-
Notifications
You must be signed in to change notification settings - Fork 0
/
eigs.nb
4375 lines (4312 loc) · 206 KB
/
eigs.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 11.0' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 211012, 4367]
NotebookOptionsPosition[ 206288, 4289]
NotebookOutlinePosition[ 206697, 4306]
CellTagsIndexPosition[ 206654, 4303]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell["The analytical way!", "Text",
CellChangeTimes->{{3.7530560192429*^9,
3.753056025044572*^9}},ExpressionUUID->"f0f90cb5-349a-416a-84ae-\
0e5db1bbe68d"],
Cell[BoxData[
RowBox[{"ClearAll", "[", "\"\<Global`*\>\"", "]"}]], "Input",
CellChangeTimes->{{3.752848095292425*^9,
3.752848102154955*^9}},ExpressionUUID->"c2872dd0-16d4-4db2-a4fa-\
15af98c72e56"],
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{
RowBox[{
"Here", " ", "we", " ", "solve", " ", "for", " ", "the", " ", "roots",
" ", "of", " ", "the", " ", "sixth"}], "-",
RowBox[{"order", " ", "polynomial"}]}], " ", "*)"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{
RowBox[{
SubscriptBox["rootEq", "k_"], "[",
RowBox[{"r_", ",", "Ra_"}], "]"}], ":=",
RowBox[{
RowBox[{
RowBox[{"-",
SuperscriptBox["k",
RowBox[{"-", "2"}]]}],
SuperscriptBox[
RowBox[{"(",
RowBox[{
SuperscriptBox["r", "2"], "-",
SuperscriptBox["k", "2"]}], ")"}], "3"]}], "\[Equal]", "Ra"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"roots", "=",
RowBox[{"r", "/.",
RowBox[{"Solve", "[",
RowBox[{
RowBox[{
SubscriptBox["rootEq", "k"], "[",
RowBox[{"r", ",", "Ra"}], "]"}], ",", "r"}], "]"}]}]}], ";"}],
"\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{
"Here", " ", "we", " ", "define", " ", "the", " ", "six", " ", "basis",
" ", "functions"}], " ", "*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"bfuns", "=",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"Exp", "[",
RowBox[{
RowBox[{
"roots", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}],
"z"}], "]"}], ",",
RowBox[{"{",
RowBox[{"i", ",",
RowBox[{"Length", "[", "roots", "]"}]}], "}"}]}], "]"}], "//",
"FullSimplify"}]}], ";"}], "\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{
"Here", " ", "we", " ", "define", " ", "the", " ", "six", " ", "boundary",
" ", "conditions", " ", "given", " ", "a", " ", "function"}], " ",
"*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"bcs", "[",
RowBox[{"f_", ",", "z_", ",", "vs_"}], "]"}], ":=",
RowBox[{"{",
RowBox[{
RowBox[{"f", "/.",
RowBox[{"{",
RowBox[{"z", "\[Rule]",
RowBox[{
"vs", "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}]}],
"}"}]}], ",",
RowBox[{"f", "/.",
RowBox[{"{",
RowBox[{"z", "\[Rule]",
RowBox[{
"vs", "\[LeftDoubleBracket]", "2", "\[RightDoubleBracket]"}]}],
"}"}]}], ",", "\[IndentingNewLine]",
RowBox[{
RowBox[{"Evaluate", "[",
RowBox[{
RowBox[{"D", "[",
RowBox[{"f", ",",
RowBox[{"{",
RowBox[{"z", ",", "2"}], "}"}]}], "]"}], "-",
RowBox[{
SuperscriptBox["k", "2"], "f"}]}], "]"}], "/.",
RowBox[{"{",
RowBox[{"z", "\[Rule]",
RowBox[{
"vs", "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}]}],
"}"}]}], ",", "\[IndentingNewLine]",
RowBox[{
RowBox[{"Evaluate", "[",
RowBox[{
RowBox[{"D", "[",
RowBox[{"f", ",",
RowBox[{"{",
RowBox[{"z", ",", "2"}], "}"}]}], "]"}], "-",
RowBox[{
SuperscriptBox["k", "2"], "f"}]}], "]"}], "/.",
RowBox[{"{",
RowBox[{"z", "\[Rule]",
RowBox[{
"vs", "\[LeftDoubleBracket]", "2", "\[RightDoubleBracket]"}]}],
"}"}]}], ",", "\[IndentingNewLine]",
RowBox[{
RowBox[{"Evaluate", "[",
RowBox[{
RowBox[{"D", "[",
RowBox[{"f", ",",
RowBox[{"{",
RowBox[{"z", ",", "3"}], "}"}]}], "]"}], "-",
RowBox[{
SuperscriptBox["k", "2"],
RowBox[{"D", "[",
RowBox[{"f", ",", "z"}], "]"}]}]}], "]"}], "/.",
RowBox[{"{",
RowBox[{"z", "\[Rule]",
RowBox[{
"vs", "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}]}],
"}"}]}], ",", "\[IndentingNewLine]",
RowBox[{
RowBox[{"Evaluate", "[",
RowBox[{
RowBox[{"D", "[",
RowBox[{"f", ",",
RowBox[{"{",
RowBox[{"z", ",", "3"}], "}"}]}], "]"}], "-",
RowBox[{
SuperscriptBox["k", "2"],
RowBox[{"D", "[",
RowBox[{"f", ",", "z"}], "]"}]}]}], "]"}], "/.",
RowBox[{"{",
RowBox[{"z", "\[Rule]",
RowBox[{
"vs", "\[LeftDoubleBracket]", "2", "\[RightDoubleBracket]"}]}],
"}"}]}]}], "}"}]}], ";"}], "\[IndentingNewLine]",
"\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{
"Here", " ", "we", " ", "construct", " ", "the", " ", "matrix", " ", "as",
" ", "described"}], " ", "*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"vmond", "=",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"bcs", "[",
RowBox[{
RowBox[{
"bfuns", "\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}],
",", "z", ",",
RowBox[{"{",
RowBox[{"0", ",", "1"}], "}"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"i", ",", "6"}], "}"}]}], "]"}], "//", "Transpose"}]}],
