-
Notifications
You must be signed in to change notification settings - Fork 154
/
Copy pathtest_combined_generator.py
404 lines (365 loc) · 19.6 KB
/
test_combined_generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
import cv2
import math
import csv
import numpy as np
import random
import os
import glob
from PIL import Image
from nudenet import NudeDetector #from NudeNet_edited import Detector
detector = NudeDetector() #detector = Detector()
#You can change those folder paths
rootdir = "./decensor_input"
outdir_mosaics = "./decensor_input_mosaics"
outdir_bars = "./decensor_input_bars"
rejected = "./decensor_nudenet_rejected"
os.makedirs(rootdir, exist_ok=True)
os.makedirs(outdir_mosaics, exist_ok=True)
os.makedirs(rejected, exist_ok=True)
files = glob.glob(rootdir + '/**/*.png', recursive=True)
files_jpg = glob.glob(rootdir + '/**/*.jpg', recursive=True)
files.extend(files_jpg)
err_files=[]
def rand_color():
#color variation on 0, 1, or 2 of the 3 values.
variation2 = random.randrange(0,1)
color_var = 0
if(random.random() >=.5): # half chance for white
r = random.randrange(239,255)
g = r
b = r
var_amnt = random.randrange(1,25) # ~half chance of >16, which is guaranteed overflow, so variation doesnt happen too much.
if r + var_amnt > 255:
var_amnt = 0 # cancel variation in case of overflow.
# print('canceled')
return r, g, b # Early cancellation
if variation2 == 1: # Case where we vary 2 of the 3 values
color_var = random.randrange(0,2) # r & g, g & b, or r & b
# print('variation')
if color_var == 0:
r += var_amnt
g += var_amnt
elif color_var == 1:
b += var_amnt
g += var_amnt
elif color_var == 2:
r += var_amnt
b += var_amnt
else: # case where we vary only 1 of the 3 values
color_var = random.randrange(0,2) # r, g, or b
# print('variation')
if color_var == 0:
r += var_amnt
elif color_var == 1:
g += var_amnt
elif color_var == 2:
b += var_amnt
return r, g, b
else: #half chance for black
r = random.randrange(0, 50)
g = r
b = r
var_amnt = random.randrange(10,70) # same idea, part of range will guarantee no variation
if r + var_amnt > 50:
var_amnt = 0
print('canceled')
return r, g, b # Early cancellation
if variation2 == 1: # Case where we vary 2 of the 3 values
color_var = random.randrange(0,2) # r & g, g & b, or r & b
if color_var == 0:
r += var_amnt
g += var_amnt
elif color_var == 1:
b += var_amnt
g += var_amnt
elif color_var == 2:
r += var_amnt
b += var_amnt
else:
color_var = random.randrange(0,2) # r, g, or b
if color_var == 0:
r += var_amnt
elif color_var == 1:
g += var_amnt
elif color_var == 2:
b += var_amnt
return r, g, b
return 0,255,255 # bug color
def pixelate(image, ratio, mosaic_kernel, interp):
# Get input size
height, width, _ = image.shape
# Desired "pixelated" size
h, w = (mosaic_kernel, int(mosaic_kernel*ratio))
# Resize image to "pixelated" size
temp = cv2.resize(image, (w, h), interpolation=interp) #cv2.INTER_AREA, cv2.INTER_CUBIC, cv2.INTER_LANCZOS4, cv2.INTER_NEAREST, cv2.INTER_LINEAR
# Initialize output image
return cv2.resize(temp, (width, height), interpolation=cv2.INTER_NEAREST)
''' draw angled rectangle function
x0,y0: center point of rectangle
height, width, angle, color: rectangle properties
img, img_x, img_y: source image and its dimensions
returns: will return np array of points, or None type
'''
def draw_angled_rec(x0, y0, width, height, angle, img, color, img_x, img_y, mode, q):
points = []
points2 = []
quantity = q
while quantity > 0:
if '_wing' in mode:
if mode == 'horizontal_wing':
mu = abs((angle-90)/90)
else:
mu = abs((angle)/90)
sigma = 0.5 - mu
angl_mod = 10*random.gauss(mu, sigma)
