-
Notifications
You must be signed in to change notification settings - Fork 50
/
analytic_def.pvs
723 lines (610 loc) · 22 KB
/
analytic_def.pvs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
analytic_def% Welcome
: THEORY
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%| Basic definition and properties |%
%| of real analytic functions |%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Author: JTS
% ***This contains the everything from the
% first part of Section 3, up to Section
% 3.1, and Lemma 3.7 from Section 3.1***
%----- %
BEGIN
% -----%
IMPORTING series@power_series
IMPORTING series@taylor_series
IMPORTING analysis@derivatives_subtype
IMPORTING reals@sigma[nat]
IMPORTING matrices@matrices
IMPORTING continuous_ball_props
%--------------------------------------------
%% Convergence relation between power series
% and sequence of terms of
% power series
%--------------------------------------------
con_conv_series: LEMMA
FORALL(alpha,x:real, a:sequence[real]):
convergent?(powerseries(a)(x - alpha))
IFF
conv_series?(powerseq(a, x - alpha))
%--------------------------------------------
%% Define open ball centered at alpha with radius M
%--------------------------------------------
ball(alpha:real,M:posreal)(x:real): bool =
abs(x-alpha)<M
%Ball has more than one element
ball_noe: LEMMA
FORALL(M:posreal,alpha:real):
not_one_element?[(ball(alpha, M))]
%Ball is a derivative domain for alpha = 0
ball_dd_0: LEMMA
FORALL(M:posreal):
deriv_domain?[(ball(0, M))]
%Ball is a derivative domain
ball_dd: LEMMA
FORALL(M:posreal,alpha:real):
deriv_domain?[(ball(alpha, M))]
%Ball is open for alpha = 0
ball_open_0: LEMMA
FORALL(M:posreal,x:(ball(0,M))):
EXISTS(eps:posreal): FORALL(y:real):
abs(x-y)<eps IMPLIES ball(0,M)(y)
%Ball is open
ball_open: LEMMA
FORALL(M:posreal,alpha:real,x:(ball(alpha,M))):
EXISTS(eps:posreal): FORALL(y:real):
abs(x-y)<eps IMPLIES ball(alpha,M)(y)
%Ball is connected for alpha = 0
ball_con_0: LEMMA
FORALL(M:posreal):
connected?[(ball(0, M))]
%Ball is connected
ball_con: LEMMA
FORALL(M:posreal,alpha:real):
connected?[(ball(alpha, M))]
%Ball is connected
conv_ball: LEMMA
FORALL(alpha:real,a:sequence[real],M:posreal):
(FORALL(x:(ball(alpha,M))): convergent?(powerseries(a)(x-alpha)))
IFF
FORALL(x:(ball(0,M))): convergent?(powerseries(a)(x))
%--------------------------------------------
%% Inf_sum on ball is same as limit of power series
%--------------------------------------------
lim_ball: LEMMA
FORALL(alpha:real,a:sequence[real],M:posreal):
(FORALL(x:(ball(alpha,M))): convergent?(powerseries(a)(x-alpha)))
IMPLIES
FORALL(x:(ball(alpha,M))):
Inf_sum[(ball(0,M))](a)(x-alpha)
= limit(powerseries(a)(x-alpha))
%--------------------------------------------
%% Shifted function is still derivable
%--------------------------------------------
derivable_shift: LEMMA
FORALL(alpha:real, M:posreal,f:[real->real]):
derivable?[(ball(0,M))](f)
IFF
derivable?[(ball(alpha,M))](Lambda(x:(ball(alpha,M))): f(x-alpha))
%--------------------------------------------
