fn
tp_by_cat, all_by_cat = get_stats_by_cat(span_b_set, gold_b_set, gold_tree[b])
for j in tp_by_cat:
corpus_f1_by_cat[0][j] += tp_by_cat[j]
for j in all_by_cat:
corpus_f1_by_cat[1][j] += all_by_cat[j]
# sent-level F1 is based on L83-89 from https://github.com/yikangshen/PRPN/test_phrase_grammar.py
model_out = span_b_set
std_out = gold_b_set
overlap = model_out.intersection(std_out)
prec = float(len(overlap)) / (len(model_out) + 1e-8)
reca = float(len(overlap)) / (len(std_out) + 1e-8)
if len(std_out) == 0:
reca = 1.
if len(model_out) == 0:
prec = 1.
f1 = 2 * prec * reca / (prec + reca + 1e-8)
sent_f1.append(f1)
if(args.evaluate_dep):
update_dep_stats(argmax_spans[b], heads[b], dep_stats)
tp, fp, fn = corpus_f1
prec = tp / (tp + fp)
recall = tp / (tp + fn)
corpus_f1 = 2*prec*recall/(prec+recall) if prec+recall > 0 else 0.
for j in corpus_f1_by_cat[1]:
corpus_f1_by_cat[2][j] = corpus_f1_by_cat[0] / corpus_f1_by_cat[1]
sent_f1 = np.mean(np.array(sent_f1))
dir_acc, undir_acc = get_dep_acc(dep_stats) if args.evaluate_dep else (0., 0.)
recon_ppl = np.exp(total_nll / num_words)
ppl_elbo = np.exp((total_nll + total_kl)/num_words)
kl = total_kl /num_sents
print('ReconPPL: %.2f, KL: %.4f, NLLloss: %.4f, PPL (Upper Bound): %.2f' %
(recon_ppl, kl, total_nll / num_words, ppl_elbo))
print('Corpus F1: %.2f, Sentence F1: %.2f' %
(corpus_f1*100, sent_f1*100))
if(args.evaluate_dep):
print('DirAcc: %.2f, UndirAcc: %.2f'%(dir_acc, undir_acc))
print('Corpus Recall by Category: {}'.format(corpus_f1_by_cat[2]))
# tensorboard
add_scalars(main_tag="validation",
tag_scalar_dict={"ReconPPL": recon_ppl,
"KL": kl,
"PPL (Upper Bound)": ppl_elbo,
"Corpus F1": corpus_f1 * 100,
"Sentence F1": sent_f1*100,
"DirAcc": dir_acc if args.evaluate_dep else 0,
"UndirAcc": undir_acc if args.evaluate_dep else 0},
global_step=global_step)
model.train()
return ppl_elbo, sent_f1*100
if __name__ == '__main__':
main(args)