#print(angl_mod)
if quantity == 2:
height = height*0.5*(abs(math.sin(angle))+abs(math.cos(angle)))
#print(height)
card = np.array(Image.new('RGB', (img_x, img_y), (0, 0, 0)))
_angle = (angle+angl_mod-2*(angle-90)) * math.pi / 180.0
else:
_angle = (angle+angl_mod) * math.pi / 180.0
else:
_angle = angle * math.pi / 180.0
b = math.cos(_angle) * 0.5
a = math.sin(_angle) * 0.5
#print(str(b) + ", " + str(a) + " - cos, sin. Angle - " + str(_angle)) #DEBUG
# draw points with slightly smaller dimenstions, width and height difference due to different scaling
height_s = height - 3
width_s = width - 3
# also decrease the scale of b in the x calculation
bl = [int(x0 - a * height_s - b * width_s), int(y0 + b * height_s - a * width_s)]
ul = [int(x0 + a * height_s - b * width_s), int(y0 - b * height_s - a * width_s)]
ur = [int(2 * x0 - bl[0]), int(2 * y0 - bl[1])]
br = [int(2 * x0 - ul[0]), int(2 * y0 - ul[1])]
# original size
bls = [int(x0 - a * height - b * width), int(y0 + b * height - a * width)]
uls = [int(x0 + a * height - b * width), int(y0 - b * height - a * width)]
urs = [int(2 * x0 - bls[0]), int(2 * y0 - bls[1])]
brs = [int(2 * x0 - uls[0]), int(2 * y0 - uls[1])]
angl_devider = random.triangular(0.35, 0.5) # ==/3.0~/2.0
if (mode, quantity) == ('horizontal_wing', 1):
bl = (int(bl[0] - height*math.sin(_angle)*angl_devider), bl[1])
ul = (int(ul[0] - height*math.sin(_angle)*angl_devider), ul[1])
br = (int(br[0] - height*math.sin(_angle)*angl_devider), br[1])
ur = (int(ur[0] - height*math.sin(_angle)*angl_devider), ur[1])
bls = (int(bls[0] - height*math.sin(_angle)*angl_devider), bls[1])
uls = (int(uls[0] - height*math.sin(_angle)*angl_devider), uls[1])
brs = (int(brs[0] - height*math.sin(_angle)*angl_devider), brs[1])
urs = (int(urs[0] - height*math.sin(_angle)*angl_devider), urs[1])
elif (mode, quantity) == ('vertical_wing', 1):
bl = (bl[0], int(bl[1] - height*math.cos(_angle)*angl_devider))
ul = (ul[0], int(ul[1] - height*math.cos(_angle)*angl_devider))
br = (br[0], int(br[1] - height*math.cos(_angle)*angl_devider))
ur = (ur[0], int(ur[1] - height*math.cos(_angle)*angl_devider))
bls = (bls[0], int(bls[1] - height*math.cos(_angle)*angl_devider))
uls = (uls[0], int(uls[1] - height*math.cos(_angle)*angl_devider))
brs = (brs[0], int(brs[1] - height*math.cos(_angle)*angl_devider))
urs = (urs[0], int(urs[1] - height*math.cos(_angle)*angl_devider))
elif (mode, quantity) == ('horizontal_wing', 2):
bl = (int(bl[0] + height*math.sin(_angle)*angl_devider), bl[1])
ul = (int(ul[0] + height*math.sin(_angle)*angl_devider), ul[1])
br = (int(br[0] + height*math.sin(_angle)*angl_devider), br[1])
ur = (int(ur[0] + height*math.sin(_angle)*angl_devider), ur[1])
bls = (int(bls[0] + height*math.sin(_angle)*angl_devider), bls[1])
uls = (int(uls[0] + height*math.sin(_angle)*angl_devider), uls[1])
brs = (int(brs[0] + height*math.sin(_angle)*angl_devider), brs[1])
urs = (int(urs[0] + height*math.sin(_angle)*angl_devider), urs[1])
elif (mode, quantity) == ('vertical_wing', 2):
bl = (bl[0], int(bl[1] - height*math.cos(_angle)*angl_devider))
ul = (ul[0], int(ul[1] - height*math.cos(_angle)*angl_devider))
br = (br[0], int(br[1] - height*math.cos(_angle)*angl_devider))
ur = (ur[0], int(ur[1] - height*math.cos(_angle)*angl_devider))
bls = (bls[0], int(bls[1] - height*math.cos(_angle)*angl_devider))
uls = (uls[0], int(uls[1] - height*math.cos(_angle)*angl_devider))
brs = (brs[0], int(brs[1] - height*math.cos(_angle)*angl_devider))
urs = (urs[0], int(urs[1] - height*math.cos(_angle)*angl_devider))
points = np.array((bl, ul, ur, br))
points2 = np.array((bls, uls, urs, brs))