%% Relationship between derivative of function and derivative of
% shifted function
%--------------------------------------------
deriv_shift: LEMMA
FORALL(alpha:real, M:posreal,f:[real->real]):
derivable?[(ball(0,M))](f)
IMPLIES
FORALL(x:(ball(0,M))):
deriv[(ball(0,M))](f)(x)
=
deriv[(ball(alpha,M))](Lambda(x:(ball(alpha,M))): f(x-alpha))(x+alpha)
%--------------------------------------------
%% Shifted function is still n times derivable
%--------------------------------------------
derivable_shift_n: LEMMA
FORALL(alpha:real, n:nat, M:posreal,f:[real->real]):
derivable_n_times?[(ball(0,M))](f,n)
IFF
derivable_n_times?[(ball(alpha,M))](Lambda(x:(ball(alpha,M))): f(x-alpha),n)
%--------------------------------------------
%% Relationship between nth derivative of function and nth
% derivative of shifted function
%--------------------------------------------
deriv_shift_n: LEMMA
FORALL(alpha:real, n:nat, M:posreal,f:[real->real]):
derivable_n_times?[(ball(0,M))](f,n)
IMPLIES
FORALL(x1:(ball(0,M))):
nderiv[(ball(0,M))](n, LAMBDA (x: (ball(0, M))): f(x))(x1)
=
nderiv[(ball(alpha, M))]
(n, LAMBDA (s: (ball(alpha, M))): f(s-alpha))(x1+alpha)
%--------------------------------------------
%% Move this to derivatives_subtype
%--------------------------------------------
derivable_n_subtype: LEMMA
FORALL(M1,M2:posreal,alpha:real,f:[real->real],n:nat):
M1<=M2 IMPLIES
derivable_n_times?[(ball(alpha,M2))](f,n)
IMPLIES
derivable_n_times?[(ball(alpha,M1))](f,n)
deriv_n_subtype: LEMMA
FORALL(M1,M2:posreal,alpha:real,n:nat,
f:[real->real]):
(M1<=M2 AND derivable_n_times?[(ball(alpha,M2))](f,n)) IMPLIES
FORALL(x:(ball(alpha,M1))):
nderiv[(ball(alpha,M2))](n,f)(x)
=
nderiv[(ball(alpha,M1))](n,f)(x)
%--------------------------------------------
%% Conditions for M and a in analytic definition
%--------------------------------------------
analytic_parts?(alpha:real,f:[real->real])
(M:posreal, a:sequence[real]): bool =
FORALL(x:{xx:real| abs(xx-alpha)<M}):
convergent?(powerseries(a)(x-alpha))
AND
f(x) = inf_sum(powerseq(a,x-alpha))
%--------------------------------------------
%% Conditions for M in analytic defintion
%--------------------------------------------
analytic_rad?(alpha:real,f:[real->real])(M:posreal): bool =
EXISTS(a:sequence[real]):
FORALL(x:{xx:real| abs(xx-alpha)<M}):
convergent?(powerseries(a)(x-alpha))
AND
f(x) = limit(powerseries(a)(x-alpha))
%--------------------------------------------
%% Define analytic for f: R -> R at point alpha
%--------------------------------------------
analytic?(alpha:real)(f:[real -> real]): bool =
EXISTS(M:posreal, a:sequence[real]):
analytic_parts?(alpha,f)(M,a)
%--------------------------------------------
%% Define analytic for f: R -> Rn at point alpha
%--------------------------------------------
analytic?(n:nat,c0:real)(f:[real -> VectorN(n)]): bool =
FORALL(i:below(n)):
analytic?(c0)(LAMBDA(x:real): nth(f(x),i))
%--------------------------------------------
%% Analytic implies derivable n times
%--------------------------------------------
