diff --git a/.gitignore b/.gitignore index 4053be0..c55f363 100644 --- a/.gitignore +++ b/.gitignore @@ -129,7 +129,18 @@ dmypy.json .pyre/ # Data -Data +*.jpg +*.jpeg +*.png +*.xml +*.txt +*.json +*.yaml +*.mp4 # Train & Inference -runs \ No newline at end of file +*.pth +*.onnx +*.pkl +*.0 +*.1 diff --git a/README.md b/README.md index 74da8f8..e1a9e40 100644 --- a/README.md +++ b/README.md @@ -36,19 +36,31 @@ git clone https://github.com/naseemap47/YOLO-NAS.git cd YOLO-NAS ``` ### Install dependencies -**Recommended**: +Create anaconda python environment ``` conda create -n yolo-nas python=3.9 -y conda activate yolo-nas -conda install pytorch==1.12.1 torchvision==0.13.1 torchaudio==0.12.1 cudatoolkit=11.3 -c pytorch -y +``` +**PyTorch v1.11.0** Installation +``` +# conda installation +conda install pytorch==1.11.0 torchvision==0.12.0 torchaudio==0.11.0 cudatoolkit=11.3 -c pytorch -y + +/// OR + +# PIP installation +pip install torch==1.11.0+cu113 torchvision==0.12.0+cu113 torchaudio==0.11.0 --extra-index-url https://download.pytorch.org/whl/cu113 +``` +**Quantization Aware Training** +``` # For Quantization Aware Training pip install pytorch-quantization==2.1.2 --extra-index-url https://pypi.ngc.nvidia.com -pip install super-gradients==3.1.3 ``` -#### OR +Install **Super-Gradients** ``` -pip3 install -r requirements.txt +pip install super-gradients==3.1.3 ``` + ### 🎒 Prepare Dataset Your custom dataset should be in **COCO JSON** data format.
To convert **YOLO (.txt) / PASCAL VOC (.XML)** format to **COCO JSON**.
diff --git a/qat.py b/qat.py index e720792..0661846 100644 --- a/qat.py +++ b/qat.py @@ -76,16 +76,16 @@ print(f"\033[1m[INFO] Number of Classes: {no_class}\033[0m") # Training on GPU or CPU - name, ckpt_dir = args['weight'].split('/')[-3:-1] + _, name = args['weight'].split('/')[-3:-1] if args['cpu']: print('[INFO] Training on \033[1mCPU\033[0m') - trainer = Trainer(experiment_name=name, ckpt_root_dir=ckpt_dir, device='cpu') + trainer = Trainer(experiment_name=name, ckpt_root_dir='qat', device='cpu') elif args['gpus']: print(f'[INFO] Training on GPU: \033[1m{torch.cuda.get_device_name()}\033[0m') - trainer = Trainer(experiment_name=name, ckpt_root_dir=ckpt_dir, multi_gpu=args['gpus']) + trainer = Trainer(experiment_name=name, ckpt_root_dir='qat', multi_gpu=args['gpus']) else: print(f'[INFO] Training on GPU: \033[1m{torch.cuda.get_device_name()}\033[0m') - trainer = Trainer(experiment_name=name, ckpt_root_dir=ckpt_dir) + trainer = Trainer(experiment_name=name, ckpt_root_dir='qat') # Load best model best_model = models.get(args['model'], diff --git a/requirements.txt b/requirements.txt index 409532d..260c383 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,2 +1 @@ -super-gradients==3.1.3 -# urllib3==1.25.9 \ No newline at end of file +super-gradients==3.1.3 \ No newline at end of file