# verify rectangle is within borders
for pnt in points2:
if pnt[0] < 0 or pnt[0] > img_x:
return []
if pnt[1] < 0 or pnt[1] > img_y:
return []
## Random color function - Want multiple shades of dark-grey to black, and white to super light grey
r, g, b = color
cv2.fillConvexPoly(img, points, color=(r, g, b), lineType=cv2.LINE_AA)
if q == 2:
cv2.fillConvexPoly(card, points2, color=(255, 255, 255))
quantity -= 1
if q == 2:
card = cv2.cvtColor(card, cv2.COLOR_BGR2GRAY)
conturs, _ = cv2.findContours(card,cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE) #cv2.CHAIN_APPROX_SIMPLE, cv2.CHAIN_APPROX_TC89_L1, cv2.CHAIN_APPROX_TC89_KCOS
#print(conturs[0])
return(conturs[0])
#img[y0,x0]=0,0,255
#cv2.imwrite('temp_out.png', img)
# send original points
#print(points)
#print(points2)
return(points2)
#Working with files
with open('example.csv', 'w', newline='', encoding='utf-8') as f_output: #CSV
csv_output = csv.writer(f_output, quoting=csv.QUOTE_NONE, quotechar="", delimiter=",", escapechar=' ') #CSV
csv_output.writerow(['filename','file_size','file_attributes','region_count','region_id','region_shape_attributes','region_attributes']) #CSV
for f in files:
try:
while True:
print("Working on " + f)
img_C = Image.open(f).convert("RGB")
x, y = img_C.size
img_C = np.array(img_C)
image = img_C[:, :, ::-1].copy()
img_rgb = img_C[:, :, ::-1].copy()
color = rand_color()
detection = detector.detect(f)
label=['F_GENITALIA', 'M_GENITALIA']#
all_regions = [i['box'] for i in detection if i['label'] in label]#
if all_regions == []:
# skip entire detection, avoid saving
#os.remove(f, ) #to remove file from input
os.rename(f, f.replace(rootdir, rejected, 1)) #to remove file from input to rejected
print('skipping image with failed nudenet detection')
break
print(all_regions)#
interp = random.choices([cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_NEAREST, cv2.INTER_AREA], cum_weights=[1, 1, 1, 7])[0] #randomize the interpolation
#print(interp)
#interp = cv2.INTER_NEAREST #cv2.INTER_AREA, cv2.INTER_CUBIC, cv2.INTER_LANCZOS4, cv2.INTER_NEAREST, cv2.INTER_LINEAR
#mosaic_kernel = int(random.triangular(8, 50, 32)) #mosaic resolution
mosaic_kernel = int(random.triangular(int(min(x*0.01, y*0.01)), int(min(x*0.2, y*0.2)), int(min(x*0.0625, y*0.0625)))) #mosaic resolution 0.5%~33% with
#print(int(min(x, y)/mosaic_kernel))
if random.random() <= 0.75: #probability for ajasting to ratio
calculate = True
#print('calculate')
else:
calculate = False
ratio = 1
if calculate:
ratio = x/y
pixelated_ROI = pixelate(image, ratio, mosaic_kernel, interp)
points = []
for region in all_regions:
min_x, min_y, max_x, max_y = region
center = (int((max_x+min_x)*0.5), int((max_y+min_y)*0.5))
#print(center)
len_x = max_x-min_x
len_y = max_y-min_y
thickness = random.triangular(len_x*0.4, len_x, len_x*0.9)
wideness = random.triangular(len_y*0.4, len_y, len_y*0.9)
min_x = int(center[0] - thickness*0.5)+2
min_y = int(center[1] - wideness*0.5)+2
max_x = int(center[0] + thickness*0.5)-2
max_y = int(center[1] + wideness*0.5)-2
image[min_y:max_y, min_x:max_x] = pixelated_ROI[min_y:max_y, min_x:max_x]
points.append(np.array(((min_x-2, min_y-2), (min_x-2, max_y+2), (max_x+2, max_y+2), (max_x+2, min_y-2))))
output1x = []
output1y = []
for conturJ in points:
outputX = []
outputY = []
it = iter(conturJ.flatten())
for x in it:
outputX.append(x)
outputY.append(next(it))
output1x.append(outputX)
output1y.append(outputY)
NudeNet_regions = zip(output1x, output1y)
#Save file
f=f.replace(rootdir, outdir_mosaics, 1)
os.makedirs(os.path.dirname(f), exist_ok=True)
cv2.imwrite('temp_out.png', image) #still a hack for non-unicode names
