forked from COMCIFS/Electron_Density_Dictionary
-
Notifications
You must be signed in to change notification settings - Fork 0
/
cif_rho.dic
2267 lines (1774 loc) · 76.7 KB
/
cif_rho.dic
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#\#CIF_2.0
######################################################################
# #
# CIF Dictionary for the Multipole Model of #
# aspherical atomic density distributions #
# #
# Converted from DDL1 to DDLm 20 June 2014 #
# #
######################################################################
data_CIF_RHO
_dictionary.title CIF_RHO
_dictionary.class Instance
_dictionary.version 2.0.3
_dictionary.date 2024-04-02
_dictionary.uri
;\
https://raw.githubusercontent.com/COMCIFS/Electron_Density_\
Dictionary/master/cif_rho.dic
;
_dictionary.ddl_conformance 4.1.0
_dictionary.namespace CifCore
_description.text
;
The CIF_RHO dictionary records the definitions of data items specifying
the Multipole Model of aspherical atomic density distributions
used with in the Crystallographic Information Framework (CIF).
;
save_RHO_GROUP
_definition.id RHO_GROUP
_definition.scope Category
_definition.class Head
_definition.update 2022-10-17
_description.text
;
Groups all of the categories of definitions in the study of
multipole modeling of aspherical atomic density distributions
;
_name.category_id CIF_RHO
_name.object_id RHO_GROUP
_import.get
[{'dupl':Ignore 'file':cif_core.dic 'mode':Full 'save':CIF_CORE}]
save_
save_ATOM_LOCAL_AXES
_definition.id ATOM_LOCAL_AXES
_definition.scope Category
_definition.class Loop
_definition.update 2014-06-20
_description.text
;
This category allows the definition of local axes around each
atom in terms of vectors between neighbouring atoms.
High-resolution X-ray diffraction methods enable the
determination of the electron density distribution in crystal
lattices and molecules, which in turn allows for a
characterization of chemical interactions (Coppens, 1997;
Koritsanszky & Coppens, 2001). This is accomplished by the
construction of a mathematical model of the charge density
in a crystal and then by fitting the parameters of such a
model to the experimental pattern of diffracted X-rays. The
model on which this dictionary is based is the so-called
multipole formalism proposed by Hansen & Coppens (1978). In
this model, the electron density in a crystal is described
by a sum of aspherical "pseudoatoms" where the pseudoatom
density has the form defined in the atom_rho_multipole_* items.
Each pseudoatom density consists of terms representing the
core density, the spherical part of the valence density and
the deviation of the valence density from sphericity. The
continuous electron density in the crystal is then modelled
as a sum of atom-centred charge distributions. Once the
experimental electron density has been established, the
"atoms in molecules" theory of Bader (1990) provides tools for
the interpretation of the density distribution in terms of its
topological properties.
Ref: Bader, R. F. W. (1990). Atoms in molecules: a quantum
theory. Oxford University Press.
Coppens, P. (1997). X-ray charge densities and chemical
bonding. Oxford University Press.
Hansen, N. K. & Coppens, P. (1978). Acta Cryst. A34,
909-921.
Koritsanszky, T. S. & Coppens, P. (2001). Chem. Rev. 101,
1583-1621.
;
_name.category_id RHO_GROUP
_name.object_id ATOM_LOCAL_AXES
_category_key.name '_atom_local_axes.atom_label'
save_
save_atom_local_axes.atom0
_definition.id '_atom_local_axes.atom0'
_alias.definition_id '_atom_local_axes_atom0'
_definition.update 2014-06-20
_description.text
;
Specifies 'atom0' in the definition of a local axis frame.