";"}]}]}]], "Input",
CellChangeTimes->{{3.7527990337319183`*^9, 3.752799189433107*^9}, {
3.752802004610269*^9, 3.7528020390100517`*^9}, {3.752802109885647*^9,
3.7528021350641212`*^9}, {3.75280217992344*^9, 3.752802180712421*^9}, {
3.752802303251115*^9, 3.752802374240539*^9}, {3.752802420376451*^9,
3.752802455120833*^9}, {3.752802539452142*^9, 3.752802650654263*^9}, {
3.752802685879366*^9, 3.752802730843485*^9}, {3.7528028730577803`*^9,
3.7528028801931*^9}, {3.752802944920919*^9, 3.752803069561821*^9}, {
3.752803420487767*^9, 3.7528035196366463`*^9}, {3.752804066355928*^9,
3.752804074567861*^9}, {3.752805052267194*^9, 3.7528051607320843`*^9}, {
3.752806149310103*^9, 3.7528061500600853`*^9}, {3.752845466558137*^9,
3.7528454985275497`*^9}, {3.752845531028143*^9, 3.752845539515102*^9}, {
3.752845749975607*^9, 3.752845756433235*^9}, {3.75305603717111*^9,
3.7530561002583227`*^9}},ExpressionUUID->"565a6baa-7b98-4f16-aba3-\
ad664c0060a4"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{
RowBox[{
"Here", " ", "we", " ", "plot", " ", "the", " ", "contour", " ", "of",
" ", "det",
RowBox[{"(", "M", ")"}]}], " ", "=", " ",
RowBox[{"0", " ",
RowBox[{"(",
RowBox[{
RowBox[{"technically", " ", "Im",
RowBox[{"(", "det", ")"}]}], "=", "0"}], ")"}]}]}], " ", "*)"}],
"\[IndentingNewLine]",
RowBox[{"c", "=",
RowBox[{"ContourPlot", "[",
RowBox[{
RowBox[{
RowBox[{"If", "[",
RowBox[{
RowBox[{
RowBox[{"2", "k"}], "<",
SuperscriptBox["Ra",
RowBox[{"1", "/", "3"}]]}], ",",
RowBox[{"Im", "[",
RowBox[{"Det", "[", "vmond", "]"}], "]"}], ",", "10"}], "]"}],
"\[Equal]", "0"}], ",",
RowBox[{"{",
RowBox[{"Ra", ",", "0", ",", "8000"}], "}"}], ",",
RowBox[{"{",
RowBox[{"k", ",", "0", ",", "8"}], "}"}], ",",
RowBox[{"Frame", "\[Rule]", "True"}], ",",
RowBox[{"FrameStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Black", ",", "14"}], "]"}]}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<Ra\>\"", ",", "\"\<k\>\""}], "}"}]}]}],
"]"}]}]}]], "Input",
CellChangeTimes->{{3.75280584970852*^9, 3.7528061025894403`*^9}, {
3.752806813561884*^9, 3.7528068173498898`*^9}, {3.752806953528556*^9,
3.7528069536873207`*^9}, {3.752807054840927*^9, 3.75280705543755*^9}, {
3.753055756267877*^9, 3.753055766130951*^9}, {3.753055796818487*^9,
3.7530558071321898`*^9}, {3.753056103659676*^9,
3.7530561219502897`*^9}},ExpressionUUID->"6163c854-3728-4c74-832e-\
f59c2960796e"],
Cell[BoxData[
GraphicsBox[GraphicsComplexBox[CompressedData["
1:eJw9WHcgle0btjLL3s45ymgp5UvSfK6sMoqGlAolpIWvJaKSihJlJCtk731s
7UXLV5S0SCk7e8Xv5Lznd/553d73fd7nvu7rue4xa6/LZgceLi6uc9xcXH+v
Ezy7Hhaml4Nr6jeTfd1eDrNDAVYBb5TxVWvlVSNGOVaX3Wj59lAZJ3nP0E8L
l8Mg7/6EbKUy/Ksx495QGY40Mg83MpURomYcrPasDLQZjQov4pTheuHAb5fk
MmR5HyvGdWV8/PvYuTJUrOD1nnZeGW0eSxUfrCvD1OuHWXbsrtm/1pRhiaOC
y+h+ZcxmLWe8ogz2B5pPf3FUxqnpUUnFmmVwlxc0/rxHGS5/X+wthXdqVb29
kTLiYqq4UxpLkb9NfJ3lKmWU/F02oxTLLnxMnT9fGXNePRErjyrF+uC/G1VG
hF59ncnxUjQeeav9SVIZ3H/931eK8JHX7y2ElKFEo7vG65XiZ+Ias4g/DOzS
KD9huaIUdd2Zd1tHGDD5uw6tFFe+HTT42sZAzKqxm7wSpch+9Y+zfisDyx2D
byb3lWDKvUYGG5+6EujHlWaF1TCQxn1INLOiBHb8rxts7rPW97Pb359Zgk6d
AV3XcgYbr6slmMnI3duczoBmwu7hCM8SVPWkW9QlMpA8zB8wbl4C1b84BTOw
nna8+opxCWyzo070BjKg/vf/RiXw0S+71h/AQIPVP4XFq0sgO69I7Lw/A4+c
2jL2ypdAxrJ+hro7gx3HiWKEN2mRCWfW/VsCAY9+FsNl4UH1+7YMFP/1o7gY
5ZV6vV2mDMh+YDyZkVuMa3/9MmZg3lnJjrUXixHGrfljxz8MNp9ci6G9V+Xj
nzkMzA2tsdm8rBjNZ9uKFMUYmDgj9aRNpRhV+wNJ9TQGAmi+srlSxZiY/Puj
YypMTUxcr731Mq2Fjiv8/3aueMAE05HReLqOzsYngonni1du2fGAjsmL8ZtM
PJk4OEUoOl6b1xrZ7GGixDctzjmFzsZjMxPjIUtCamLpyO1/a3ZsERMfhknh
nut07MzJURnSYMK7Tm0sJojOxkOYiSGHKGcJLzpEffS2V08W4XT4jm6RU3R8
TyvcXvSjCO+nAkxn8+1BEQ5MvLdcvIMO189uWR/jisBX7ee2yYSOrQK9s81j
i+BV1PUg0JjO5tvpIvzKECZ6S+n46uMk/8ayCEZTjtNhmalpfxhF0F/janVE
ns7mm3YRXg5F82SKs/yVkizcKFqE7Wa80fZ/aJC7KuS6s7kQpr0+9FM/aHj4
9kF04NNCFE7xj8bGK6kQHvbeNrTHNDy/15iR61OIjar2vrOZNHxZ8taz4kwh
YqomuC4X0th42RQi9zPTMzyOBrMDdj4f1xRCZYpvNChpml/zUi9E76cShQ3n
aWy8ZAshUhL97uApGhRSV0bbfi9AYBWvWYwtDeE2+bZRTwtgrzf430wLGpsf
fgXoXl4bS1OlQfd6lr/X4QLUntu+TV2JhqnPoAA2Ve6q1Xw0TBo5HF+mU0Dx
QwmRtJs/NkgUYN4SgeV6rUpsvozkQ89U0DamQQlbO5/7/WHm49AUH5QgekZI
609BPoLJGsalQiU0bR0+9Cw1Hw9DrqkXZylhisYH8vHSEUlWPkpI4jUsidfN
R8NUfJUwKKznZM2djxeh7+Y2GSmxz0NjHiKvdN6t0VKCTFeOS9G9PCp+SngR
J/Tf1pQ8HHW8mvdYXIntb2ge5qkyb2bxKWGb1YLQarM8Kj6KqHUJmMxg2Zr6
p/ZuYdlT8WbZptMTJXRZNjmT9VOBZYtM1Pzb+0ERDtUx0SaDuZgv77nDO16R
Hd/KXJwu1R5OOqqIP6bOk7mxuchftLyl2UmRHc8TuVgZtz3E1VwR/b/nWmUe
yKXOryLqVdyCW9fnIkn09D53TUV2PDVzwXNpE5cdXRFzl0zqm4znUPgrQF52
Syl3Sw5WP/Bo0hhQQMeXtVmlDjk4/Kl07oJqBTa/kQPm/GZTrgoFlDt1exvO
y6HioYDkozXZm4Kzsbdl7I+3lwJb71WyUZF82UPZTAFRuu/5IzqywLDsMhSD
ApQv64rWXcvCuil8FZA71/SQ37osWPe1+xjzKLDx4svC9+2ybqlf5BGX7qC7
NSETN+zPt0o+lMe+nGVfnspmUvyVxx2/sgZtrkwI7REL2nhBnu3vjwwsOePk
WOIhjy7Rk9Nn7cug8JGHgpXfoINNBl64/tP9yVAeOjOeL8tSzMBQ1MWaqnny
VP5Lh8iTYf9zAvL4dP7df7l303Fw+736LXzyWNO4wGEiP53CT47Kb+l4YVN+
