-
Notifications
You must be signed in to change notification settings - Fork 329
/
run_calibrate_camera.py
191 lines (159 loc) · 6.07 KB
/
run_calibrate_camera.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
"""
~~~~~~~~~~~~~~~~~~~~~~~~~~
Fisheye Camera calibration
~~~~~~~~~~~~~~~~~~~~~~~~~~
Usage:
python calibrate_camera.py \
-i 0 \
-grid 9x6 \
-out fisheye.yaml \
-framestep 20 \
--resolution 640x480
--fisheye
"""
import argparse
import os
import numpy as np
import cv2
from surround_view import CaptureThread, MultiBufferManager
import surround_view.utils as utils
# we will save the camera param file to this directory
TARGET_DIR = os.path.join(os.getcwd(), "yaml")
# default param file
DEFAULT_PARAM_FILE = os.path.join(TARGET_DIR, "camera_params.yaml")
def main():
parser = argparse.ArgumentParser()
# input video stream
parser.add_argument("-i", "--input", type=int, default=0,
help="input camera device")
# chessboard pattern size
parser.add_argument("-grid", "--grid", default="9x6",
help="size of the calibrate grid pattern")
parser.add_argument("-r", "--resolution", default="640x480",
help="resolution of the camera image")
parser.add_argument("-framestep", type=int, default=20,
help="use every nth frame in the video")
parser.add_argument("-o", "--output", default=DEFAULT_PARAM_FILE,
help="path to output yaml file")
parser.add_argument("-fisheye", "--fisheye", action="store_true",
help="set true if this is a fisheye camera")
parser.add_argument("-flip", "--flip", default=0, type=int,
help="flip method of the camera")
parser.add_argument("--no_gst", action="store_true",
help="set true if not use gstreamer for the camera capture")
args = parser.parse_args()
if not os.path.exists(TARGET_DIR):
os.mkdir(TARGET_DIR)
text1 = "press c to calibrate"
text2 = "press q to quit"
text3 = "device: {}".format(args.input)
font = cv2.FONT_HERSHEY_SIMPLEX
fontscale = 0.6
resolution_str = args.resolution.split("x")
W = int(resolution_str[0])
H = int(resolution_str[1])
grid_size = tuple(int(x) for x in args.grid.split("x"))
grid_points = np.zeros((1, np.prod(grid_size), 3), np.float32)
grid_points[0, :, :2] = np.indices(grid_size).T.reshape(-1, 2)
objpoints = [] # 3d point in real world space
imgpoints = [] # 2d points in image plane
device = args.input
cap_thread = CaptureThread(device_id=device,
flip_method=args.flip,
resolution=(W, H),
use_gst=not args.no_gst,
)
buffer_manager = MultiBufferManager()
buffer_manager.bind_thread(cap_thread, buffer_size=8)
if cap_thread.connect_camera():
cap_thread.start()
else:
print("cannot open device")
return
quit = False
do_calib = False
i = -1
while True:
i += 1
img = buffer_manager.get_device(device).get().image
if i % args.framestep != 0:
continue
print("searching for chessboard corners in frame " + str(i) + "...")
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
found, corners = cv2.findChessboardCorners(
gray,
grid_size,
cv2.CALIB_CB_ADAPTIVE_THRESH +
cv2.CALIB_CB_NORMALIZE_IMAGE +
cv2.CALIB_CB_FILTER_QUADS
)
if found:
term = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_COUNT, 30, 0.01)
cv2.cornerSubPix(gray, corners, (5, 5), (-1, -1), term)
print("OK")
imgpoints.append(corners)
objpoints.append(grid_points)
cv2.drawChessboardCorners(img, grid_size, corners, found)
cv2.putText(img, text1, (20, 70), font, fontscale, (255, 200, 0), 2)
cv2.putText(img, text2, (20, 110), font, fontscale, (255, 200, 0), 2)
cv2.putText(img, text3, (20, 30), font, fontscale, (255, 200, 0), 2)
cv2.imshow("corners", img)
key = cv2.waitKey(1) & 0xFF
if key == ord("c"):
print("\nPerforming calibration...\n")
N_OK = len(objpoints)
if N_OK < 12:
print("Less than 12 corners (%d) detected, calibration failed" %(N_OK))
continue
else:
do_calib = True
break
elif key == ord("q"):
quit = True
break
if quit:
cap_thread.stop()
cap_thread.disconnect_camera()
cv2.destroyAllWindows()
if do_calib:
N_OK = len(objpoints)
K = np.zeros((3, 3))
D = np.zeros((4, 1))
rvecs = [np.zeros((1, 1, 3), dtype=np.float64) for _ in range(N_OK)]
tvecs = [np.zeros((1, 1, 3), dtype=np.float64) for _ in range(N_OK)]
calibration_flags = (cv2.fisheye.CALIB_RECOMPUTE_EXTRINSIC +
cv2.fisheye.CALIB_CHECK_COND +
cv2.fisheye.CALIB_FIX_SKEW)
if args.fisheye:
ret, mtx, dist, rvecs, tvecs = cv2.fisheye.calibrate(
objpoints,
imgpoints,
(W, H),
K,
D,
rvecs,
tvecs,
calibration_flags,
(cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 1e-6)
)
else:
ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(
objpoints,
imgpoints,
(W, H),
None,
None)
if ret:
fs = cv2.FileStorage(args.output, cv2.FILE_STORAGE_WRITE)
fs.write("resolution", np.int32([W, H]))
fs.write("camera_matrix", K)
fs.write("dist_coeffs", D)
fs.release()
print("successfully saved camera data")
cv2.putText(img, "Success!", (220, 240), font, 2, (0, 0, 255), 2)
else:
cv2.putText(img, "Failed!", (220, 240), font, 2, (0, 0, 255), 2)
cv2.imshow("corners", img)
cv2.waitKey(0)
if __name__ == "__main__":
main()