The definition employs three atom-site labels, 'atom0', 'atom1'
and 'atom2', and two axis labels, 'ax1' and 'ax2', having values
'+/-X', '+/-Y' or '+/-Z'. For the atom defined by
'_atom_local_axes_atom_label', whose nuclear position is taken
as the origin, local axis 'ax1' is the vector from the origin to
atom0, axis 'ax2' is perpendicular to 'ax1' and lies in the
plane of 'ax1' and a vector
passing through the origin parallel to the vector atom1 -> atom2
(its positive direction making an acute angle with the vector
parallel to atom1 -> atom2), and a right-handed orthonormal
vector triplet is formed from the vector product of these two
vectors. In most cases, atom1 will be the same as the atom
specified by atom_local_axes_atom_label. One or more 'dummy'
atoms (with arbitrary labels) may be used in the vector
definitions, specified with zero occupancy in the atom_site_
description. The values of *_atom0, *_atom1 and *_atom2 must
be identical to values given in the atom_site_label list.
;
_name.category_id atom_local_axes
_name.object_id atom0
_name.linked_item_id '_atom_site.label'
_type.purpose Link
_type.source Related
_type.container Single
_type.contents Word
save_
save_atom_local_axes.atom1
_definition.id '_atom_local_axes.atom1'
_alias.definition_id '_atom_local_axes_atom1'
_definition.update 2014-06-20
_description.text
;
Specifies 'atom1' in the definition of a local axis frame.
See definition atom_local_axes.atom0 for description.
;
_name.category_id atom_local_axes
_name.object_id atom1
_name.linked_item_id '_atom_site.label'
_type.purpose Link
_type.source Related
_type.container Single
_type.contents Word
save_
save_atom_local_axes.atom2
_definition.id '_atom_local_axes.atom2'
_alias.definition_id '_atom_local_axes_atom2'
_definition.update 2014-06-20
_description.text
;
Specifies 'atom2' in the definition of a local axis frame.
See definition atom_local_axes.atom0 for description.
;
_name.category_id atom_local_axes
_name.object_id atom2
_name.linked_item_id '_atom_site.label'
_type.purpose Link
_type.source Related
_type.container Single
_type.contents Word
save_
save_atom_local_axes.atom_label
_definition.id '_atom_local_axes.atom_label'
_alias.definition_id '_atom_local_axes_atom_label'
_definition.update 2014-06-20
_description.text
;
This item is used to identify an atom for which a local axis
system is to be defined. Its value must be identical to one
of the values given in the atom_site_label list.
;
_name.category_id atom_local_axes
_name.object_id atom_label
_name.linked_item_id '_atom_site.label'
_type.purpose Link
_type.source Related
_type.container Single
_type.contents Word
save_
save_atom_local_axes.ax1
_definition.id '_atom_local_axes.ax1'
_alias.definition_id '_atom_local_axes_ax1'
_definition.update 2024-03-30
_description.text
;
Specifies 'ax1' in the definition of a local axis frame.
The definition employs three atom-site labels, 'atom0', 'atom1'
and 'atom2', and two axis labels, 'ax1' and 'ax2', having values
'+/-X', '+/-Y' or '+/-Z'. For the atom defined by
'_atom_local_axes_atom_label', whose nuclear position is taken
as the origin, local axis 'ax1' is the vector from the origin to
atom0, axis 'ax2' is perpendicular to 'ax1' and lies in the
plane of 'ax1' and a vector
passing through the origin parallel to the vector atom1 -> atom2
(its positive direction making an acute angle with the vector
parallel to atom1 -> atom2), and a right-handed orthonormal
vector triplet is formed from the vector product of these two
vectors. In most cases, atom1 will be the same as the atom
specified by atom_local_axes_atom_label. One or more 'dummy'
atoms (with arbitrary labels) may be used in the vector
definitions, specified with zero occupancy in the atom_site_
description. The values of *_atom0, *_atom1 and *_atom2 must
be identical to values given in the atom_site_label list.
;
_name.category_id atom_local_axes
_name.object_id ax1
_type.purpose State
_type.source Assigned
_type.container Single
_type.contents Word
loop_
_enumeration_set.state
x
X
y
Y
z
Z
+x
+X
+y
+Y
+z
+Z
-x
-X
-y
-Y
-z
-Z
save_
save_atom_local_axes.ax2
_definition.id '_atom_local_axes.ax2'
_alias.definition_id '_atom_local_axes_ax2'
_definition.update 2024-03-30
_description.text
;
Specifies 'ax2' in the definition of a local axis frame.