6eozOVRZp1z/pJ6O6uJ1veb35NCsuKH6Pn86hZcclc/SYO9z3/XJZTmE9Xq6
xwSkYVm2WYKXlxzUXFWsN9ul4cMUX+Wo/JSGtpQtXs0mcnBI/W9MYSAVBWPL
cp/oymHOwLH1m++kUvlQjso3qfC4ez3kshBrf4I/1nnYpsL0dpiwYp8sGiXd
1y+jp6Joiq+ylL6ngKmj2J1yQhYWNo5ebitS8K7J0PraPlkcFPZ13TiaTOEn
S+l5Mq7XR11yXC6L58ItoXoZydAJrLtwQ0kW97eU5uQeSqbwkaH0Ohm9ZTZd
vV0yaDJI3XSAkYy734oXHaiVweH0zTUR35IofGQo/U2CYJKuzY14GZSVVVgM
hSThQsj5j7wXZRBsO8HDb5tE4SND6WkSMgPNjFZuksE+08EXv0WS8Ladx9J2
uQz6KkZW8nxJpPCRofQzERI1V6Tb/0hjcqdMxc6LiegNaojwbJfGkVezgrPt
E6l8L03pYSIODDBaX6VIQ/aw/1wt3kS8WuKaax0tjd6FOxcuakug8rc0EgT9
2vb7JIDb0NyY20watQ+HrUo2JiCn0/fJaw1pXNTar8s9PYHCRwqlle59NfwJ
wMuI3TwjUpT+3carR+lq37qkwGVc36p2+zaFjxSyGdbSZkG38fNard7PBClK
725jz6GUglx/KRSt6o+9tOo2hY8UVlucSliteBsN98K7r26QQpemiLHQp3gK
DylK/+KxQct7QZ+KFC68ebP5eEo8LBsGgoQGJdG+Wado9HQ8hYckpWfx8Hj2
pigsWxIbdlmefaYTD+noxmOuMZLoqeB1D1SNZ+8rWBJN5guzGifiEKTkE93l
KgmtNtn/vv+Mg97rE0zYSkL0ecHCgZdxuD71giRufUsJHngWBznTNze/6ElS
ehiH1y+134jrsL4/2+Dm6htxkDzZ27JUWhL8K9rT/DzjKDwlMKKwfMYPhzgk
jjdE1H6TQLDEaIHv4jgKPwlKD+Ow5W1fGLNQAmoR4aPneOKQ7f3sv4O+Elho
t1T+1dpYXFHyqRdUZz1f6nqHxrLZeEnAcMF963bEYuhjr+A2lj11fli2ys8t
hx+oSuBnPc+JLcxbFF7imMdTYFMUegurWk60qlSJY3GG2yG/1bcofMTZV5Vb
8Oq3bJf0EsfGLP3Ihp8x0JA5m/XeShw/7baIpZ2JwTpD+fs+yuIoqI0N8LCK
ofwVA31FVbX+uhgonbPf/eGTGDvf8sWAJvNm4W8vMTx1lYbMWDT4+vovBP8r
hrYzgps/DkRT/BCDILfze/vSaAQ9N25p5xZD0ZKNqZ7B0ZQ+iOLXjrfOei7R
uByVpRUeJor0yqcNm52isUfPs6vtsij8ufgqHq+KpvRBFAbqTt6bFkeD/3LR
p0uqothm1C5cOxiF6SWb9QXuzEDJyeU3efuiqHjMoPQ6CrtO9Rzbd4N131h7
Wk1FFN7m9BYprZgB3zIJlYnUKAr/GZgoO7xQPCAKbVfKK2UGp2NsoX6a9f4o
6vxNx7zRQ59Wb43C1qNYJGE6Ha9+dyts3BSF3O1zRYsNp0NMU+H89X+iKPxE
EMgTG/BtfhS0/Nas6n8hAguEmcyXjILhxhxhxRAROPaOTnvIH0XhJQLJ8F2l
N6ZFwUnTVO7hRhGYSjQUq7ZGYh5t1OVZmzBuRTUHbW2JpOIvjF35NnUG3yOh
p0HTFHghDKMGk7U91ZHwau3uFDMRxrGvna2fWTab/8LQPmCwdHYNaz2d1hv0
9cJsPXgWCW+XP0FtOsJQj9hm/54ZSeEnhOC80fS2/Egc59P07VskhK2GYwvX
ZEVSeAnhqImplENKJDI86J9MpITgn2U8wsyOpPgnCLfv70v8Wba3Ycd4mq8g
0h/RuWdWRmKTx/Mlc/gFkfEx+15DeSSm4JoUgIBcZFxHaSTO76k1Wjos8P/9
mb49XjQzUwAiSYH6m99EUngJ4M/M83fP1rPeN7xQ+sVRANkBoR5OnZEIuyZ/
baKTH2pRq3Xv9nHw4kdZTHHlNxberuq+bq/L+bGIuzjAgBWvy6kXd2V3TEOp
xeCXGPMoTD3OnAaG7vmbjolRyLs0v/Gm0TRsb5vvfzQ3CkHCe7WLBaf9n18f
W2aKSD7mw9rmEeEgoWjKfz7cjYse9VgZDW/VrxVbNPhgvWDJEeW+aPy7Sfpb
0glefDlYP757OJrqb3kRRsLL149Gg3nHzuPf/bz/P2/3Vs7ylN7NCz+lr2LH
lG+xcTHmQbu96tfxK7dgojjJM9rB/X+9yF4WkT3fjRsXlcnOsOex7HXUuHHk
SrZ3yfo48D+0oT/K5Pq//pEDWiIjmlxA4jv3ltE4qt/nQorc7ZcOh+Mxomk+
M5UxSTh6fnJlq/7yzRPkQ07cmm02t6n+/g/xqq7tjs6/De8yNS/n2X8IJ99k
fv6gHJc5ToofxXs8c0hA98JZecvMxsnz5oIYmY4EGIfckbR4NEY4+VCiuLBp
4tIYsc026bgwMxG7azVifc6NkcGSpC3XdRMpvMYIJz9zJ35WL5w1SoZMjOuE
I5JwZ63vkGXvCBkqEwtcQUvGGZ1y5rqQEcKpF9ztlogLWowQ69wLpgKxyRSf
R4hU1bvFEfNTMO+j0UeXG8OEU7/k2Rj/erRimOxaHJN1sTMFjwz/nPBWHSZJ
A8921UxLxfY5b2hLRYcJpz6azuTy2egyRJJTuafp1qbCq6bbL8thiIjMsRr/
EZ4GNTcD2kHeIcKp12rVRI9+6h8kL/1j1pkWpqHLoOZpWOcgea71IMn9SxrF
30HCqQdBm+a5J3yQhFan3f9ox6oXn8ocPRQwSGa5GEsmBqejSfHyxMuDg4RT
b968a+MgtXqQ6D/0K0rSyMBiyQV8eRKDxMCcOTz9SAaYngFb+VoGCKe+rUlo
zhC3GyCbRPPXa1hkYm3Wqs5B5wHCs+BNuHdGJsyujikWrx8gnHra3tF7bYLk
ANnB0BD/tSQL3L/mOq7q6yeOWo425+SzUVBj8sUiuZ9w6veWJ3LCAjH9ZJtw
ts6LOdlYTyzEw1h27Fbblusbsqnz009C//6Rlw29sFVz5Kz7yTiP1e6vQjmY
VNB+4araTzj9g8Cyl3uOSvcT5rr6ecv9ctCQILrNdqKPnLoy7uE2nIOjJ1OH
m+73EU6/Mqe0af9iqz5iJLtXk7jl4n7MusvWPn2kK/qx9Z5TufDbkHjP3qOP
vNy3d8Pz4FyKb32E0z+pvbehv9HvI56H3oZad+XiiujJOhvxPtJomzjErZIH
ffelLZ5DvYTTn22vVMu9ltJLGsasho455bHi/V7AoLiXLLLrdL5Tw+rXbI6p
2/r3Ek6/GKSeX2Z8uJesG3HsSf+eB8uyHCWZo73s/avkY9NEwhH3HSy7oi53
3Cif0oNecvj14bPZ9vm4l+xbKKfZSzj9quwv+8URGr3k0PEzfub/5qNGsPmZ
4dxeMuVXXj7k+TWcdAd+kzuRoZFPGvPRJ+su+eX1b8Lpl496CmRoB/4mR4z2
SDrNK4CaepG/+/nfhNOfL1lZH7l69m8ieHtDx6G7BXDZm+jEaO0hnH4/YJX4
Tbd3PSQ0o+K89olCSMw903/zfg/hzBtM1C+4JUf0kMDBwlvSDwtxO1HJcs/p
HsKZZ2Q5Orxpcuohs00luC5YFsFvx5rw/os9ZPnjivLjqUVwbmUWnjjSQzjz
lR/YHtG1podsG09Q/uddEfqq7roMWfSQ6hINKTMjJoJ28rUqavUQzryHi37m
eQKN9f2i2TabPzMp/eshTRGx8x98ZcJtYoZY83g34cybJPzKn9aNdpO9KvTF
wSxbXP7cNG/W/SPTG+zcdxdDZ6YJtPd3E85862qtHRGb3k08efYff+5bDGQP
CN6y7CayT8dPPPlUjHO2b135f3cRznwtostotHVbF0m9eHhri2oJLBsFj0e/
7iLdSp77Cu1KIBG6anhdUBfhzP+Oy1WfD/fsIq1KO/TH75TA9UTkm4X7usgM
cuxk+PcS1BqPSUet7iKceWSkR9YuntldJGOv/ZW6HaUYP3O2SkW4i+jsDH0w
frAU+QM3VEyGOwlnPmpVb/+zfaiD3Hda+3DgdylEgspqtas6ybi5b8j1vlLw
BIqG5VR0Es48tmPG7J6B1A6yxXiJ1oOjZaiKdd5xzaCTvDDnUeq5VoZFP301
1Fd0Es48eGv9koa+aZ3Ef0sELWugDLutTWT8PnSQ3c5Ku5oXluPtzrszyh53
EM78+f1QJLdlfAdxVzs6WXKqHP2KqnbD5zpIwyJ541NPy3EpINMpxrGD0rNy
jA3of2odaSf5969yO0+Ww/Nkw8YPOh1k9Y07ZWRPBS5Nulfvlulg43m8Aub/
bjSpe9FO3O12GdhfrMArsUcZGwbbSVrX4ukRwxVI4Y4zfvGqndK/SlRXOPvX
JbeTjWRTs4NoJbxvn0/QqWonS+/UaL8MrERGXeGcGyHtbDxDKpH//uohKd92
YlF2xYWEV0Kg78cOrqvt7P1+qIT8e2Nul5PtRGiWy9neoUpKf9rJr88GCWsZ
VYhKdn9YaNbO5q9KFWwrNbblmbaTNvuPB0NnV+H9dbvr/ibtRCX1lGpTXBWq
olt4T/9sY/M3rwqdjsdErga0EfU5eb7u96vQPdc39MGXNmJ7dsbbfep34Dup
WnkvpI2NN+7gkpZEptzVNvI/1A5EvA==