analytic_der: LEMMA
FORALL(alpha:real,f:[real->real], M: (analytic_rad?(alpha,f)),n:nat):
derivable_n_times?[(ball(alpha,M))](f, n)
%--------------------------------------------
%% Analytic implies continuous
%--------------------------------------------
analytic_cont: LEMMA
FORALL(alpha:real,f:[real->real], M: (analytic_rad?(alpha,f))):
continuous?[(ball(alpha,M))](f)
%--------------------------------------------
%% Sequence in analytic definition is realted to derivatives
%--------------------------------------------
analytic_term: LEMMA
FORALL(f:[real->real], alpha:real, M:posreal, a:sequence[real]):
analytic_parts?(alpha,f)(M, a)
IMPLIES
(FORALL(n:nat):
factorial(n)*a(n) = nderiv[(ball(alpha,M))](n,f)(alpha))
%--------------------------------------------
%% Sequence in analytic definition is unique
%--------------------------------------------
analytic_term_unique: LEMMA
FORALL(f:[real->real], alpha:real, M1,M2:posreal, a1,a2:sequence[real]):
(analytic_parts?(alpha,f)(M1, a1)
AND
analytic_parts?(alpha,f)(M2, a2))
IMPLIES
a1 = a2
%--------------------------------------------
%% Define maximum radius of convergence
%--------------------------------------------
max_rad?(alpha:real,f:[real->real])(M:posreal): bool =
analytic_rad?(alpha,f)(M)
AND
FORALL(M1:posreal,a:sequence[real]):
analytic_parts?(alpha,f)(M1,a)
IMPLIES
M1<=M
%--------------------------------------------
%% Define infinite radius of convergence
%--------------------------------------------
inf_rad?(alpha:real,f:[real->real]): bool =
EXISTS(a:sequence[real]):
FORALL(x:real):
convergent?(powerseries(a)(x-alpha))
AND
f(x) = inf_sum(powerseq(a,x-alpha))
%--------------------------------------------
%% An analytic function has a maximum radius of convergence or an
% infinite radius of convergence
%--------------------------------------------
%zero case
max_rad_0: LEMMA
FORALL(f:(analytic?(0))):
inf_rad?(0,f)
OR
EXISTS(M:posreal):
max_rad?(0,f)(M)
%general case
max_rad: LEMMA
FORALL(alpha:real,f:(analytic?(alpha))):
inf_rad?(alpha,f)
OR
EXISTS(M:posreal):
max_rad?(alpha,f)(M)
%--------------------------------------------
%% Analytic means absolutly convergent
%--------------------------------------------
analytic_absolute_conv: LEMMA
FORALL(f:[real -> real],alpha:real,M:posreal,a:sequence[real]):
analytic_parts?(alpha,f)(M,a)
IMPLIES
FORALL(x:(ball(alpha, M))):
absolutely_convergent_series?(powerseq(a,x-alpha))
%--------------------------------------------
%% Positive series bounded by limit
%--------------------------------------------
pos_series_bound: LEMMA
FORALL(f:[real -> real],alpha:real,M:posreal,a:{aa:sequence[real]| FORALL(i:nat): aa(i)>=0}):
convergent?(series(a))
IMPLIES
FORALL(i:nat): sigma(0,i,a) <= inf_sum(a)
inf_sum_nn: LEMMA
FORALL(f:[real -> real],alpha:real,M:posreal,a:{aa:sequence[real]| FORALL(i:nat): aa(i)>=0}):
convergent?(series(a))
IMPLIES
0<=inf_sum(a)
%--------------------------------------------
%% Define convolution terms for product series
%--------------------------------------------
