From 05c03a9944675f6c6a2e56b91f795b5c6a79088c Mon Sep 17 00:00:00 2001 From: Brian McMahon Date: Wed, 24 Apr 2024 10:05:22 +0100 Subject: [PATCH] Fixed DDLm and style errors associated with new list items. --- cif_rho.dic | 233 ++++++++++++++++++++++++++-------------------------- 1 file changed, 117 insertions(+), 116 deletions(-) diff --git a/cif_rho.dic b/cif_rho.dic index bc72577..2016924 100644 --- a/cif_rho.dic +++ b/cif_rho.dic @@ -1712,7 +1712,7 @@ save_atom_rho_multipole_kappa.list ; _name.category_id atom_rho_multipole_kappa _name.object_id list - _type.purpose Number + _type.purpose Measurand _type.source Derived _type.container List _type.dimension '[6]' @@ -1926,110 +1926,6 @@ save_atom_rho_multipole_radial_slater.atom_label save_ -save_atom_rho_multipole_radial_slater.n_list - - _definition.id '_atom_rho_multipole_radial_slater.n_list' - _alias.definition_id '_atom_rho_multipole_radial_slater_n_list' - _definition.update 2024-04-23 - _description.text -; - These items are used when the radial dependence of the valence - electron density, R(kappa'(l),l,r), of the atom specified in - atom_rho_multipole.atom_label is expressed as a Slater-type - function [Hansen & Coppens (1978), equation (3)]: - - R(kappa'(l),l,r) = [{zeta(l)\}^\{n(l)+3\}^/\{n(l)+2\}!]\ - *(kappa'(l)*r)^n(l)^ - *exp(-kappa'(l)*zeta(l)*r) - - where: - kappa'(l) = atom_rho_multipole_kappa.prime[l] - n(l) = atom_rho_multipole_radial_slater.n[l] - zeta(l)i = atom_rho_multipole_radial_slater.zeta[l] - - R(kappa'(l),l,r) appears in the multipole formalism described by - Hansen & Coppens [1978, equation (2)] which gives the - electron density at position vector r with respect to an - atomic nucleus as: - - rho(r) = Pc*rho_core(r) + Pv*kappa^3^*rho_valence(kappa*r) - + sum{k'(l)^3^*R(kappa'(l),l,r)\}\ - *sum{P(l,m)*d(l,m,theta,phi)\}\ - - where: - Pc = atom_rho_multipole_coeff.Pc - Pv = atom_rho_multipole_coeff.Pv - P(0,0) = atom_rho_multipole_coeff.P00 - Pc + Pv + P(0,0) = Z (the atomic number) for a neutral atom - - kappa = atom_rho_multipole_kappa.base, - kappa'(l) = atom_rho_multipole_kappa.prime[l], - P(l,m) = atom_rho_multipole_coeff.P[lm], - - d(l,m,theta,phi) is the spherical harmonic of order l,m at the - position (theta, phi) with respect to spherical coordinates - centred on the atom. - - The summations are performed over the index ranges - 0 <= l <= lmax, -l <= m <= l respectively, where lmax is - the highest order of multipole applied. - - The spherical coordinates are related to the local Cartesian - axes defined in category ATOM_LOCAL_AXES, z is the polar axis - from which the angle theta is measured, and the angle phi is - measured from the x axis in the xy plane with the y axis - having a value of phi = +90 degrees. - - rho_core(r) and rho_valence(kappa*r) are the spherical core and - valence densities, respectively. They are obtained from - atomic orbital analytic wavefunctions such as those tabulated - by Clementi & Roetti (1974). They are also the Fourier - transforms of the X-ray scattering factors given in - atom_rho_multipole.scat_core and - atom_rho_multipole.scat_valence. - - Ref: Clementi, E. & Roetti, C. (1974). At. Data Nucl. Data - Tables, 14, 177-478. - Hansen, N. K. & Coppens, P. (1978). - Acta Cryst. A34, 909-921. -; - _name.category_id atom_rho_multipole_radial_slater - _name.object_id list - _type.purpose Measurand - _type.source Derived - _type.container List - _type.dimension '[5]' - _type.contents Real - _units.code none - _method.purpose Evaluation - _method.expression -; - With s as atom_rho_multipole_radial_slater - - atom_rho_multipole_radial_slater.n_list = [ s.n0, s.n1, s.n2, s.n3 ] -; - -save_ - -save_atom_rho_multipole_radial_slater.n_list_su - - _definition.id '_atom_rho_multipole_radial_slater.n_list_su' - _definition.update 2024-04-23 - _description.text -; - Standard uncertainty of _atom_rho_multipole_radial_slater.n_list. -; - _name.category_id atom_rho_multipole_radial_slater - _name.object_id list_su - _name.linked_item_id '_atom_rho_multipole_radial_slater.n_list' - _type.purpose SU - _type.source Related - _type.container List - _type.dimension '[5]' - _type.contents Real - _units.code none - -save_ save_atom_rho_multipole_radial_slater.n0 @@ -2143,10 +2039,10 @@ save_atom_rho_multipole_radial_slater.n3_su save_ -save_atom_rho_multipole_radial_slater.zeta_list +save_atom_rho_multipole_radial_slater.n_list - _definition.id '_atom_rho_multipole_radial_slater.zeta_list' - _alias.definition_id '_atom_rho_multipole_radial_slater_zeta_list' + _definition.id '_atom_rho_multipole_radial_slater.n_list' + _alias.definition_id '_atom_rho_multipole_radial_slater_n_list' _definition.update 2024-04-23 _description.text ; @@ -2211,7 +2107,7 @@ save_atom_rho_multipole_radial_slater.zeta_list Acta Cryst. A34, 