"], {{}, {},
TagBox[
TooltipBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6],
LineBox[CompressedData["
1:eJwl1WV7EAQUBeCN7u7e6M7RMGqMjtENo2Ewuru72wAFgzAIpRuDbpRQUukO
BQPePXx4z/0F59ygyOiIvoEBAQHjRcyNRWziEJd4xCcBCUlEYpKQlGQkJwUp
SUVq0pCWdKQnAxnJRGaykJVsZCcHQQSTk1zkJg95yUd+ClCQQhSmCEUpRnFK
UJJShFCaMpSlHOWpQEUqUZlQqlCValSnBmHUJJxa1KYOdalHfRrQkEY0JoIm
NKUZzWlBS1rRmja0pR3t6UBHOhFJZ7rQlW50pwc96UVvouhDX6LpR38GMJBB
DGYIQxnGcEYwklGMZgxjGcd4JjCRSUxmClOZxnRmMJNZzGYOc5nHfBawkEUs
ZglLWcZyVvABH/IRH7OSVXzCp6xmDZ/xOV/wJWtZx3o28BVf8w3fspFNbGYL
3/E9W9nGdnawk13sZg972cd+DnCQQ/zAj/zEzxzmCEc5xnFOcJJTnOYMZznH
eS7wC79ykUtc5gq/8TtXucZ1bnCTW/zBn9zmDne5x30e8JBHPOYJT3nGc17w
klf8xd+85g3/8C//8T9viSl/ILGITRziEo/4JCAhiUhMEpKSjOSkICWpSE0a
0pKO9GQgI5nITBayko3s5CCIYHKSi9zkIS/5yE8BClKIwhShKMUoTglKUooQ
SlOGspSjPBWoSCUqE0oVqlKN6tQgjJqEU4va1KEu9ahPAxrSiMZE0ISmNKM5
LWhJK1rThra0oz0d6EgnIulMF7rSje70oCe96E0UfYgZ72j60Z8BDGQQgxnC
UIYxnBGMZBSjGcNYxgW+/wHvAP/dovk=
"]]},
RowBox[{
RowBox[{"If", "[",
RowBox[{
RowBox[{
RowBox[{"2", " ", "k"}], "<",
SuperscriptBox["Ra",
RowBox[{"1", "/", "3"}]]}], ",",
RowBox[{"Im", "[",
RowBox[{"Det", "[", "vmond", "]"}], "]"}], ",", "10"}], "]"}],
"\[Equal]", "0"}]],
Annotation[#, If[2 $CellContext`k < $CellContext`Ra^Rational[1, 3],
Im[
Det[$CellContext`vmond]], 10] == 0, "Tooltip"]& ]}],
AspectRatio->1,
DisplayFunction->Identity,
Frame->True,
FrameLabel->{
FormBox["\"Ra\"", TraditionalForm],
FormBox["\"k\"", TraditionalForm]},
FrameStyle->Directive[
GrayLevel[0], 14],
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
Method->{"DefaultBoundaryStyle" -> Automatic},
PlotRange->{{0, 8000}, {0, 8}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.02],
Scaled[0.02]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.752805873765458*^9, 3.7528058942585993`*^9}, {
3.752805926736732*^9, 3.752805992552781*^9}, {3.752806027108563*^9,
3.7528061033435*^9}, 3.752806157671729*^9, 3.75280619806168*^9,
3.752806283511752*^9, 3.752806817674328*^9, 3.752806956988564*^9, {
3.752807059887918*^9, 3.7528070672010117`*^9}, 3.7528452220034437`*^9,
3.75284562165336*^9, 3.752845767826548*^9, 3.752847014367425*^9,
3.752848105643777*^9, 3.753053571805043*^9, {3.753055770531116*^9,
3.7530558085431213`*^9}, 3.753057068902644*^9,
3.753057199909853*^9},ExpressionUUID->"24014168-7fa2-45b9-8fbc-\
a11ab6108d12"]
}, Open ]],
Cell["We can also zoom in and grab the leftmost point from it.", "Text",
CellChangeTimes->{{3.753056135584374*^9,
3.753056148983184*^9}},ExpressionUUID->"37de1053-152b-4c86-8d8a-\
de3b7cd980ec"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"c", "=",
RowBox[{"ContourPlot", "[",
RowBox[{
RowBox[{
RowBox[{"If", "[",
RowBox[{
RowBox[{
RowBox[{"2", "k"}], "<",
SuperscriptBox["Ra",
RowBox[{"1", "/", "3"}]]}], ",",
RowBox[{"Im", "[",
RowBox[{"Det", "[", "vmond", "]"}], "]"}], ",", "10"}], "]"}],
"\[Equal]", "0"}], ",",
RowBox[{"{",
RowBox[{"Ra", ",", "1707", ",", "1710"}], "}"}], ",",
RowBox[{"{",
RowBox[{"k", ",", "3.05", ",", "3.2"}], "}"}]}], "]"}]}]], "Input",
CellChangeTimes->{{3.7528470322153473`*^9, 3.752847058113327*^9}, {
3.752847828876734*^9, 3.752847851488718*^9}, {3.7528481405635233`*^9,
3.752848212243677*^9}},ExpressionUUID->"390329fc-e3e3-43c9-957a-\
247058ee3428"],
Cell[BoxData[
GraphicsBox[GraphicsComplexBox[CompressedData["
1:eJxF1gs41dkWAPCTqL0lDOXZcSiaojxSpqlopblJB1N5HI9BKqWGlMYtxSDJ
m1TC8Qi3QU2DcKIaj/KYCtWNKI9ICr2kxqvJnbu2uufu7zvf+X7nsf//vdda
e/21tvtu9ZTgcDi/4Iu91w3bynGuCEGYygYFenJrWr9ICPqCllaPFAoHOq74
dKDfx3hzK5IpPFHm5pehe6VntEmdpSCV+0/1THSjnkXFzTMUVtt4dJ1Em3Nb
1nHR13xwAnRdztMNm09ReLU+ytEerXdPoUo+EefD6U3Q502PlYUnULjuPmmk
g36ZJfsyK54Ch5M9KIPOmDni5BBHYTreMwf9s6lzW1osBY8T5461lgrhyfp7
9UeiKXgWmU2rQwdmzgqNj6JgdUrb8hR6Xk2nVfkJCl15g38FoctV0z4UhlMI
txvyd0R/mx+2Kj8M1yMhtecbtAw34s+6UApJ+HdttJltomVOCIU3iZ9sh0uE
sK3ax/1eEAWL8KGObnSCbZzR7cDP67mC3jn+01a7IxSeb9v37SW0Yq9aZVUA
Bd2AyMFUdHTheHThYQq+d9Xad6NdF5XvyPCn8DVezhLtoTxhd+Mghf90fjWx
Fr3MGAcahvI1tdErQ2v89h6goC1zOXmwWAjt7Lo+FDRWLOc+RctW9dnooPez
+KHt+W+n1XlT2OK74ngVOikk0Ob1XgrNZ8a459C3mvbo1HtRuMqmQZdfJBF8
TwoF5sWGbug5MrvP8ndSMGv1i7FA61b26lVup/BUt0xfA71Wdjz4qjsFllMc
dMBI/L7trhQmpHr0uy8LIXhiQepsFwrFK+wflKCP1gkC6wQU5AWRm7LRi1Rq
Hf/hQIHP4oVWVnrt/9GOwqGNzzN2otclXXvtuoWCe17sYX10IxtWFPKsvDcu
RguMCg3s0GdYvC6zfIKj3XwKhkF8n6EiIRyqlcrQtqBgolwbVYaeh+nZso5C
oeeYMXOJY5F5A7qL7SO6R24i5AZ66N8PboWw7512F61f83l9zO4/prYtRd9L
cVT4Hu3N9tmEwmHnUVcrtKSm6FkkeiGLJ7pOoG6yCD00ut9CEz3HfXiuuxGF
iAGNJWrorPfqhkmGFDbhzxXQV0+sN04yoHDH1II3UiiECtzuXj0K2TsaD75E
v5f/cf52Xcwfdl30ubyAMZtFFBI64tKa0LvYWEjhX6bpP1eglVSU3QYWUOC9
aqy4gJZlBab5eb/OoxuWz1Kbid7AGco6jXYwVzjI41LwD7eJiEJPpZc6hbs7
zz4MRr/Z8kNbhiqFcvY5+sEOH8u5Snj/FrKrmGMMOO2TczFfq70/eqPdcLnD
6MPJ17YwG2oI85vQvLK6ARf0n1zL1jUKFEZlOpTt0DP8N8/0l6dg6f9YxGe/
31th4C5LYWWsfeJ69EzRCUUzGQrVf2v3mqELsJzGpSl0sjCgrTL97/sRCi9b