convlf(m:nat,a:sequence[real], b:sequence[real])(i:nat): real =
IF i <= m
THEN a(i)*b(m-i)
ELSE 0
ENDIF
convlfsh(m:nat,a:sequence[real], b:sequence[real],sh:nat)(i:nat): real =
IF i+sh <= m
THEN a(i+sh)*b(m-i-sh)
ELSE 0
ENDIF
%--------------------------------------------
%% The following identities and inequalities
% are to prove the produce of analytic functions
% is analytic
%--------------------------------------------
convl_convlfsh_0: LEMMA
FORALL(m:nat,a:sequence[real], b:sequence[real],sh:nat):
convlf(m,a,b) = convlfsh(m,a,b,0)
convl_convlfsh_: LEMMA
FORALL(m:nat,a:sequence[real], b:sequence[real],i,sh1,sh2:nat):
(i+(sh1-sh2) <= m and i+(sh1-sh2) >= 0)
IMPLIES
convlfsh(m,a,b,sh1)(i) = convlfsh(m,a,b,sh2)(i+(sh1-sh2))
sig_convl(a,b:sequence[real])(m:nat): real =
sigma(0, m, convlf(m,a,b))
sig_convl_front: LEMMA
FORALL(a,b:sequence[real],m:nat,i:below(m)):
sigma(i,m,convlf(m,a,b))
= a(i)*b(m-i) + sigma(i+1,m,convlf(m,a,b))
sig_sig_convl: LEMMA
FORALL(alpha:real, a:sequence[real],
b:sequence[real], x:real, t:nat, i:nat):
sigma(i, t ,
LAMBDA (k: nat):
sigma(i, k, convlf(k, a, b)) * (x - alpha) ^ k)
= a(i)*sigma(i,t, LAMBDA(k:nat): IF i<=k
THEN b(k-i)*(x-alpha)^k ELSE 0 ENDIF) + sigma(i, t, LAMBDA (k: nat) -> real:
sigma(i+1, k, convlf(k, a, b)) * (x - alpha) ^ k)
sig_sig_convl_gen: LEMMA
FORALL(alpha:real, a:sequence[real],
b:sequence[real], x:real, t:nat, i:nat, j:nat):
sigma(i, t ,
LAMBDA (k: nat):
sigma(j, k, convlf(k, a, b)) * (x - alpha) ^ k)
= a(j)*sigma(i,t, LAMBDA(k:nat): IF j<=k
THEN b(k-j)*(x-alpha)^k ELSE 0 ENDIF) + sigma(i, t, LAMBDA (k: nat) -> real:
sigma(j+1, k, convlf(k, a, b)) * (x - alpha) ^ k)
sig_sig_ab_init: LEMMA
FORALL(alpha:real,a:sequence[real],
b:sequence[real], x:real, t:nat, i:below(t+1),j:below(t+1)):
sigma(i, t ,
LAMBDA (k: nat):
sigma(j, k, convlf(k, a, b)) * (x - alpha) ^ k)
= sigma(j, t, LAMBDA(j:nat): a(j)*sigma(i,t, LAMBDA(k:nat):
IF j<=k THEN b(k-j)*(x-alpha)^k ELSE 0 ENDIF))
sig_a_pull_conv2: LEMMA
FORALL(alpha:real, a:sequence[real],
b:sequence[real],x:real,j:nat,i:below(j+1)):
sigma(i, j,
LAMBDA (k: nat):
sigma(i, k, convlf(k, a, b)) * (x - alpha) ^ k)
= sigma(i, j, LAMBDA(k:nat): a(k)*sigma(i,j, LAMBDA(m:nat):
IF k<=m THEN b(m-k)*(x-alpha)^m ELSE 0 ENDIF))
%*** This appears in apper as example of one of the inequalities
% necisary to prove the produce of anlaytic functions is
% analytic ***
sig_a_pull_conv: LEMMA
FORALL(c0:real, a,b:sequence[real], x:real, n:nat,i:below(n+1)):
sigma(i, n,
LAMBDA (k: nat):
sigma(i, k, convlf(k, a, b)) * (x - c0) ^ k)
= sigma(i, n, LAMBDA(k:nat): a(k)*sigma(i,n, LAMBDA(m:nat):
IF k<=m THEN b(m-k)*(x-c0)^m ELSE 0 ENDIF))
b_flip: LEMMA FORALL(b:sequence[real], x,alpha:real,t:nat,
j:below(t+1),i:below(j+1)):
sigma(i,t, LAMBDA(k:nat): IF j<=k THEN b(k-j)*(x-alpha)^k ELSE 0 ENDIF)
= (x-alpha)^j*sigma(0,t-j, LAMBDA(k:nat): b(k) * (x-alpha)^k)
prod_seq(f1,f2:[real -> real], alpha:real, M1,M2:posreal,
a:{aa:sequence[real] |analytic_parts?(alpha,f1)(M1,aa)},
b:{bb:sequence[real] | analytic_parts?(alpha,f2)(M2,bb)},x:{xx:real| abs(xx-alpha)<min(M1,M2)}):
