forked from yandexdataschool/Practical_RL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathatari_wrappers.py
321 lines (267 loc) · 11 KB
/
atari_wrappers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
""" Environment wrappers. """
from collections import deque
import cv2
import gym
import gym.spaces as spaces
from gym.envs import atari
import numpy as np
import tensorflow as tf
from env_batch import ParallelEnvBatch
cv2.ocl.setUseOpenCL(False)
class EpisodicLife(gym.Wrapper):
""" Sets done flag to true when agent dies. """
def __init__(self, env):
super(EpisodicLife, self).__init__(env)
self.lives = 0
self.real_done = True
def step(self, action):
obs, rew, done, info = self.env.step(action)
self.real_done = done
info["real_done"] = done
lives = self.env.unwrapped.ale.lives()
if 0 < lives < self.lives:
done = True
self.lives = lives
return obs, rew, done, info
def reset(self, **kwargs):
if self.real_done:
obs = self.env.reset(**kwargs)
else:
obs, _, _, _ = self.env.step(0)
self.lives = self.env.unwrapped.ale.lives()
return obs
class FireReset(gym.Wrapper):
""" Makes fire action when reseting environment.
Some environments are fixed until the agent makes the fire action,
this wrapper makes this action so that the epsiode starts automatically.
"""
def __init__(self, env):
super(FireReset, self).__init__(env)
action_meanings = env.unwrapped.get_action_meanings()
if len(action_meanings) < 3:
raise ValueError(
"env.unwrapped.get_action_meanings() must be of length >= 3"
f"but is of length {len(action_meanings)}")
if env.unwrapped.get_action_meanings()[1] != "FIRE":
raise ValueError(
"env.unwrapped.get_action_meanings() must have 'FIRE' "
f"under index 1, but is {action_meanings}")
def step(self, action):
return self.env.step(action)
def reset(self, **kwargs):
self.env.reset(**kwargs)
obs, _, done, _ = self.env.step(1)
if done:
self.env.reset(**kwargs)
obs, _, done, _ = self.env.step(2)
if done:
self.env.reset(**kwargs)
return obs
class StartWithRandomActions(gym.Wrapper):
""" Makes random number of random actions at the beginning of each
episode. """
def __init__(self, env, max_random_actions=30):
super(StartWithRandomActions, self).__init__(env)
self.max_random_actions = max_random_actions
self.real_done = True
def step(self, action):
obs, rew, done, info = self.env.step(action)
self.real_done = info.get("real_done", True)
return obs, rew, done, info
def reset(self, **kwargs):
obs = self.env.reset()
if self.real_done:
num_random_actions = np.random.randint(self.max_random_actions + 1)
for _ in range(num_random_actions):
obs, _, _, _ = self.env.step(self.env.action_space.sample())
self.real_done = False
return obs
class ImagePreprocessing(gym.ObservationWrapper):
""" Preprocesses image-observations by possibly grayscaling and resizing. """
def __init__(self, env, width=84, height=84, grayscale=True):
super(ImagePreprocessing, self).__init__(env)
self.width = width
self.height = height
self.grayscale = grayscale
ospace = self.env.observation_space
low, high, dtype = ospace.low.min(), ospace.high.max(), ospace.dtype
if self.grayscale:
self.observation_space = spaces.Box(
low=low,
high=high,
shape=(width, height),
dtype=dtype,
)
else:
obs_shape = (width, height) + self.observation_space.shape[2:]
self.observation_space = spaces.Box(low=low, high=high,
shape=obs_shape, dtype=dtype)
def observation(self, observation):
""" Performs image preprocessing. """
if self.grayscale:
observation = cv2.cvtColor(observation, cv2.COLOR_RGB2GRAY)
observation = cv2.resize(observation, (self.width, self.height),
cv2.INTER_AREA)
return observation
class MaxBetweenFrames(gym.ObservationWrapper):
""" Takes maximum between two subsequent frames. """
def __init__(self, env):
if (isinstance(env.unwrapped, atari.AtariEnv) and
"NoFrameskip" not in env.spec.id):
raise ValueError(
"MaxBetweenFrames requires NoFrameskip in atari env id")
super(MaxBetweenFrames, self).__init__(env)
self.last_obs = None
def observation(self, observation):
obs = np.maximum(observation, self.last_obs)
self.last_obs = observation
return obs
def reset(self, **kwargs):
self.last_obs = self.env.reset()
return self.last_obs
class QueueFrames(gym.ObservationWrapper):
""" Queues specified number of frames together along new dimension. """
def __init__(self, env, nframes, concat=False):
super(QueueFrames, self).__init__(env)
self.obs_queue = deque([], maxlen=nframes)
self.concat = concat
ospace = self.observation_space
if self.concat:
oshape = ospace.shape[:-1] + (ospace.shape[-1] * nframes,)
else:
oshape = ospace.shape + (nframes,)
self.observation_space = spaces.Box(
ospace.low.min(), ospace.high.max(), oshape, ospace.dtype)
def observation(self, observation):
self.obs_queue.append(observation)
return (np.concatenate(self.obs_queue, -1) if self.concat
else np.dstack(self.obs_queue))
def reset(self, **kwargs):
obs = self.env.reset()
for _ in range(self.obs_queue.maxlen - 1):
self.obs_queue.append(obs)
return self.observation(obs)
class SkipFrames(gym.Wrapper):
""" Performs the same action for several steps and returns the final result.