w5IM0DUWNyNNZuD9doY4L2Xrw+wLlKLg52PTvBhdNyx9XV+SQn+G5qcF6DL+
91rPplE4KZ1xjIf+e2oQ2Me2Ad0t8aJlYpJA2Gx1EzV0nx9/chv6zTnehCp6
Kr3QHs1e+cxa7ceC56DjfXqMldAKat376V8EFG8v+mEueur4+UjAdXx5uwK6
tceOZo8TOHTdN04erXO6RbZwlMCmwo4BWTTuzuaZIwTqvdM4zPbVYe1ZHwiE
//JWYTaalYHlewIH60fjZNBJtxe7Nb4jsFPTV5eZbVf0EIHBbidF5ulfq7ba
vyWQ+s5PgdnNnP9oGppsPG3APFVvrwl0z3oTxjyazveKfUXgmPCbZOaLNhs+
bEZztuXMZ9fPmkowMpUfzGMFx08pDxKQs/59mBlWmu8TDRDQSqz6yCytM1Kd
j84W5EyXQ//EFtiP90/PKbL1H3056/HSFwRWavhnM8f0ca/kPiew/NKnB1+h
N7Jzo4+AewDvwhy0sW+Ke2gvgfMRj0+y/Z2q96cEJD8q7Gb7P+/Zdwdt0S5G
fqYsfu9Yenb/P74xqyNyQp4QkFFJmsviXyMUuYg6CfSv44AWOoevU3mzg4Bt
s9uOhegU1j4fExDc8XjG8knFySvF+hGB3UMBM1g+2sp5xS1rIfCH9TILZpYe
XPT/8rU9Ifv4h2YCGUafmr5DZ6jZjEvdJ2Bum2LgiK49m1LMbyAQOuhj7YFm
y9W+TaBrWqmzJ1p1RBBvc4uI67HB8G5kbT2B4yVWTdGsXuJ+jZhzg4CeRLBb
GnrqOKkkEGtdr1LK8l3/2eSaa0R8nkiGxnNiS3H9qdmVPWhRwqVN10sIOKsZ
R/cVfulHaC/n1SbT2XnWH1u1spDAmrTWbfJokHg448RvBO5cfNC5Bs3Se1U+
gdaGtgvmaCWrFefP5BHx+XitMzFhIJdAXu3aFYfQB9IuqHRlE/F5G/im9PJY
Foun3K7zRV/qK4OAQ67urd/QV4RpIU7pRHx+8yQbXSPSCIze1zZ8gRbxj96X
TMb6eKi0XP3yl/o4RWBeb/k6TXRxa2VheyIR9487wTpNQeiYGq0YB3TXWVGH
ZRyBX4s6HrmgN70uCGuLJeJ+Zb4vVS4ikoCUU1J/Cnrv7dIXExEEHIOkHFh/
m8pndOSSXLM2dNSYGc80jIj7pWm/TbhtCAGnyfm1Smj/nltJmT/jfPrp7SbF
rH+wA4uA6nVrDwFao4ArOe8IEffroBrlI3mHCRQH8SRS0TmJsXtK/AlUD0mX
tKP7FvxefeAAET8PpDdAuSda8EmtmVmJ9SN05h+6ejx8vtDMTI5Z4kPEzyMP
j88WFezF/Mq1P70DvcElSnHWHoxXOvBPlnzpN7sI/Bd6Rpah
"], {{}, {},
TagBox[
TooltipBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6],
LineBox[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52,
53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69,
70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86,
87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102,
103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130,
131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144,
145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158,
159, 160, 161, 162, 163, 164, 165}]},
RowBox[{
RowBox[{"If", "[",
RowBox[{
RowBox[{
RowBox[{"2", " ", "k"}], "<",
SuperscriptBox["Ra",
RowBox[{"1", "/", "3"}]]}], ",",
RowBox[{"Im", "[",
RowBox[{"Det", "[", "vmond", "]"}], "]"}], ",", "10"}], "]"}],
"\[Equal]", "0"}]],
Annotation[#, If[2 $CellContext`k < $CellContext`Ra^Rational[1, 3],
Im[
Det[$CellContext`vmond]], 10] == 0, "Tooltip"]& ]}],
AspectRatio->1,
DisplayFunction->Identity,
Frame->True,
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
Method->{"DefaultBoundaryStyle" -> Automatic},
PlotRange->{{1707, 1710}, {3.05, 3.2}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.02],
Scaled[0.02]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.752847054828248*^9, 3.752847058570421*^9},
3.7528478561764317`*^9, 3.7528481085635033`*^9, {3.7528481445872917`*^9,
3.752848212760285*^9}, 3.753053572096835*^9, 3.753056151276248*^9,
3.753057069302506*^9,
3.753057200161622*^9},ExpressionUUID->"d0226121-9f2d-4ae1-b50b-\
a72f8d6193d2"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{
"this", " ", "pulls", " ", "out", " ", "the", " ", "leftmost", " ",
"point", " ", "on", " ", "the", " ", "contour"}], " ", "*)"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"ord", "=",
RowBox[{"Ordering", "[",
RowBox[{
RowBox[{"c", "\[LeftDoubleBracket]",
RowBox[{"1", ",", "1"}], "\[RightDoubleBracket]"}],
"\[LeftDoubleBracket]",
RowBox[{";;", ",", "1"}], "\[RightDoubleBracket]"}], "]"}]}], ";"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{"c", "\[LeftDoubleBracket]",
RowBox[{"1", ",", "1"}], "\[RightDoubleBracket]"}],
"\[LeftDoubleBracket]",
RowBox[{"ord", "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}],
"\[RightDoubleBracket]"}]}]}]], "Input",
CellChangeTimes->{{3.752806820296164*^9, 3.752806820891563*^9}, {
3.752807070687745*^9, 3.752807174884108*^9}, {3.753057109593231*^9,
3.753057121299979*^9}},ExpressionUUID->"1061468c-cd1a-4223-8aef-\
8fff95615b86"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"1707.7617891272878`", ",", "3.116214456364374`"}], "}"}]], "Output",\
CellChangeTimes->{{3.752807074201519*^9, 3.752807095105464*^9}, {
3.752807134547209*^9, 3.752807175286743*^9}, 3.752845770929927*^9,
3.752847016360153*^9, 3.752847061450951*^9, 3.752847860919992*^9, {
3.752848150371284*^9, 3.752848173559474*^9}, {3.7528482055734177`*^9,
3.752848217232658*^9}, 3.753053572195854*^9, 3.7530570693364964`*^9,
3.753057200184815*^9},ExpressionUUID->"fd874bd7-caad-4eb4-8691-\
2711353f3ff6"]
}, Open ]],
Cell[BoxData[
RowBox[{"ClearAll", "[", "\"\<Global`*\>\"", "]"}]], "Input",
CellChangeTimes->{{3.752799021050658*^9,
3.752799029038844*^9}},ExpressionUUID->"bd5e7847-6e35-4b43-97f3-\
d3a683f16fa9"],
Cell["The shooting method way!", "Text",
CellChangeTimes->{{3.753056189753892*^9,
3.753056194396083*^9}},ExpressionUUID->"18369e17-d040-4abf-8a38-\
