-
Notifications
You must be signed in to change notification settings - Fork 1.4k
/
main.py
225 lines (165 loc) · 9.08 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import os
import argparse
import warnings
import tensorflow as tf
from helper import gen_batch_function, save_inference_samples
from distutils.version import LooseVersion
from os.path import join, expanduser
import project_tests as tests
from image_augmentation import perform_augmentation
# Check TensorFlow Version
assert LooseVersion(tf.__version__) >= LooseVersion('1.0'),\
'Please use TensorFlow version 1.0 or newer. You are using {}'.format(tf.__version__)
print('TensorFlow Version: {}'.format(tf.__version__))
# Check for a GPU
if not tf.test.gpu_device_name():
warnings.warn('No GPU found. Please use a GPU to train your neural network.')
else:
print('Default GPU Device: {}'.format(tf.test.gpu_device_name()))
def load_vgg(sess, vgg_path):
"""
Load Pretrained VGG Model into TensorFlow.
:param sess: TensorFlow Session
:param vgg_path: Path to vgg folder, containing "variables/" and "saved_model.pb"
:return: Tuple of Tensors from VGG model (image_input, keep_prob, layer3_out, layer4_out, layer7_out)
"""
vgg_input_tensor_name = 'image_input:0'
vgg_keep_prob_tensor_name = 'keep_prob:0'
vgg_layer3_out_tensor_name = 'layer3_out:0'
vgg_layer4_out_tensor_name = 'layer4_out:0'
vgg_layer7_out_tensor_name = 'layer7_out:0'
tf.saved_model.loader.load(sess, ['vgg16'], vgg_path)
graph = tf.get_default_graph()
image_input = graph.get_tensor_by_name(vgg_input_tensor_name)
keep_prob = graph.get_tensor_by_name(vgg_keep_prob_tensor_name)
layer3_out = graph.get_tensor_by_name(vgg_layer3_out_tensor_name)
layer4_out = graph.get_tensor_by_name(vgg_layer4_out_tensor_name)
layer7_out = graph.get_tensor_by_name(vgg_layer7_out_tensor_name)
return image_input, keep_prob, layer3_out, layer4_out, layer7_out
def layers(vgg_layer3_out, vgg_layer4_out, vgg_layer7_out, num_classes):
"""
Create the layers for a fully convolutional network. Build skip-layers using the vgg layers.
For reference: https://people.eecs.berkeley.edu/~jonlong/long_shelhamer_fcn.pdf
:param vgg_layer7_out: TF Tensor for VGG Layer 3 output
:param vgg_layer4_out: TF Tensor for VGG Layer 4 output
:param vgg_layer3_out: TF Tensor for VGG Layer 7 output
:param num_classes: Number of classes to classify
:return: The Tensor for the last layer of output
"""
kernel_regularizer = tf.contrib.layers.l2_regularizer(0.5)
# Compute logits
layer3_logits = tf.layers.conv2d(vgg_layer3_out, num_classes, kernel_size=[1, 1],
padding='same', kernel_regularizer=kernel_regularizer)
layer4_logits = tf.layers.conv2d(vgg_layer4_out, num_classes, kernel_size=[1, 1],
padding='same', kernel_regularizer=kernel_regularizer)
layer7_logits = tf.layers.conv2d(vgg_layer7_out, num_classes, kernel_size=[1, 1],
padding='same', kernel_regularizer=kernel_regularizer)
# Add skip connection before 4th and 7th layer
layer7_logits_up = tf.image.resize_images(layer7_logits, size=[10, 36])
layer_4_7_fused = tf.add(layer7_logits_up, layer4_logits)
# Add skip connection before (4+7)th and 3rd layer
layer_4_7_fused_up = tf.image.resize_images(layer_4_7_fused, size=[20, 72])
layer_3_4_7_fused = tf.add(layer3_logits, layer_4_7_fused_up)
# resize to original size
layer_3_4_7_up = tf.image.resize_images(layer_3_4_7_fused, size=[160, 576])
layer_3_4_7_up = tf.layers.conv2d(layer_3_4_7_up, num_classes, kernel_size=[15, 15],
padding='same', kernel_regularizer=kernel_regularizer)
return layer_3_4_7_up
def optimize(net_prediction, labels, learning_rate, num_classes):
"""
Build the TensorFLow loss and optimizer operations.