See definition of atom_local_axes.ax1 for description.
;
_name.category_id atom_local_axes
_name.object_id ax2
_type.purpose State
_type.source Assigned
_type.container Single
_type.contents Word
loop_
_enumeration_set.state
x
X
y
Y
z
Z
+x
+X
+y
+Y
+z
+Z
-x
-X
-y
-Y
-z
-Z
save_
save_ATOM_RHO_MULTIPOLE
_definition.id ATOM_RHO_MULTIPOLE
_definition.scope Category
_definition.class Loop
_definition.update 2014-06-20
_description.text
;
This category contains information about the multipole
coefficients used to describe the electron density.
High-resolution X-ray diffraction methods enable the
determination of the electron density distribution in
crystal lattices and molecules, which in turn allows for a
characterization of chemical interactions (Coppens, 1997;
Koritsanszky & Coppens, 2001). This is accomplished by
the construction of a mathematical model of the charge
density in a crystal and then by fitting the parameters of
such a model to the experimental pattern of diffracted
X-rays. The model on which this dictionary is based
is the so-called multipole formalism proposed by Hansen
& Coppens (1978). In this model, the electron density in
a crystal is described by a sum of aspherical "pseudoatoms"
where the pseudoatom density has the form defined in the
atom_rho_multipole_* items. Each pseudoatom density
consists of terms representing the core density, the spherical
part of the valence density and the deviation of the valence
density from sphericity. The continuous electron density in the
crystal is then modelled as a sum of atom-centred charge
distributions. Once the experimental electron density has been
established, the "atoms in molecules" theory of Bader (1990)
provides tools for the interpretation of the density
distribution in terms of its topological properties.
Ref: Bader, R. F. W. (1990). Atoms in molecules: a quantum
theory. Oxford University Press.
Coppens, P. (1997). X-ray charge densities and chemical
bonding. Oxford University Press.
Hansen, N. K. & Coppens, P. (1978). Acta Cryst. A34, 909-921.
Koritsanszky, T. S. & Coppens, P. (2001). Chem. Rev. 101, 1583-1621.
;
_name.category_id RHO_GROUP
_name.object_id ATOM_RHO_MULTIPOLE
_category_key.name '_atom_rho_multipole.atom_label'
save_
save_atom_rho_multipole.atom_label
_definition.id '_atom_rho_multipole.atom_label'
_alias.definition_id '_atom_rho_multipole_atom_label'
_definition.update 2014-06-20
_description.text
;
This item is used to identify the atom whose electron density is
described with an atom in the ATOM_SITE category. Its value
must be identical to one of the values in the atom_site_label
list.
;
_name.category_id atom_rho_multipole
_name.object_id atom_label
_name.linked_item_id '_atom_site.label'
_type.purpose Link
_type.source Related
_type.container Single
_type.contents Word
save_
save_atom_rho_multipole.configuration
_definition.id '_atom_rho_multipole.configuration'
_alias.definition_id '_atom_rho_multipole_configuration'
_definition.update 2014-06-20
_description.text
;
This item defines the electronic configuration of the atom
given in atom_rho_multipole.atom_label as free text.
;
_name.category_id atom_rho_multipole
_name.object_id configuration
_type.purpose Describe
_type.source Recorded
_type.container Single
_type.contents Text
save_
save_atom_rho_multipole.core_source
_definition.id '_atom_rho_multipole.core_source'
_alias.definition_id '_atom_rho_multipole_core_source'
_definition.update 2014-06-20
_description.text
;
This item gives the source of the orbital exponents and
expansion coefficients used to obtain the spherical core
density of the atom defined in atom_rho_multipole_atom_label.
Alternatively, the core density may be obtained as described
in the atom_rho_multipole.scat_core item.
Ref: Clementi, E. & Roetti, C. (1974). At. Data Nucl. Data
Tables, 14, 177-478.