sequence[real] =
powerseries(sig_convl(a,b))(x-alpha)
arrange_terms_a:LEMMA
FORALL(f1,f2:[real -> real], alpha:real, M1,M2:posreal,
a:{aa:sequence[real] |analytic_parts?(alpha,f1)(M1,aa)},
b:{bb:sequence[real] | analytic_parts?(alpha,f2)(M2,bb)},
x:{xx:real| abs(xx-alpha)<min(M1,M2)}):
prod_seq(f1,f2,alpha,M1,M2,a,b,x) =
( LAMBDA(m:nat):
sigma(0, m, LAMBDA(j:nat): IF j <= m
THEN a(j) * (x-alpha)^j *series(powerseq(b,x-alpha))(m-j) ELSE 0 ENDIF))
arrange_terms_diff:LEMMA
FORALL(f1,f2:[real -> real], alpha:real, M1,M2:posreal,
a:{aa:sequence[real] |analytic_parts?(alpha,f1)(M1,aa)},
b:{bb:sequence[real] | analytic_parts?(alpha,f2)(M2,bb)},
x:{xx:real| abs(xx-alpha)<min(M1,M2)}):
prod_seq(f1,f2,alpha,M1,M2,a,b,x) =
( LAMBDA(m:nat): sigma(0, m, LAMBDA(j:nat): IF j <= m
THEN a(j) * (x-alpha)^j * (f2(x) - limit(series(LAMBDA (n:nat):
powerseq(b,x - alpha)(n+m-j+1)))) ELSE 0 ENDIF))
arrange_terms_diff_split: LEMMA
FORALL(f1,f2:[real -> real], alpha:real, M1,M2:posreal,
a:{aa:sequence[real] |analytic_parts?(alpha,f1)(M1,aa)},
b:{bb:sequence[real] | analytic_parts?(alpha,f2)(M2,bb)},
x:{xx:real| abs(xx-alpha)<min(M1,M2)}):
prod_seq(f1,f2,alpha,M1,M2,a,b,x) =
(LAMBDA(m:nat): series(powerseq(a,x-alpha))(m) * f2(x)) - (LAMBDA(m:nat): sigma(0, m, LAMBDA(j:nat):
IF j <= m THEN a(j) * (x-alpha)^j * limit(series(LAMBDA (n:nat): powerseq(b,x - alpha)(n+m-j+1))) ELSE 0 ENDIF))
conv_prod_first: LEMMA
FORALL(f1,f2:[real -> real], alpha:real, M1,M2:posreal,
a:{aa:sequence[real] |analytic_parts?(alpha,f1)(M1,aa)},
b:{bb:sequence[real] | analytic_parts?(alpha,f2)(M2,bb)},
x:{xx:real| abs(xx-alpha)<min(M1,M2)}):
convergent?(LAMBDA (m: nat): series(powerseq(a, x - alpha))(m) * f2(x))
lim_prod_first: LEMMA
FORALL(f1,f2:[real -> real], alpha:real, M1,M2:posreal,
a:{aa:sequence[real] |analytic_parts?(alpha,f1)(M1,aa)},
b:{bb:sequence[real] | analytic_parts?(alpha,f2)(M2,bb)},
x:{xx:real| abs(xx-alpha)<min(M1,M2)}):
limit(LAMBDA(m:nat): series(powerseq(a,x-alpha))(m) * f2(x)) = f1(x)*f2(x)
max_below(m:nat)(f:[nat -> real]): RECURSIVE
{c: nnreal | FORALL(i:below(m+1)): c >= abs(f(i))}
= IF m=0 THEN abs(f(0))
ELSE max(abs(f(m)), max_below(m-1)(f))
ENDIF
MEASURE m
tail_b_conv: LEMMA
FORALL(f1,f2:[real -> real], alpha:real, M1,M2:posreal,
a:{aa:sequence[real] |analytic_parts?(alpha,f1)(M1,aa)},
b:{bb:sequence[real] | analytic_parts?(alpha,f2)(M2,bb)},
x:{xx:real| abs(xx-alpha)<min(M1,M2)},j:nat):
convergent?(LAMBDA (m: nat): IF j<=m
THEN limit(series(LAMBDA(n: nat):powerseq (b, x - alpha)(n + m - j + 1))) ELSE 0 ENDIF)
tail_b_lim: LEMMA
FORALL(f1,f2:[real -> real], alpha:real, M1,M2:posreal,
a:{aa:sequence[real] |analytic_parts?(alpha,f1)(M1,aa)},
b:{bb:sequence[real] | analytic_parts?(alpha,f2)(M2,bb)},
x:{xx:real| abs(xx-alpha)<min(M1,M2)},j:nat):
limit(LAMBDA (m: nat): IF j<=m
THEN limit(series(LAMBDA(n: nat):powerseq (b, x - alpha)(n + m - j + 1))) ELSE 0 ENDIF) = 0
conv_prod_second: LEMMA
FORALL(f1,f2:[real -> real], alpha:real, M1,M2:posreal,