8eeccbd8e144"],
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{
"Here", " ", "we", " ", "define", " ", "the", " ", "differential", " ",
"operator", " ", "of", " ", "the", "\[IndentingNewLine]", "Laplacian",
" ", "and", " ", "use", " ", "it", " ", "to", " ", "define", " ", "the",
" ", "operater", " ",
SubscriptBox["D", "k"]}], " ", "*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{
RowBox[{
SubscriptBox["lap", "k_"], "[",
RowBox[{"f_", ",", "z_"}], "]"}], ":=",
RowBox[{
RowBox[{"D", "[",
RowBox[{"f", ",",
RowBox[{"{",
RowBox[{"z", ",", "2"}], "}"}]}], "]"}], "-",
RowBox[{
SuperscriptBox["k", "2"], "f"}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{
SubscriptBox["eq", "k_"], "[",
RowBox[{"f_", ",", "z_", ",", "\[Lambda]_"}], "]"}], ":=",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"-",
SuperscriptBox["k",
RowBox[{"-", "2"}]]}],
RowBox[{
SubscriptBox["lap", "k"], "[",
RowBox[{
RowBox[{
SubscriptBox["lap", "k"], "[",
RowBox[{
RowBox[{
SubscriptBox["lap", "k"], "[",
RowBox[{"f", ",", "z"}], "]"}], ",", "z"}], "]"}], ",", "z"}],
"]"}]}], "\[Equal]",
RowBox[{"\[Lambda]", " ", "f"}]}], " ", "//", "FullSimplify"}]}],
";"}], "\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{
"Here", " ", "we", " ", "define", " ", "expressions", " ", "for", " ",
"the", " ", "six", " ", "boundary", " ", "conditions"}], " ", "*)"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{
SubscriptBox["lap", "k_"], "[",
RowBox[{"f_", ",", "v_", ",", "z_"}], "]"}], ":=",
RowBox[{"(",
RowBox[{
RowBox[{"Evaluate", "[",
RowBox[{
SubscriptBox["lap", "k"], "[",
RowBox[{"f", ",", "z"}], "]"}], "]"}], "/.",
RowBox[{"{",
RowBox[{"z", "\[Rule]", "v"}], "}"}]}], ")"}]}], ";"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{
SubscriptBox["bcs", "k_"], "[", "g_", "]"}], ":=",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"g", "[", "0", "]"}], "\[Equal]", "0"}], ",",
RowBox[{
RowBox[{
RowBox[{"g", "'"}], "[", "0", "]"}], "\[Equal]", "1"}], ",",
"\[IndentingNewLine]",
RowBox[{
RowBox[{
SubscriptBox["lap", "k"], "[",
RowBox[{
RowBox[{"g", "[", "z", "]"}], ",", "0", ",", "z"}], "]"}],
"\[Equal]", "0"}], ",", "\[IndentingNewLine]",
RowBox[{
RowBox[{
SubscriptBox["lap", "k"], "[",
RowBox[{
RowBox[{"g", "[", "z", "]"}], ",", "1", ",", "z"}], "]"}],
"\[Equal]", "0"}], ",", "\[IndentingNewLine]",
RowBox[{
RowBox[{
SubscriptBox["lap", "k"], "[",
RowBox[{
RowBox[{
RowBox[{"g", "'"}], "[", "z", "]"}], ",", "0", ",", "z"}], "]"}],
"\[Equal]", "0"}], ",", "\[IndentingNewLine]",
RowBox[{
RowBox[{
SubscriptBox["lap", "k"], "[",
RowBox[{
RowBox[{
RowBox[{"g", "'"}], "[", "z", "]"}], ",", "1", ",", "z"}], "]"}],
"\[Equal]", "0"}]}], "}"}]}], ";"}]}]}]], "Input",
CellChangeTimes->{{3.752789097985874*^9, 3.752789118148292*^9}, {
3.7527891736178102`*^9, 3.752789311700115*^9}, {3.752789509595031*^9,
3.752789650185207*^9}, {3.752796605356106*^9, 3.752796696919475*^9}, {
3.75279674778341*^9, 3.752796773870183*^9}, {3.7527969318702917`*^9,
3.752796957953495*^9}, {3.7527975473026667`*^9, 3.752797550599802*^9}, {
3.753056220264414*^9,
3.753056270473422*^9}},ExpressionUUID->"c2aec5d9-782e-41f3-8025-\
f22f19b1d794"],
Cell["Some useful functions...", "Text",
CellChangeTimes->{{3.753056282924892*^9,
3.7530563138596573`*^9}},ExpressionUUID->"8edf2f5f-c939-4408-96f9-\
58d1990144ad"],
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{
"this", " ", "does", " ", "the", " ", "numerical", " ", "integration", " ",
RowBox[{"(",
RowBox[{
RowBox[{"shoots", " ", "from", " ", "x"}], "=", "0"}], ")"}],
"\[IndentingNewLine]", "for", " ", "a", " ", "given", " ", "k", " ",
"and", " ", "Ra"}], " ", "*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"sol", "[",
RowBox[{"kk_", ",", "Ra_"}], "]"}], ":=",
RowBox[{"NDSolve", "[",
RowBox[{
RowBox[{
RowBox[{"Evaluate", "[",
RowBox[{"Join", "[",
RowBox[{
RowBox[{"{",
RowBox[{
SubscriptBox["eq", "k"], "[",
RowBox[{
RowBox[{"h", "[", "x", "]"}], ",", "x", ",", "\[Lambda]"}],
"]"}], "}"}], ",",
RowBox[{
SubscriptBox["bcs", "k"], "[", "h", "]"}]}], "]"}], "]"}], "/.",
RowBox[{"{",
RowBox[{
RowBox[{"k", "\[Rule]", "kk"}], ",",
RowBox[{"\[Lambda]", "\[Rule]", "Ra"}]}], "}"}]}], ",", "h", ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "1"}], "}"}]}], "]"}]}], ";"}],
"\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{
"these", " ", "are", " ", "a", " ", "residual", " ", "function", " ",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"i", ".", "e", ".", " ", "how"}], " ", "much", " ", "we", " ",
"miss", " ", "by", " ", "at", " ", "x"}], " ", "=", " ",
RowBox[{
"1", "\[IndentingNewLine]", "at", " ", "a", " ", "given", " ", "k",
" ", "and", " ", "Ra"}]}], ")"}], " ", "and", " ", "representation",