;
_name.category_id atom_rho_multipole
_name.object_id core_source
_type.purpose Describe
_type.source Recorded
_type.container Single
_type.contents Text
_description_example.case
;
Clementi, E. & Roetti, C. (1974). At. Data Nucl. Data Tables,
14, 177-478.
;
save_
save_atom_rho_multipole.radial_function_type
_definition.id '_atom_rho_multipole.radial_function_type'
_alias.definition_id '_atom_rho_multipole_radial_function_type'
_definition.update 2014-06-20
_description.text
;
Specifies the function R(kappa'(l),l,r) used for the radial
dependence of the valence electron density in the multipole
formalism described by Hansen & Coppens [1978, equation (2)]
which gives the electron density at position vector r with
respect to the nucleus of the atom specified in
atom_rho_multipole_atom_label as:
rho(r) = Pc*rho_core(r) + Pv*k^3^*rho_valence(kappa*r)
+ sum{kappa'(l)^3^*R(kappa'(l),l,r)\}\
*sum{P(l,m)*d(l,m,theta,phi)\}\
where:
Pc = atom_rho_multipole_coeff.Pc
Pv = atom_rho_multipole_coeff.Pv
P(0,0) = atom_rho_multipole_coeff.P00
Pc + Pv + P(0,0) = Z (the atomic number) for a neutral atom
kappa = atom_rho_multipole_kappa.base,
kappa'(l) = atom_rho_multipole_kappa.prime[l],
P(l,m) = atom_rho_multipole_coeff.P[lm],
d(l,m,theta,phi) is the spherical harmonic of order l,m at the
position (theta, phi) with respect to spherical coordinates
centred on the atom.
The summations are performed over the index ranges
0 <= l <= lmax, -l <= m <= l respectively, where lmax is
the highest order of multipole applied.
The spherical coordinates are related to the local Cartesian
axes defined in category ATOM_LOCAL_AXES, z is the polar axis
from which the angle theta is measured and the angle phi is
measured from the x axis in the xy plane with the y axis
having a value of phi = +90 degrees.
rho_core(r) and rho_valence(kappa*r) are the spherical core and
valence densities, respectively. They are obtained from
atomic orbital analytic wavefunctions such as those tabulated
by Clementi & Roetti (1974). They are also the Fourier
transforms of the X-ray scattering factors given in
atom_rho_multipole.scat_core and
atom_rho_multipole.scat_valence.
This item need not be given if a Slater function is used. The
parameters of the Slater function should be given using the
atom_rho_multipole_radial_slater.* items.
Ref: Clementi, E. & Roetti, C. (1974). At. Data Nucl. Data
Tables, 14, 177-478.
Hansen, N. K. & Coppens, P. (1978).
Acta Cryst. A34, 909-921.
;
_name.category_id atom_rho_multipole
_name.object_id radial_function_type
_type.purpose Describe
_type.source Recorded
_type.container Single
_type.contents Text
save_
save_atom_rho_multipole.scat_core
_definition.id '_atom_rho_multipole.scat_core'
_alias.definition_id '_atom_rho_multipole_scat_core'
_definition.update 2014-06-20
_description.text
;
This item gives the scattering factor for the core electrons
of the atom specified in atom_rho_multipole.atom_label as a
function of sin(theta)/lambda. The text should contain only a
table of two columns, the first giving the value of
sin(theta)/lambda, the second giving the X-ray scattering factor
at this point in reciprocal space.
The atomic core scattering factors are used in least-squares
fitting of the items in atom_rho_multipole_coeff.* and
atom_rho_multipole_kappa.* to experimental X-ray structure
factors [see for example Coppens (1997)]. This item enables
them to be supplied in the form of a numerical table. Normally
they originate from atomic orbital analytic wavefunctions
such as those tabulated by Clementi & Roetti (1974).
Ref: Clementi, E. & Roetti, C. (1974). At. Data Nucl. Data
Tables, 14, 177-478.
Coppens, P. (1997). X-ray charge densities and
chemical bonding. Oxford University Press.