a:{aa:sequence[real] |analytic_parts?(alpha,f1)(M1,aa)},
b:{bb:sequence[real] | analytic_parts?(alpha,f2)(M2,bb)},
x:{xx:real| abs(xx-alpha)<min(M1,M2)}):
convergent?(LAMBDA (m: nat): sigma(0, m,
LAMBDA (j: nat):
IF j <= m
THEN a(j) * (x - alpha) ^ j
*
limit
(series
(LAMBDA
(n: nat):
powerseq
(b, x - alpha)(n + m - j + 1)))
ELSE 0
ENDIF))
lim_prod_second: LEMMA
FORALL(f1,f2:[real -> real], alpha:real, M1,M2:posreal,
a:{aa:sequence[real] |analytic_parts?(alpha,f1)(M1,aa)},
b:{bb:sequence[real] | analytic_parts?(alpha,f2)(M2,bb)},
x:{xx:real| abs(xx-alpha)<min(M1,M2)}):
limit(LAMBDA(m:nat): sigma(0, m, LAMBDA(j:nat): IF j <= m
THEN a(j) * (x-alpha)^j * limit(series(LAMBDA (n:nat): powerseq(b,x - alpha)(n+m-j+1))) ELSE 0 ENDIF)) = 0
init_prod_analytic_conv: LEMMA
FORALL(f1,f2:[real -> real], alpha:real, M1,M2:posreal,
a:{aa:sequence[real] |analytic_parts?(alpha,f1)(M1,aa)},
b:{bb:sequence[real] | analytic_parts?(alpha,f2)(M2,bb)},
x:{xx:real| abs(xx-alpha)<min(M1,M2)}):
convergent?(powerseries(sig_convl(a, b))(x - alpha))
init_prod_analytic_inf_sum: LEMMA
FORALL(f1,f2:[real -> real], alpha:real, M1,M2:posreal,
a:{aa:sequence[real] |analytic_parts?(alpha,f1)(M1,aa)},
b:{bb:sequence[real] | analytic_parts?(alpha,f2)(M2,bb)},
x:{xx:real| abs(xx-alpha)<min(M1,M2)}):
(f1 * f2)(x) = inf_sum(powerseq(sig_convl(a, b), x - alpha))
%--------------------------------------------
%% Product, sum, and scalar of analytic
% functions are analytic, analytic parts
% version of theorems
%--------------------------------------------
prod_analytic: LEMMA FORALL(f1,f2:[real -> real], alpha:real,
M1,M2:posreal, a:{aa:sequence[real] |analytic_parts?(alpha,f1)(M1,aa)},
b:{bb:sequence[real] | analytic_parts?(alpha,f2)(M2,bb)}):
analytic_parts?(alpha,f1*f2)(min(M1,M2),sig_convl(a,b))
sum_analytic: LEMMA FORALL(f1,f2:[real -> real], alpha:real,
M1,M2:posreal, a:{aa:sequence[real] |analytic_parts?(alpha,f1)(M1,aa)},
b:{bb:sequence[real] | analytic_parts?(alpha,f2)(M2,bb)}):
analytic_parts?(alpha,f1+f2)(min(M1,M2),a+b)
scal_analytic: LEMMA FORALL(f1:[real->real], alpha:real, M1:posreal,
a:{aa:sequence[real] |analytic_parts?(alpha,f1)(M1,aa)},c:real):
analytic_parts?(alpha,c*f1)(M1,c*a)
%--------------------------------------------
%% Product, sum, and scalar of analytic
% functions are analytic
%--------------------------------------------
%*** Theorem 3.2 in Paper ***
analytic_prod_fun: LEMMA
FORALL(alpha:real, f,g:[real->real]):
analytic?(alpha)(f)
AND
analytic?(alpha)(g)
IMPLIES
analytic?(alpha)(f*g)
analytic_const: LEMMA
FORALL(alpha,c:real):
analytic?(alpha)(LAMBDA(x:real): c)
analytic_sum_fun: LEMMA
FORALL(alpha:real, f,g:[real->real]):
analytic?(alpha)(f)
AND
analytic?(alpha)(g)
IMPLIES
analytic?(alpha)(f+g)
analytic_scal_fun: LEMMA
FORALL(alpha:real, f:[real->real],c:real):
analytic?(alpha)(f)
IMPLIES
analytic?(alpha)(c*f)
%*** Theorem 3.2 in Paper ***
analytic_pow_fun: LEMMA
FORALL(alpha:real, f:[real->real],n:nat):
analytic?(alpha)(f)
IMPLIES
analytic?(alpha)(f^n)
%*** Lemma 3.3 in Paper ***
analytic_pow_fun_scal: LEMMA