"""
def __init__(self, env, nskip=4):
super(SkipFrames, self).__init__(env)
if (isinstance(env.unwrapped, atari.AtariEnv) and
"NoFrameskip" not in env.spec.id):
raise ValueError("SkipFrames requires NoFrameskip in atari env id")
self.nskip = nskip
def step(self, action):
total_reward = 0.0
for _ in range(self.nskip):
obs, rew, done, info = self.env.step(action)
total_reward += rew
if done:
break
return obs, total_reward, done, info
def reset(self, **kwargs):
return self.env.reset(**kwargs)
class ClipReward(gym.RewardWrapper):
""" Modifes reward to be in {-1, 0, 1} by taking sign of it. """
def reward(self, reward):
return np.sign(reward)
class TFSummaries(gym.Wrapper):
""" Writes env summaries."""
def __init__(self, env, prefix=None, running_mean_size=100, step_var=None):
super(TFSummaries, self).__init__(env)
self.episode_counter = 0
self.prefix = prefix or self.env.spec.id
self.step_var = (step_var if step_var is not None
else tf.train.get_global_step())
nenvs = getattr(self.env.unwrapped, "nenvs", 1)
self.rewards = np.zeros(nenvs)
self.had_ended_episodes = np.zeros(nenvs, dtype=np.bool)
self.episode_lengths = np.zeros(nenvs)
self.reward_queues = [deque([], maxlen=running_mean_size)
for _ in range(nenvs)]
def should_write_summaries(self):
""" Returns true if it's time to write summaries. """
return np.all(self.had_ended_episodes)
def add_summaries(self):
""" Writes summaries. """
tf.contrib.summary.scalar(
f"{self.prefix}/total_reward",
tf.reduce_mean([q[-1] for q in self.reward_queues]),
step=self.step_var)
tf.contrib.summary.scalar(
f"{self.prefix}/reward_mean_{self.reward_queues[0].maxlen}",
tf.reduce_mean([np.mean(q) for q in self.reward_queues]),
step=self.step_var)
tf.contrib.summary.scalar(
f"{self.prefix}/episode_length",
tf.reduce_mean(self.episode_lengths),
step=self.step_var)
if self.had_ended_episodes.size > 1:
tf.contrib.summary.scalar(
f"{self.prefix}/min_reward",
min(q[-1] for q in self.reward_queues),
step=self.step_var)
tf.contrib.summary.scalar(
f"{self.prefix}/max_reward",
max(q[-1] for q in self.reward_queues),
step=self.step_var)
self.episode_lengths.fill(0)
self.had_ended_episodes.fill(False)
def step(self, action):
obs, rew, done, info = self.env.step(action)
self.rewards += rew
self.episode_lengths[~self.had_ended_episodes] += 1
info_collection = [info] if isinstance(info, dict) else info
done_collection = [done] if isinstance(done, bool) else done
done_indices = [i for i, info in enumerate(info_collection)
if info.get("real_done", done_collection[i])]
for i in done_indices:
if not self.had_ended_episodes[i]:
self.had_ended_episodes[i] = True
self.reward_queues[i].append(self.rewards[i])
self.rewards[i] = 0
if self.should_write_summaries():
self.add_summaries()
return obs, rew, done, info
def reset(self, **kwargs):
self.rewards.fill(0)
self.episode_lengths.fill(0)
self.had_ended_episodes.fill(False)
return self.env.reset(**kwargs)
def nature_dqn_env(env_id, nenvs=None, seed=None,
summaries=True, clip_reward=True):
""" Wraps env as in Nature DQN paper. """
if "NoFrameskip" not in env_id:
raise ValueError(f"env_id must have 'NoFrameskip' but is {env_id}")
if nenvs is not None:
if seed is None:
seed = list(range(nenvs))
if isinstance(seed, int):
seed = [seed] * nenvs
if len(seed) != nenvs:
raise ValueError(f"seed has length {len(seed)} but must have "
f"length equal to nenvs which is {nenvs}")
env = ParallelEnvBatch([
lambda i=i, env_seed=env_seed: nature_dqn_env(
env_id, seed=env_seed, summaries=False, clip_reward=False)
for i, env_seed in enumerate(seed)
])
if summaries:
env = TFSummaries(env, prefix=env_id)
if clip_reward:
env = ClipReward(env)
return env
env = gym.make(env_id)
env.seed(seed)
if summaries:
env = TFSummaries(env)
env = EpisodicLife(env)
if "FIRE" in env.unwrapped.get_action_meanings():
env = FireReset(env)
env = StartWithRandomActions(env, max_random_actions=30)
env = MaxBetweenFrames(env)
env = SkipFrames(env, 4)
env = ImagePreprocessing(env, width=84, height=84, grayscale=True)
env = QueueFrames(env, 4)
if clip_reward:
env = ClipReward(env)
return env