;
_name.category_id atom_rho_multipole
_name.object_id scat_core
_type.purpose Describe
_type.source Recorded
_type.container Single
_type.contents Text
save_
save_atom_rho_multipole.scat_core_table
_definition.id '_atom_rho_multipole.scat_core_table'
_alias.definition_id '_atom_rho_multipole_scat_core_table'
_definition.update 2019-04-01
_description.text
;
This table gives the scattering factor for the core electrons
of the atom specified in atom_rho_multipole.atom_label as a
function of sin(theta)/lambda. The table contains the st/l
value as the key and the scattering factor as the value. E.g.
{"0.00":"15.65","0.05":"15.32",.....etc }
The atomic core scattering factors are used in least-squares
fitting of the items in atom_rho_multipole_coeff.* and
atom_rho_multipole_kappa.* to experimental X-ray structure
factors [see for example Coppens (1997)]. This item enables
them to be supplied in the form of a numerical table. Normally
they originate from atomic orbital analytic wavefunctions
such as those tabulated by Clementi & Roetti (1974).
Ref: Clementi, E. & Roetti, C. (1974). At. Data Nucl. Data
Tables, 14, 177-478.
Coppens, P. (1997). X-ray charge densities and
chemical bonding. Oxford University Press.
;
_name.category_id atom_rho_multipole
_name.object_id scat_core_table
_type.purpose Number
_type.source Assigned
_type.container Array
_type.dimension '[]'
_type.contents Real
_units.code none
save_
save_atom_rho_multipole.scat_valence
_definition.id '_atom_rho_multipole.scat_valence'
_alias.definition_id '_atom_rho_multipole_scat_valence'
_definition.update 2014-06-20
_description.text
;
This item gives the scattering factor for the valence electrons
of the atom specified in atom_rho_multipole.atom_label as a
function of sin(theta)/lambda. The text should contain only a
table of two columns, the first giving the value of
sin(theta)/lambda, the second giving the X-ray scattering factor
at this point in reciprocal space.
The atomic valence scattering factors are used in least-squares
fitting of the items in atom_rho_multipole_coeff.* and
atom_rho_multipole_kappa.* to experimental X-ray structure
factors [see for example Coppens (1997)]. This item enables
them to be supplied in the form of a numerical table. Normally
they originate from atomic orbital analytic wavefunctions
such as those tabulated by Clementi & Roetti (1974).
Ref: Clementi, E. & Roetti, C. (1974). At. Data Nucl. Data
Tables, 14, 177-478.
Coppens, P. (1997). X-ray charge densities and
chemical bonding. Oxford University Press.
;
_name.category_id atom_rho_multipole
_name.object_id scat_valence
_type.purpose Describe
_type.source Recorded
_type.container Single
_type.contents Text
save_
save_atom_rho_multipole.scat_valence_table
_definition.id '_atom_rho_multipole.scat_valence_table'
_alias.definition_id '_atom_rho_multipole_scat_valence_table'
_definition.update 2019-04-01
_description.text
;
This table gives the scattering factor for the valence electrons
of the atom specified in atom_rho_multipole.atom_label as a
function of sin(theta)/lambda. The table contains the st/l
value as the key and the scattering factor as the value. E.g.
{"0.00":"15.65","0.05":"15.32",.....etc }
The atomic valence scattering factors are used in least-squares
fitting of the items in atom_rho_multipole_coeff.* and
atom_rho_multipole_kappa.* to experimental X-ray structure
factors [see for example Coppens (1997)]. This item enables
them to be supplied in the form of a numerical table. Normally
they originate from atomic orbital analytic wavefunctions
such as those tabulated by Clementi & Roetti (1974).
Ref: Clementi, E. & Roetti, C. (1974). At. Data Nucl. Data
Tables, 14, 177-478.
Coppens, P. (1997). X-ray charge densities and
chemical bonding. Oxford University Press.