" ", "of", " ", "the", " ", "obtained", " ", "function", " ", "itself"}],
" ", "*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"res", "[",
RowBox[{"k_", ",", "Ra_"}], "]"}], ":=",
RowBox[{
RowBox[{"h", "[", "1", "]"}], "/.",
RowBox[{
RowBox[{"sol", "[",
RowBox[{"k", ",", "Ra"}], "]"}], "\[LeftDoubleBracket]", "1",
"\[RightDoubleBracket]"}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"fun", "[",
RowBox[{"k_", ",", "Ra_"}], "]"}], ":=",
RowBox[{"h", "/.",
RowBox[{
RowBox[{"sol", "[",
RowBox[{"k", ",", "Ra"}], "]"}], "\[LeftDoubleBracket]", "1",
"\[RightDoubleBracket]"}]}]}], ";"}]}]}]], "Input",
CellChangeTimes->{{3.752796705259141*^9, 3.7527967301200037`*^9}, {
3.752796778233757*^9, 3.752796787257393*^9}, {3.7527968265238123`*^9,
3.752796827242556*^9}, 3.752796864491197*^9, {3.75279689511736*^9,
3.752796895361223*^9}, {3.7527969938550262`*^9, 3.7527970585803213`*^9}, {
3.752797160774096*^9, 3.752797214127413*^9}, {3.7527972682760344`*^9,
3.752797297587929*^9}, {3.752797344614909*^9, 3.752797346612123*^9}, {
3.7527973895169373`*^9, 3.752797421313964*^9}, {3.7527974734357*^9,
3.752797483548109*^9}, {3.752797713266273*^9, 3.752797714212034*^9}, {
3.752797889833748*^9, 3.75279800763465*^9}, {3.752798089263712*^9,
3.7527981098194313`*^9}, {3.752798208183964*^9, 3.752798210692954*^9}, {
3.752807286799403*^9, 3.752807312860138*^9}, {3.752807384927415*^9,
3.752807387992551*^9}, {3.7530563156098347`*^9,
3.753056404860776*^9}},ExpressionUUID->"c02a3f20-6543-4a46-9c5a-\
3e5d7f53cead"],
Cell["\<\
Here are some figures, trying out different Ra\[CloseCurlyQuote]s for k = 3.1.\
\>", "Text",
CellChangeTimes->{{3.753056414895389*^9,
3.753056440201728*^9}},ExpressionUUID->"f3f0f6cf-98bc-4ae5-a785-\
7ae827b594be"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"Module", "[",
RowBox[{
RowBox[{"{", "f", "}"}], ",",
RowBox[{
RowBox[{"f", "=",
RowBox[{"fun", "[",
RowBox[{"3.1", ",", "Ra"}], "]"}]}], ";",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"f", "[", "x", "]"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "1"}], "}"}], ",",
RowBox[{"PlotLabel", "\[Rule]",
RowBox[{"StringForm", "[",
RowBox[{"\"\<Ra = ``\>\"", ",", "Ra"}], "]"}]}], ",",
RowBox[{"Frame", "\[Rule]", "True"}], ",",
RowBox[{"FrameStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Black", ",", "14"}], "]"}]}]}], "]"}]}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"Ra", ",", "1400", ",", "30000", ",", "5000"}], "}"}]}], "]"}],
";"}], "\[IndentingNewLine]",
RowBox[{"Grid", "[",
RowBox[{"{",
RowBox[{
RowBox[{"%", "\[LeftDoubleBracket]",
RowBox[{"1", ";;", "3"}], "\[RightDoubleBracket]"}], ",",
RowBox[{"%", "\[LeftDoubleBracket]",
RowBox[{"4", ";;"}], "\[RightDoubleBracket]"}]}], "}"}], "]"}]}], "Input",\
CellChangeTimes->{{3.7530551813017387`*^9, 3.7530552976645193`*^9}, {
3.7530554015796537`*^9,
3.753055423653901*^9}},ExpressionUUID->"0ad711e8-4633-4f43-9b9f-\
120efec3b467"],
Cell[BoxData[
TagBox[GridBox[{
{
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6],
Opacity[1.], LineBox[CompressedData["
1:eJwl13k0Vd/7B3BDphSF6iNJxsrwIVQfFe8KCSlKEk0kQxmiURPKWNFAGVIR
KkkiQ8iQDCVxL8k9xnvORSru1bdBJfrt1u+vZ73W2WvvvfZ+9rP3UXUP2LxP
REhISEFYSOhvtNk3xK7+sNVMyPP/4xTzuQf7FI1R2RTZ+Tca3U5KfaJogceu
JZcKSbR901FwU9ERwzL/iaWTuM1jrOKqogeUBpy33SaxRz/KPFbxMCp49umV
JKbN2hR5XjEcyjoFojZzwxEm+WRhjGICLk57b759XgKct6fnjX7OhPNHqbMT
vzMh/Sdsh9X8PMw5MvD5rmkeNB34Qy8uFOILtSzh8YNCHGs2QdLXUkjGNsot
X1SGOYUze4WFqxCtsld+aH0VihnzppZVNXDVvbZ50qcGNftvKm0froUC+1nT
pHIdvmmZyub6NcC3/hvvXGoDRH7mzFDSbMT2X93HGctGLPuzp3jLoyaozug4
6FDYhKZw4+Z67RZsdeqLCxNvgcrlTz+z+SzsFBZZ2VHGwqexvt52g1aE3FIM
amazkfmxvFEmrg3Jivs8oz63Qkb5nqC//y1+ZJS+chtvw0WfIs80jXeQXbnw
rQjvLb6vzun3DukAR2sy63tjOw4b1hbOfsGBXX1PgPrld+h7VHuBrdoJs2b3
0YhNHRjf//bG4hNdOPHISaf3Swccl+288m9IF1RUkzVmf+/AQ+HBSKPwLjR6
Sb7Z8KMDu5LGAk3jupB4oFu7+HcHntfNXe9wpwthrb6zg8U4iFrg9vV4Yxf8
HjnGVc3mQP7dyIaXc7tRuSJOfuN/HOiskZj0LO+GhF9G8v5jHDx+kLOQU92N
pEv8L0eCOTBWsHewru9G95KVpSEnOVj1PilTh90NsaHt4XEhHGyM1bYdHexG
Q/kaxeQoDoIou6RguR7wDxqquydyUBqYYHjRpwf12edGa4o4MOv6b8eEfw8c
tJcE3SjhoMaiJ8L/cA8sbNxdg0o5aJyjRdmH9MD12uhepQoOuitKQmZd60Eb
28jWpZYDoaldTbeqe/Czo3fXhVYOrO6oeuXP6UWVf/i0shEy3yQZrfp5vTgr
MhlgLuBgQdx4f6dqL4LXmvi9HuXgV3C7+xTdXhxfWmPc8YWDXIeYXdtW9+Lq
p/rvPT/J+gh/3jrh3QuNz9Gr7otR6NtdbWFd1osxvZJo/XkUmrbmiu6q6kXM
kzTZi8oUntqm1ATV9kIufY7++/kUri4/vDq1uRf+gQnLk1UpWMouWiVgevHH
WMN/WItCTuUlo2vSfbCpn+W3aQmFY8q71egdfZDuikiSsKTgbm/g1O3WB2+B
xLIl6yhsPCd8vsOzDzXWucHbrShofcj4/OZgH+794/4ly5rC28Kh6rLwPgye
CX3870YKBhuCdic87MPjmEub/zhRGDoRkWr1uw/VVKHVTS8KH510vNOFuFis
si73hjeFPaPyIiqiXDg931aa5EPBVn1g6VxJLhrWKNTFHaCgFhN1c4YcFwvL
s3L2B1BgOTb5Tmhy0brNo5w+SkF3eKt0hx0Xzc5jC96Ek/Vw3FB13p4L60g9
84IICuYVaw+ZbeFi2o1ZrGuRFFzi9LuynLnIXGCi7RxNIcZAKufwXi5YtRfo
VxcoDB5+ZiMXzIWdgu4Bt6sUgnoKJutOcuFz1WK1XjyFCcvsguAzXHC61MPG