os.replace('temp_out.png', f)
for idx,_ in enumerate(NudeNet_regions):
csv_output.writerow([os.path.basename(f), os.path.getsize(f), '"{}"', len(output1x), idx, '"{""name"":""polygon""','""all_points_x"":' + str(output1x[idx]), '""all_points_y"":' + str(output1y[idx]) + '}"', '"{""censor"":""bar""}"']) #CSV
points = []
comp_array = []
for region in all_regions:
min_x, min_y, max_x, max_y = region
len_x = max_x-min_x
len_y = max_y-min_y
#thickness 3-15% from long side
#wideness 30-75% from short side
#score - 15-30% from area
#angle - +-15* from axis
area = len_x*len_y #area of nudenet zone
score = random.triangular(area*0.15, area*0.3) #maximal area for rectangles
i=0
while score >= area*0.03:
if len_x >= len_y: #decide the longest side
# print("vertical bar")
mode = 'vertical'
thickness = random.triangular(len_x*0.03, len_x*0.15) #thickness of the bar
wideness = random.triangular(len_y*0.3, len_y*0.75) #wideness of the bar
angle = 0 #axis
bar_x = int(random.uniform(min_x, max_x)) #random bar_x
bar_y = int(random.triangular(min_y, max_y))#, min_y+(max_y-min_y)/2-wideness/2)) #random bar_y
#print(bar_x, bar_y)
comp_area = list(range(bar_x, bar_x+int(len_x*0.1),1))
else:
# print("horizontal bar")
mode = 'horizontal'
thickness = random.triangular(len_y*0.03, len_y*0.15) #thickness of the bar
wideness = random.triangular(len_x*0.3, len_x*0.75) #wideness of the bar
angle = 90 #axis
bar_x = int(random.triangular(min_x, max_x))#, min_x+(max_x-min_x)/2-wideness/2)) #random bar_x
bar_y = int(random.uniform(min_y, max_y)) #random bar_y
#print(bar_x, bar_y)
comp_area = list(range(bar_y, bar_y+int(len_y*0.1),1))
if thickness*wideness <= score + area*0.02:
rotate = random.randint(angle-15, angle+15) #random angle within 15% from axis
#print(rotate)
if rotate < 0:
rotate += 360
if not any(check in comp_area for check in comp_array):
comp_array = comp_array + comp_area
quantity = 1
if random.random() >= 0.8: #20% probability of wings
mode += '_wing'
quantity = 2
rotate = random.randint(angle-45, angle+45) #angle between wings
if rotate < 0:
rotate += 360
rect_points = draw_angled_rec(bar_x, bar_y, thickness, wideness, rotate, img_rgb, color, x, y, mode, quantity)
if len(rect_points) != 0:
points.append(rect_points)
else:
print("skipping out of bounds rect spawn")
continue # in case of no rectangle drawn, simply go to next iteration
score -= thickness*wideness #subtract last rectangle from maximal area for rectangles
else: #recursion prevention
i += 1
if i == 30:
print(str(score/area*100) + " of area left")
break
#print(points)
output1x = []
output1y = []
for conturJ in points:
outputX = []
outputY = []
it = iter(conturJ.flatten())
for x in it:
outputX.append(x)
outputY.append(next(it))
output1x.append(outputX)
output1y.append(outputY)
NudeNet_regions = zip(output1x, output1y)
#Save file
f=f.replace(outdir_mosaics, outdir_bars, 1)
f=f.replace(os.path.splitext(f)[0], os.path.splitext(f)[0]+'_bar', 1)
os.makedirs(os.path.dirname(f), exist_ok=True)
cv2.imwrite('temp_out.png', img_rgb) #still a hack for non-unicode names
os.replace('temp_out.png', f)
for idx,_ in enumerate(NudeNet_regions):
csv_output.writerow([os.path.basename(f), os.path.getsize(f), '"{}"', len(output1x), idx, '"{""name"":""polygon""','""all_points_x"":' + str(output1x[idx]), '""all_points_y"":' + str(output1y[idx]) + '}"', '"{""censor"":""mosaic""}"']) #CSV
break
except Exception as Exception:
err_files.append(os.path.basename(f) + ": " + str(Exception))
pass
#Error list
if err_files:
print("\n" + "NudeNet failed: ")
for f in err_files:
print(f)