;
_name.category_id atom_rho_multipole
_name.object_id scat_valence_table
_type.purpose Number
_type.source Assigned
_type.container Array
_type.dimension '[]'
_type.contents Real
_units.code none
save_
save_atom_rho_multipole.valence_source
_definition.id '_atom_rho_multipole.valence_source'
_alias.definition_id '_atom_rho_multipole_valence_source'
_definition.update 2014-06-20
_description.text
;
This item gives the source of the orbital exponents and
expansion coefficients used to obtain the spherical valence
density of the atom defined in atom_rho_multipole.atom_label.
Alternatively the valence density may be obtained as described
in the atom_rho_multipole_scat_valence item.
Ref: Clementi, E. & Roetti, C. (1974). At. Data Nucl. Data
Tables, 14, 177-478.
;
_name.category_id atom_rho_multipole
_name.object_id valence_source
_type.purpose Describe
_type.source Recorded
_type.container Single
_type.contents Text
_description_example.case
;
Clementi, E. & Roetti, C. (1974). At. Data Nucl. Data
Tables, 14, 177-478.
;
save_
save_ATOM_RHO_MULTIPOLE_COEFF
_definition.id ATOM_RHO_MULTIPOLE_COEFF
_definition.scope Category
_definition.class Loop
_definition.update 2024-04-02
_description.text
;
Category defining multipole population coefficients P(l,m).
;
_name.category_id ATOM_RHO_MULTIPOLE
_name.object_id ATOM_RHO_MULTIPOLE_COEFF
_category_key.name '_atom_rho_multipole_coeff.atom_label'
save_
save_atom_rho_multipole_coeff.atom_label
_definition.id '_atom_rho_multipole_coeff.atom_label'
_definition.update 2024-04-02
_description.text
;
An atom site label that serves as the ATOM_RHO_MULTIPOLE_COEFF category key.
It should only be used when items from the ATOM_RHO_MULTIPOLE_COEFF and
ATOM_RHO_MULTIPOLE categories are looped in separate lists.
;
_name.category_id atom_rho_multipole_coeff
_name.object_id atom_label
_name.linked_item_id '_atom_rho_multipole.atom_label'
_type.purpose Link
_type.source Related
_type.container Single
_type.contents Word
save_
save_atom_rho_multipole_coeff.list
_definition.id '_atom_rho_multipole_coeff.list'
_alias.definition_id '_atom_rho_multipole_coeff_list'
_definition.update 2019-04-01
_description.text
;
Specifies the multipole population coefficients P(l,m) for
the atom identified in atom_rho_multipole_atom_label. The
multipoles are defined with respect to the local axes specified
in the ATOM_LOCAL_AXES category. The coefficients refer to the
multipole formalism described by Hansen & Coppens [1978,
equation (2)] which gives the electron density at position
vector r with respect to an atomic nucleus as
rho(r) = Pc*rho_core(r) + Pv*k^3^*rho_valence(kappa*r)
+ sum{kappa'(l)^3^*R(kappa'(l),l,r)\}\
*sum{P(l,m)*d(l,m,theta,phi)\}\
where:
Pc = atom_rho_multipole_coeff_Pc
Pv = atom_rho_multipole_coeff_Pv
P(0,0) = atom_rho_multipole_coeff_P00
Pc + Pv + P(0,0) = Z (the atomic number) for a neutral atom
kappa = atom_rho_multipole_kappa.base,
kappa'(l) = atom_rho_multipole_kappa.prime[l],
d(l,m,theta,phi) is the spherical harmonic of order l,m at the
position (theta, phi) with respect to spherical coordinates
centred on the atom.
The summations are performed over the index ranges
0 <= l <= lmax, -l <= m <= l, respectively, where lmax is
the highest order of multipole applied.
The spherical coordinates are related to the local Cartesian
axes defined in category ATOM_LOCAL_AXES, z is the polar axis
from which the angle theta is measured, and the angle phi is
measured from the x axis in the xy plane with the y axis
having a value of phi = +90 degrees.