iBXmXJ9Ln+NCTT9iXdQ1Ml5pwMe8OC5kZooz8UkU0ibUzttlElsc9Xe7Rebr
qWgmfI8Lec0iKYXbFEqaZf9XmM2F/h05uTri5tu/t8/L40IlNnq/WjoZb827
xZ9KuZieKGnamEHmHxnzKrqFi696wWea75P58kNOr2rlwkhi85hXNoXAbUeX
jL7l4rxTf+8f4uhFe5O3dXKxwzTrl3YOheLGVT5aA1xILCr28s+lIC87Kln7
i4v2au6SB/kUWivOR1lPcKHTXaekVkDyyVdTvOUPF+LB7dlJxHKNLqKdU2i4
5XcXhD0hjqibEMjQqIgPPGleRGHGeMr/lNRpTGFdmox4SvYre2lguiaNp9m1
y4eILzuzBFqLaPT+7p5tXUpBtlhsZIkeDVMLvQbxMgoygQffWy2n0cC/8CWw
nMK095bdh2xpqN8buCZRSfL/Gtflpx2NfS+PrXQkvmhxkjpjT0PEjoq+TSx9
5/G7mK00PAMvKhlWUZi6U4l9ezcNVdpWw6qaQqN08SZNdxozDo1KxxCfL7Nv
fuBB490Rv9RXxFL/RL4u8qFhrxT8dN1zCpJto3WvD9HYoJ7KNaih8DLsgoXD
URqWs17KeRNHG2i9eHecRvcqhn+TWCLOtZo+TcOiPSBL7AWF+lXfzbxCyXwU
dUKXE0d+ulwxfJbGaxMPMW9icev6srEoGv4DtGzd3/Zje0xOn6fB6wy49vlv
+7vjJSKxNCTDZOrn1VIQm7KkaPpVGkE8ucUBxFOqbuSpp9I4Zeb0S7SOQucq
i/V9t2gkOCtnLiLOKxvmpqTT+BTIrrQldik2lZO7R2NBYr1VLLGB8eCDN9k0
ijccKM4hFi+IM495SGPEsfb6S+L83L7DQgU0Yp/szJ0gjtSJnv6skIZev2j/
rHoKO7IN7h4rodGipB2rS2y4kDIzKqMR+l00ew2xZFZYB/8ZDROnuuVbiXvV
tA8+qKLR6X7HxIv4SVqrpGcNDc3zLY+OEUfPP5muWkejJCQsMZJ4V6r6ip4G
GkKmI1/iiY3nNrUmNdJYJ7y+9jaxVNLhA45vaNxwaJB88Lf/WcpTZrBodP1I
e15AXBhfl/q6lcYjCWlBKfH5mf5Lo9pphLxdeaWKeM+l2c1rOTTOjvvcf0G8
bHqV52QnjfxdTcb1xNIXvP6U9pD90kxZ1kDMlZyRdIRLY0vl1Ed/vxdHPjVY
wiPr3bX1Ri3xxSlur4YHaKQdfTJZTex+Vsr9/hCNTc2unHLi/4QKfu39RANe
UYuKiKefcYlX4ZP8kw4QPCRmxkV0u0bJ9yZbvQzip8E5tde/0PCZdGISiePG
tuzc/J2GmFmjzAXivUd+f5v+k0aEb1/Bqb/9f8mMezVOY1Y+q9m3/u95slsY
MUkj+TjH3ZW4n/+tarUwg/tHlgSsJy7zveX8W5RBdNrsr0bE+7wFMYekGMys
CPIWJ14xmKimP43B0fE9ziNk/2d4rC7/KMNAUbjxeSvxs91Xht0UGHz7MSGc
THy1xyRCeQ6DYI+1VDCxlyujTCkyqI/5qr2dWG6b0SZ7FQZDo4lm8sRDb7ve
S6sxEOJMEeaTfK7YHB7aoMHA9cU7swZi743t+WbaDGaNZOgdITZrOm3zS5e0
/z2vz5pY3kaLV6TPYNXj79OUiSstjynoLWXgktnYW0nOT8ILldyh5Qxs+izO
xRL7rHlpmbmCQUqRSpYLsYKp4jGl1QwWavxyGyXn94BxOSVlS/or39cgRVzN
an/41I6B0uMToW9IPZjlNxriZc9g7vOB+kvEVVmaWnVbGQS6lf+WJZafczko
dA8Zr2WX/B9Sf7yfPLDU38tgYrayWQlxxaa6f3r3MRA4Gv7wI/aK/lW58gAD
/35PpQ5Sv8p/ekiPHWGw9pG2ZlIFWe/rIb1Zxxkwa9lsC+J9hin5jicZHMvv
kx19RurngZZtBaEMpDauWbOWeG+3SabfBQad7WGh7aSeSlfJmPanMegoUcot
KSH57rp4RnwGg9T8TZftiIvGzHlr7jJgLzKVYoop7DYIjrmdw0An261CnPhJ
Oq/dpZjkR+SDZSik4Br+1J/9moFPEOeh72MKjxe0rQltZqAZf3n6cB6pTxUj
CvpsBjs2x0vuJ877plZ+8R2DtBtZzW6PKIh6xUqsp0n+FFhmrH5I3iPW7mmV
3xks3heRX36PnG9dVTP8JOvdUCCtT1wpw+2qGmdw8hxlmH6X3CdtO+c8F+Kh
YUD+Q1gWha87t8e9mMrD68wNv43J/WgWZH/q5XweIj58+v73vmWlmDm3ruNh
Z1uILEXu6+2nJ75ttuZBaX5VtBYxs/tZfJstDxNJzh1B5L7/qrGi5a09Dz8i
C75JXKGgmLd0XYcLD7vtSsw04sh5fqFr3O3Pg3Sw5WpN8n749mnujMHrPCxg
T/62OUny7eb7htRkHu4YHDrodoKC0abCkC2pPHg88r10NJjczwV2gup0Huqt
gtipxyiMHA9tvvGQh5Is34PUIQoDYoMXHWp40DGSPyjvS6FdJV+qYoSHusRS
w1hXsl9brEQTLPqxVr/x6KNlpF7aPo2YZ9WPhuTRL1FLST02XyyZZd2PI5TK
7j3GFESMpKcXb+yH1mJxYRlD8p6Ta5nNce5HguXPUzv0yPljOWnP8+tH8xrr
u/XqFOZu9HTIvNaP4MbdG1tlKYSsj7hdONgPaStd8e5+DlR7bDgZEQMw71vU
FhzBwYrl4QmKhoNwFQpUapfhYMf8lp/CbYNY/jExjR3fgW+NsczBsPeQuib9
0lG0A0lTdh3erDEET0anxvjwO8j3Ft0RqR3C0/sv13sy7RA7HeZoEvgBhnEx
TXdXt0Moe1ceI/cRlfOaBc/vv0VQSl6sXM1HLF9d1z4g9hYVOtGSM/0/YUto
gG/U/jbMtAnSPSszDJ8X9bXi3FZ067Hagp8Nw6+xWnvrllY8vgWN/l0jSDv1
wmKik42dectmKk+O4GC7e7h8IBvFLj9kWEJ8mL65e9AjgA0Z8bJp50T5oG3s
thf7sVG9w1TygyQfzbnbVHfuZ0NtqsWfQnk+0nTdEov3sjHo4TCyYTEf6/zL
ApOd2PCf6/vqlCMfw+WBJ1RN2QiNSA/rfsCHjWuK4sbpbEw/JmHjlstHvYfj
lp/SbKR4+8kN5vHxOfLKyaypbDyxNckQFPLRevlokpAk6X8mu1akijh+QqpG
hA3bW0KSi9v4CP+tMB74g4XZJbvjjozzYTU362hUPwsZ9+ucfk3w4SAaN2DP
Y8EgRUclREiA9dd1rZUYFqxPj+VFiwkQcNdIUNDHwinzS+wbsgLQZcNlI50s
MC2VCjXqAow/P37oCpuF3CHlGzIbBPhWe9H9ahUL0Tcj9vRuFMBP7YyJSyUL
HptHNB85CNDl37ROvYKFec+ePbbbJoD3RzmxUvI/e/6Sa/1FdwEu681X+FLE
gvey5M9TgwXgzZqTlP6QBbVwhfUSdwUAP2F4KIWFyf9OTe+4L0Dxkrr6jmQW
qBFe690cAVwWOXc2JLFweduTnevyBWjybM7Nuc7CH+3NhyKeCaBp0S9+9ioL
3exLt0TbBJj/UinS5zwLTyPH9ra1C1B5ZNfPAzEsJKzcvTiDI4CuA+4GRLNg
m/Vv4dpeAbz0Xz88EclC2fE3r8I+CNAv5OF7+ywL1/WWXnIYFuCOyVhOThgL
gUyqo6pAABNPgUZpKAuLNvj2VX8VwGYzt6bjDAtThN9mXh4T4Fxa1fuh0yxw
i1bu3/NLgHmTLMvxUyw825+hbzAhwKI9Yj0yxIkq0t/+/BFgsnFDrvpJFv4P
PZvpzw==
"]]},
Annotation[#, "Charting`Private`Tag$284961#1"]& ]}, {}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{True, True}, {True, True}},
FrameLabel->{{None, None}, {None, None}},
FrameStyle->Directive[
GrayLevel[0], 14],
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Part[{{Identity, Identity}, {Identity, Identity}}, 1, 2][#]& )[
Part[#, 1]],
(Part[{{Identity, Identity}, {Identity, Identity}}, 2, 2][#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Part[{{Identity, Identity}, {Identity, Identity}}, 1, 2][#]& )[
Part[#, 1]],
(Part[{{Identity, Identity}, {Identity, Identity}}, 2, 2][#]& )[
Part[#, 2]]}& )}},
PlotLabel->FormBox[
InterpretationBox[
"\"Ra = \\!\\(\\*FormBox[\\\"1400\\\", TraditionalForm]\\)\"",
StringForm["Ra = ``", 1400], Editable -> False], TraditionalForm],
PlotRange->{{0, 1}, {0., 0.40275745708694605`}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],