FORALL(alpha:real, f:[real->real],n:nat,c:real):
analytic?(alpha)(f)
IMPLIES
analytic?(alpha)(c*f^n)
%--------------------------------------------
%% Analytic function that is positive at a point
% remains positive for small tim e
%--------------------------------------------
%*** Lemma 3.7 in paper ***
analytic_pos_ball:LEMMA
FORALL(alpha:real,f:[real->real]):
(analytic?(alpha)(f)
AND
f(alpha)>0)
IMPLIES
EXISTS(delta:posreal):
FORALL(x:real):
abs(x-alpha)<delta
IMPLIES
f(x) > 0
%--------------------------------------------
%% Analytic function that is negative at a
% point, remains negative for small tim e
%--------------------------------------------
%*** Lemma 3.7 in paper ***
analytic_neg_ball:LEMMA
FORALL(alpha:real,f:[real->real]):
(analytic?(alpha)(f)
AND
f(alpha)<0)
IMPLIES
EXISTS(delta:posreal):
FORALL(x:real):
abs(x-alpha)<delta
IMPLIES
f(x) < 0
%--------------------------------------------
%% Following lemmas are builiding up
% to the result about behavior of
% analytic function around a root
%--------------------------------------------
nz_seq(alpha:real, M:posreal, f:{ff:[real->real]| NOT (EXISTS(delta:posreal):
FORALL(x:real):
(abs(x-alpha)<delta AND x /= alpha)
IMPLIES
ff(x) /= 0)})(k:nat):
{rr:real| rr /= alpha AND abs(rr-alpha)< min(1/(1+k),M) AND f(rr)=0}
lowest_nz_der: LEMMA
FORALL(alpha:real,f:[real->real],
M: (analytic_rad?(alpha,f))):
(NOT ((EXISTS(delta:posreal):
FORALL(x:real):
abs(x-alpha)<delta
IMPLIES
f(x) = 0)))
IMPLIES
EXISTS(n:nat):
nderiv[(ball(alpha,M))](n,f)(alpha) /= 0
lowdn(alpha:real,f:{ff:[real->real] |
(NOT ((EXISTS(delta:posreal):
FORALL(x:real):
abs(x-alpha)<delta
IMPLIES
ff(x) = 0)))},M:(analytic_rad?(alpha,f))): nat =
min({n:nat| nderiv[(ball(alpha,M))](n,f)(alpha) /= 0})
lowdn_seq(alpha:real,f:{ff:[real->real] |
ff(alpha)=0 AND (NOT ((EXISTS(delta:posreal):
FORALL(x:real):
abs(x-alpha)<delta
IMPLIES
ff(x) = 0))) AND (NOT (EXISTS(delta:posreal):
FORALL(x:real):
(abs(x-alpha)<delta AND x /= alpha)
IMPLIES
ff(x) /= 0))}, M:(analytic_rad?(alpha,f)))(k:nat):
{r:real| abs(r-alpha)<min(1/(1+k),M) AND nderiv[(ball(alpha,M))](lowdn(alpha,f,M),f)(r) = 0}
%--------------------------------------------
%% Analytc function has no other roots in some
% epsilon ball aronud root, or it is the zero
% function around the root
%--------------------------------------------
%*** Lemma 3.7 in paper ***
analytic_zero_ball: LEMMA
FORALL(alpha:real,f:[real->real]):
(analytic?(alpha)(f)
AND
f(alpha)=0)
IMPLIES
(EXISTS(delta:posreal):
FORALL(x:real):
(abs(x-alpha)<delta AND x /= alpha)
IMPLIES
f(x) /= 0)
OR
(EXISTS(delta:posreal):
FORALL(x:real):
abs(x-alpha)<delta
IMPLIES
f(x) = 0)
analytic_zero_right: LEMMA
FORALL(alpha:real, f:[real->real]):
(analytic?(alpha)(f) AND f(alpha)=0)
IMPLIES
(((EXISTS(delta:posreal):
FORALL(x:posreal):
x < delta
IMPLIES
f(alpha+x) = 0)
OR
(EXISTS(delta:posreal):
FORALL(x:posreal):
x<delta
IMPLIES
f(alpha+x) > 0)) OR
(EXISTS(delta:posreal):
FORALL(x:posreal):
x<delta
IMPLIES
f(alpha+x) < 0))
%~The End ~~%
END analytic_def