R(kappa'(l),l,r) is defined in the atom_rho_multipole_radial_*
items.
rho_core(r) and rho_valence(kappa*r) are the spherical core
and valence densities, respectively. They are obtained from
atomic orbital analytic wavefunctions such as those tabulated
by Clementi & Roetti (1974). They are also the Fourier
transforms of the X-ray scattering factors given in
atom_rho_multipole_scat_core and
atom_rho_multipole_scat_valence.
Ref: Clementi, E. & Roetti, C. (1974). At. Data Nucl. Data
Tables, 14, 177-478.
Hansen, N. K. & Coppens, P. (1978).
Acta Cryst. A34, 909-921.
;
_name.category_id atom_rho_multipole_coeff
_name.object_id list
_type.purpose Measurand
_type.source Derived
_type.container List
_type.dimension '[27]'
_type.contents Real
_units.code none
_method.purpose Evaluation
_method.expression
;
With r as atom_rho_multipole_coeff
atom_rho_multipole_coeff.list = [ r.Pv, r.Pc, r.P00,
r.P10, r.P11, r.P1_1,
r.P20, r.P21, r.P2_1, r.P22, r.P2_2,
r,P30, r.P31, r.P3-1, r.P32, r.P3_2, r.P33, r.P3_3,
r,P40, r.P41, r.P4-1, r.P42, r.P4_2, r.P43, r.P4_3, r.P44, r.P4_4]
;
save_
save_atom_rho_multipole_coeff.list_su
_definition.id '_atom_rho_multipole_coeff.list_su'
_definition.update 2024-04-02
_description.text
;
Standard uncertainty of _atom_rho_multipole_coeff.list.
;
_name.category_id atom_rho_multipole_coeff
_name.object_id list_su
_name.linked_item_id '_atom_rho_multipole_coeff.list'
_type.purpose SU
_type.source Related
_type.container List
_type.dimension '[27]'
_type.contents Real
_units.code none
save_
save_atom_rho_multipole_coeff.p00
_definition.id '_atom_rho_multipole_coeff.P00'
_alias.definition_id '_atom_rho_multipole_coeff_P00'
_name.category_id atom_rho_multipole_coeff
_name.object_id P00
_import.get [{'file':templ_attr.cif 'save':rho_coeff}]
save_
save_atom_rho_multipole_coeff.p00_su
_definition.id '_atom_rho_multipole_coeff.P00_su'
_definition.update 2022-10-17
_description.text
;
Standard uncertainty of _atom_rho_multipole_coeff.P00.
;
_name.category_id atom_rho_multipole_coeff
_name.object_id P00_su
_name.linked_item_id '_atom_rho_multipole_coeff.P00'
_units.code none
_import.get [{'file':templ_attr.cif 'save':general_su}]
save_
save_atom_rho_multipole_coeff.p10
_definition.id '_atom_rho_multipole_coeff.P10'
_alias.definition_id '_atom_rho_multipole_coeff_P10'
_name.category_id atom_rho_multipole_coeff
_name.object_id P10
_import.get [{'file':templ_attr.cif 'save':rho_coeff}]
save_
save_atom_rho_multipole_coeff.p10_su
_definition.id '_atom_rho_multipole_coeff.P10_su'
_definition.update 2022-10-17
_description.text
;
Standard uncertainty of _atom_rho_multipole_coeff.P10.
;
_name.category_id atom_rho_multipole_coeff
_name.object_id P10_su
_name.linked_item_id '_atom_rho_multipole_coeff.P10'
_units.code none
_import.get [{'file':templ_attr.cif 'save':general_su}]
save_
save_atom_rho_multipole_coeff.p11
_definition.id '_atom_rho_multipole_coeff.P11'
_alias.definition_id '_atom_rho_multipole_coeff_P11'
_name.category_id atom_rho_multipole_coeff
_name.object_id P11
_import.get [{'file':templ_attr.cif 'save':rho_coeff}]
save_
save_atom_rho_multipole_coeff.p11_su
_definition.id '_atom_rho_multipole_coeff.P11_su'
_definition.update 2022-10-17
_description.text
;
Standard uncertainty of _atom_rho_multipole_coeff.P11.
