-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathrun_segmentation_evaluation.m
137 lines (116 loc) · 5.49 KB
/
run_segmentation_evaluation.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Script for runnning evaulation of sequential model %%%%
%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Assume a set of IBP iterations have been run...
Chain_run = []; est_states = [];
% Segmentation Metrics
hamming_distance = zeros(1,T);
global_consistency = zeros(1,T);
variation_info = zeros(1,T);
K_S = zeros(1,T);
% Clustering Metric Arrays
cluster_purity = zeros(1,T);
cluster_ARI = zeros(1,T);
cluster_F = zeros(1,T);
K_Z = zeros(1,T);
for ii=1:T
bestPsi = Best_Psi(ii);
est_states = [];
for e=1:length(bestPsi.Psi.stateSeq)
est_states{e} = bestPsi.Psi.stateSeq(e).z';
end
Chain_run{ii}.est_states = est_states;
% Extract Gaussian Emission Parameters
labels = [];
for e=1:length(est_states)
labels = [labels unique(est_states{e})'];
end
labels = unique(labels);
clear IBPHMM_theta
K_est = length(labels);
IBPHMM_theta.K = K_est;
for k=1:K_est
IBPHMM_theta.Mu(:,k) = bestPsi.Psi.theta(labels(k)).mu;
IBPHMM_theta.invSigma(:,:,k) = bestPsi.Psi.theta(labels(k)).invSigma \ eye(data.D);
IBPHMM_theta.Sigma(:,:,k) = IBPHMM_theta.invSigma(:,:,k);
IBPHMM_theta.invSigma_real(:,:,k) = bestPsi.Psi.theta(labels(k)).invSigma ;
end
Chain_run{ii}.IBPHMM_theta = labels;
Chain_run{ii}.IBPHMM_theta = IBPHMM_theta;
sigmas = [];
for k=1:IBPHMM_theta.K
if re_estimated
sigmas{k} = Sigma0(:,:,k);
else
sigmas{k} = IBPHMM_theta.invSigma(:,:,k);
end
end
true_labels = [1:IBPHMM_theta.K];
Chain_run{ii}.sigmas = sigmas;
Chain_run{ii}.true_labels = true_labels;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%% Compute Similarity Matrix from B-SPCM Function for dataset %%%%%%
% %%%%%%%%%%%%%%%%%%%%%%%%% Set Hyper-parameter %%%%%%%%%%%%%%%%%%%%%%%%%%%
% Tolerance for SPCM decay function
dis_type = 2;
gamma = 5;
spcm = ComputeSPCMfunctionMatrix(sigmas, gamma, dis_type);
D = spcm(:,:,1);
S = spcm(:,:,2);
Chain_run{ii}.D = D;
Chain_run{ii}.S = S;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%% Embed SDP Matrices in Approximate Euclidean Space %%
%%%%%%%%%%%%%%%%%%%%hamming_distance%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
show_plots = 0; % Show plot of similarity matrices+eigenvalues
pow_eigen = 4; % (L^+)^(pow_eigen) for dimensionality selection
[x_emb, Y, d_L_pow] = graphEuclidean_Embedding(S, show_plots, pow_eigen);
M = size(Y,1);
Chain_run{ii}.Y = Y;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Discover Clusters with GMM-based Clustering Variants on Embedding %%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 0: sim-CRP-MM (Collapsed Gibbs Sampler) on Preferred Embedding
% 1: GMM-EM Model Selection via BIC on Preferred Embedding
% 2: CRP-GMM (Gibbs Sampler/Collapsed) on Preferred Embedding
est_options = [];
est_options.type = 0; % Clustering Estimation Algorithm Type
% If algo 1 selected:
est_options.maxK = 15; % Maximum Gaussians for Type 1
est_options.fixed_K = []; % Fix K and estimate with EM for Type 1
% If algo 0 or 2 selected:
est_options.samplerIter = 100; % Maximum Sampler Iterations
est_options.do_plots = 0; % Plot Estimation Stats
est_options.dataset_name = dataset_name; % Dataset name
est_options.true_labels = true_labels; % To plot against estimates
% Fit GMM to Trajectory Data
tic;
clear Priors Mu Sigma
[Priors, Mu, Sigma, est_labels, stats] = fitgmm_sdp(S, Y, est_options);
toc;
clear SPCM_GMM
SPCM_GMM.Priors = Priors;
SPCM_GMM.Mu = Mu;
SPCM_GMM.Sigma = Sigma;
Chain_run{ii}.SPCM_GMM = SPCM_GMM;
Chain_run{ii}.est_labels = est_labels;
unique_labels = unique(est_labels);
for u=1:length(unique_labels)
est_labels_mapped(find(est_labels==unique_labels(u))) = u;
end
% Compute Segmentation and State Clustering Metrics
ibpspcm_results = computeSegmClustmetrics(true_states_all, bestPsi, est_labels_mapped);
Chain_run{ii}.ibpspcm_results = ibpspcm_results;
% Segmentation Metrics
hamming_distance(ii) = ibpspcm_results.hamming_distance_c;
global_consistency(ii) = ibpspcm_results.global_consistency_c;
variation_info(ii) = ibpspcm_results.variation_info_c;
K_S(ii) = ibpspcm_results.inferred_states;
% Clustering Metric Arrays
cluster_purity(ii) = ibpspcm_results.cluster_purity;
cluster_ARI(ii) = ibpspcm_results.cluster_ARI;
cluster_F(ii) = ibpspcm_results.cluster_F;
K_Z(ii) = ibpspcm_results.inferred_state_clust;
end
fprintf('*** IBP+SPCM Results*** \n Hamming-Distance: %3.3f (%3.3f) GCE: %3.3f (%3.3f) VO: %3.3f (%3.3f) \n Purity: %3.3f (%3.3f) ARI: %3.3f (%3.3f) F: %3.3f (%3.3f) \n K_S: %3.3f (%3.3f) K_Z: %3.3f (%3.3f) \n',[mean(hamming_distance) std(hamming_distance) ...
mean(global_consistency) std(global_consistency) mean(variation_info) std(variation_info) mean(cluster_purity) std(cluster_purity) mean(cluster_ARI) std(cluster_ARI) mean(cluster_F) std(cluster_F) mean(K_S) std(K_S) mean(K_Z) std(K_Z) ])