909-921. ; _name.category_id atom_rho_multipole_radial_slater - _name.object_id list + _name.object_id n_list _type.purpose Measurand _type.source Derived _type.container List @@ -2223,23 +2119,22 @@ save_atom_rho_multipole_radial_slater.zeta_list ; With s as atom_rho_multipole_radial_slater - atom_rho_multipole_radial_slater.zeta_list = [ - s.zeta0, s.zeta1, s.zeta2, s.zeta3] + atom_rho_multipole_radial_slater.n_list = [ s.n0, s.n1, s.n2, s.n3 ] ; save_ -save_atom_rho_multipole_radial_slater.zeta_list_su +save_atom_rho_multipole_radial_slater.n_list_su - _definition.id '_atom_rho_multipole_radial_slater.zeta_list_su' + _definition.id '_atom_rho_multipole_radial_slater.n_list_su' _definition.update 2024-04-23 _description.text ; - Standard uncertainty of _atom_rho_multipole_radial_slater.zeta_list. + Standard uncertainty of _atom_rho_multipole_radial_slater.n_list. ; _name.category_id atom_rho_multipole_radial_slater - _name.object_id list_su - _name.linked_item_id '_atom_rho_multipole_radial_slater.zeta_list' + _name.object_id n_list_su + _name.linked_item_id '_atom_rho_multipole_radial_slater.n_list' _type.purpose SU _type.source Related _type.container List @@ -2359,6 +2254,112 @@ save_atom_rho_multipole_radial_slater.zeta3_su _import.get [{'file':templ_attr.cif 'save':general_su}] +save_ + +save_atom_rho_multipole_radial_slater.zeta_list + + _definition.id '_atom_rho_multipole_radial_slater.zeta_list' + _alias.definition_id '_atom_rho_multipole_radial_slater_zeta_list' + _definition.update 2024-04-23 + _description.text +; + These items are used when the radial dependence of the valence + electron density, R(kappa'(l),l,r), of the atom specified in + atom_rho_multipole.atom_label is expressed as a Slater-type + function [Hansen & Coppens (1978), equation (3)]: + + R(kappa'(l),l,r) = [{zeta(l)\}^\{n(l)+3\}^/\{n(l)+2\}!]\ + *(kappa'(l)*r)^n(l)^ + *exp(-kappa'(l)*zeta(l)*r) + + where: + kappa'(l) = atom_rho_multipole_kappa.prime[l] + n(l) = atom_rho_multipole_radial_slater.n[l] + zeta(l)i = atom_rho_multipole_radial_slater.zeta[l] + + R(kappa'(l),l,r) appears in the multipole formalism described by + Hansen & Coppens [1978, equation (2)] which gives the + electron density at position vector r with respect to an + atomic nucleus as: + + rho(r) = Pc*rho_core(r) + Pv*kappa^3^*rho_valence(kappa*r) + + sum{k'(l)^3^*R(kappa'(l),l,r)\}\ + *sum{P(l,m)*d(l,m,theta,phi)\}\ + + where: + Pc = atom_rho_multipole_coeff.Pc + Pv = atom_rho_multipole_coeff.Pv + P(0,0) = atom_rho_multipole_coeff.P00 + Pc + Pv + P(0,0) = Z (the atomic number) for a neutral atom + + kappa = atom_rho_multipole_kappa.base, + kappa'(l) = atom_rho_multipole_kappa.prime[l], + P(l,m) = atom_rho_multipole_coeff.P[lm], + + d(l,m,theta,phi) is the spherical harmonic of order l,m at the + position (theta, phi) with respect to spherical coordinates + centred on the atom. + + The summations are performed over the index ranges + 0 <= l <= lmax, -l <= m <= l respectively, where lmax is + the highest order of multipole applied. + + The spherical coordinates are related to the local Cartesian + axes defined in category ATOM_LOCAL_AXES, z is the polar axis + from which the angle theta is measured, and the angle phi is + measured from the x axis in the xy plane with the y axis + having a value of phi = +90 degrees. + + rho_core(r) and rho_valence(kappa*r) are the spherical core and + valence densities, respectively. They are obtained from + atomic orbital analytic wavefunctions such as those tabulated + by Clementi & Roetti (1974). They are also the Fourier + transforms of the X-ray scattering factors given in + atom_rho_multipole.scat_core and + atom_rho_multipole.scat_valence. + + Ref: Clementi, E. & Roetti, C. (1974). At. Data Nucl. Data + Tables, 14, 177-478. + Hansen, N. K. & Coppens, P. (1978). + Acta Cryst. A34, 909-921. +; + _name.category_id atom_rho_multipole_radial_slater + _name.object_id zeta_list + _type.purpose Measurand + _type.source Derived + _type.container List + _type.dimension '[5]' + _type.contents Real + _units.code none + _method.purpose Evaluation + _method.expression +; + With s as atom_rho_multipole_radial_slater + + atom_rho_multipole_radial_slater.zeta_list = [ + s.zeta0, s.zeta1, s.zeta2, s.zeta3] +; + +save_ + +save_atom_rho_multipole_radial_slater.zeta_list_su + + _definition.id '_atom_rho_multipole_radial_slater.zeta_list_su' + _definition.update 2024-04-23 + _description.text +; + Standard uncertainty of _atom_rho_multipole_radial_slater.zeta_list. +; + _name.category_id atom_rho_multipole_radial_slater + _name.object_id zeta_list_su + _name.linked_item_id '_atom_rho_multipole_radial_slater.zeta_list' + _type.purpose SU + _type.source Related + _type.container List + _type.dimension '[5]' + _type.contents Real + _units.code none + save_ loop_