;
_name.category_id atom_rho_multipole_coeff
_name.object_id P11_su
_name.linked_item_id '_atom_rho_multipole_coeff.P11'
_units.code none
_import.get [{'file':templ_attr.cif 'save':general_su}]
save_
save_atom_rho_multipole_coeff.p1_1
_definition.id '_atom_rho_multipole_coeff.P1_1'
loop_
_alias.definition_id
'_atom_rho_multipole_coeff_P1_1'
'_atom_rho_multipole_coeff_P1-1'
_name.category_id atom_rho_multipole_coeff
_name.object_id P1_1
_import.get [{'file':templ_attr.cif 'save':rho_coeff}]
save_
save_atom_rho_multipole_coeff.p1_1_su
_definition.id '_atom_rho_multipole_coeff.P1_1_su'
_definition.update 2022-10-17
_description.text
;
Standard uncertainty of _atom_rho_multipole_coeff.P1_1.
;
_name.category_id atom_rho_multipole_coeff
_name.object_id P1_1_su
_name.linked_item_id '_atom_rho_multipole_coeff.P1_1'
_units.code none
_import.get [{'file':templ_attr.cif 'save':general_su}]
save_
save_atom_rho_multipole_coeff.p20
_definition.id '_atom_rho_multipole_coeff.P20'
_alias.definition_id '_atom_rho_multipole_coeff_P20'
_name.category_id atom_rho_multipole_coeff
_name.object_id P20
_import.get [{'file':templ_attr.cif 'save':rho_coeff}]
save_
save_atom_rho_multipole_coeff.p20_su
_definition.id '_atom_rho_multipole_coeff.P20_su'
_definition.update 2022-10-17
_description.text
;
Standard uncertainty of _atom_rho_multipole_coeff.P20.
;
_name.category_id atom_rho_multipole_coeff
_name.object_id P20_su
_name.linked_item_id '_atom_rho_multipole_coeff.P20'
_units.code none
_import.get [{'file':templ_attr.cif 'save':general_su}]
save_
save_atom_rho_multipole_coeff.p21
_definition.id '_atom_rho_multipole_coeff.P21'
_alias.definition_id '_atom_rho_multipole_coeff_P21'
_name.category_id atom_rho_multipole_coeff
_name.object_id P21
_import.get [{'file':templ_attr.cif 'save':rho_coeff}]
save_
save_atom_rho_multipole_coeff.p21_su
_definition.id '_atom_rho_multipole_coeff.P21_su'
_definition.update 2022-10-17
_description.text
;
Standard uncertainty of _atom_rho_multipole_coeff.P21.
;
_name.category_id atom_rho_multipole_coeff
_name.object_id P21_su
_name.linked_item_id '_atom_rho_multipole_coeff.P21'
_units.code none
_import.get [{'file':templ_attr.cif 'save':general_su}]
save_
save_atom_rho_multipole_coeff.p22
_definition.id '_atom_rho_multipole_coeff.P22'
_alias.definition_id '_atom_rho_multipole_coeff_P22'
_name.category_id atom_rho_multipole_coeff
_name.object_id P22
_import.get [{'file':templ_attr.cif 'save':rho_coeff}]
save_
save_atom_rho_multipole_coeff.p22_su
_definition.id '_atom_rho_multipole_coeff.P22_su'
_definition.update 2022-10-17
_description.text
;
Standard uncertainty of _atom_rho_multipole_coeff.P22.
;
_name.category_id atom_rho_multipole_coeff
_name.object_id P22_su
_name.linked_item_id '_atom_rho_multipole_coeff.P22'
_units.code none
_import.get [{'file':templ_attr.cif 'save':general_su}]
save_
save_atom_rho_multipole_coeff.p2_1
_definition.id '_atom_rho_multipole_coeff.P2_1'
loop_
_alias.definition_id
'_atom_rho_multipole_coeff_P2_1'
'_atom_rho_multipole_coeff_P2-1'
_name.category_id atom_rho_multipole_coeff
_name.object_id P2_1
_import.get [{'file':templ_attr.cif 'save':rho_coeff}]
save_