:param net_prediction: TF Tensor of the last layer in the neural network
:param labels: TF Placeholder for the correct label image
:param learning_rate: TF Placeholder for the learning rate
:param num_classes: Number of classes to classify
:return: Tuple of (logits, train_op, cross_entropy_loss)
"""
# Unroll
logits_flat = tf.reshape(net_prediction, (-1, num_classes))
labels_flat = tf.reshape(labels, (-1, num_classes))
# Define loss
cross_entropy_loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=labels_flat, logits=logits_flat))
# Define optimization step
train_step = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cross_entropy_loss)
return logits_flat, train_step, cross_entropy_loss
def train_nn(sess, training_epochs, batch_size, get_batches_fn, train_op, cross_entropy_loss,
image_input, labels, keep_prob, learning_rate):
"""
Train neural network and print out the loss during training.
:param sess: TF Session
:param training_epochs: Number of epochs
:param batch_size: Batch size
:param get_batches_fn: Function to get batches of training data. Call using get_batches_fn(batch_size)
:param train_op: TF Operation to train the neural network
:param cross_entropy_loss: TF Tensor for the amount of loss
:param image_input: TF Placeholder for input images
:param labels: TF Placeholder for label images
:param keep_prob: TF Placeholder for dropout keep probability
:param learning_rate: TF Placeholder for learning rate
"""
# Variable initialization
sess.run(tf.global_variables_initializer())
lr = args.learning_rate
for e in range(0, training_epochs):
loss_this_epoch = 0.0
for i in range(0, args.batches_per_epoch):
# Load a batch of examples
batch_x, batch_y = next(get_batches_fn(batch_size))
if should_do_augmentation:
batch_x, batch_y = perform_augmentation(batch_x, batch_y)
_, cur_loss = sess.run(fetches=[train_op, cross_entropy_loss],
feed_dict={image_input: batch_x, labels: batch_y, keep_prob: 0.25,
learning_rate: lr})
loss_this_epoch += cur_loss
print('Epoch: {:02d} - Loss: {:.03f}'.format(e, loss_this_epoch / args.batches_per_epoch))
def perform_tests():
tests.test_for_kitti_dataset(data_dir)
tests.test_load_vgg(load_vgg, tf)
tests.test_layers(layers)
tests.test_optimize(optimize)
tests.test_train_nn(train_nn)
def run():
num_classes = 2
image_h, image_w = (160, 576)
with tf.Session() as sess:
# Path to vgg model
vgg_path = join(data_dir, 'vgg')
# Create function to get batches
batch_generator = gen_batch_function(join(data_dir, 'data_road/training'), (image_h, image_w))
# Load VGG pretrained
image_input, keep_prob, vgg_layer3_out, vgg_layer4_out, vgg_layer7_out = load_vgg(sess, vgg_path)
# Add skip connections
output = layers(vgg_layer3_out, vgg_layer4_out, vgg_layer7_out, num_classes)
# Define placeholders
labels = tf.placeholder(tf.float32, shape=[None, image_h, image_w, num_classes])
learning_rate = tf.placeholder(tf.float32, shape=[])
logits, train_op, cross_entropy_loss = optimize(output, labels, learning_rate, num_classes)
# Training parameters
train_nn(sess, args.training_epochs, args.batch_size, batch_generator, train_op, cross_entropy_loss,
image_input, labels, keep_prob, learning_rate)
save_inference_samples(runs_dir, data_dir, sess, (image_h, image_w), logits, keep_prob, image_input)
def parse_arguments():
"""
Parse command line arguments
"""
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--batch_size', type=int, default=8, help='Batch size used for training', metavar='')
parser.add_argument('--batches_per_epoch', type=int, default=100, help='Batches each training epoch', metavar='')
parser.add_argument('--training_epochs', type=int, default=30, help='Number of training epoch', metavar='')
parser.add_argument('--learning_rate', type=float, default=1e-4, help='Learning rate', metavar='')
parser.add_argument('--augmentation', type=bool, default=True, help='Perform augmentation in training', metavar='')
parser.add_argument('--gpu', type=int, default=0, help='Which GPU to use', metavar='')
return parser.parse_args()
if __name__ == '__main__':
data_dir = join(expanduser("~"), 'code', 'self-driving-car', 'project_12_road_segmentation', 'data')
runs_dir = join(expanduser("~"), 'majinbu_home', 'road_segmentation_prediction')
args = parse_arguments()
# Appropriately set GPU device
os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu)
print('Using GPU: {:02d}.'.format(args.gpu))
# Turn off augmentation during tests
should_do_augmentation = False
perform_tests()
# Restore appropriate augmentation value
should_do_augmentation = args.augmentation
run()