-
Notifications
You must be signed in to change notification settings - Fork 412
/
Copy pathint_test_encoder.py
executable file
·68 lines (55 loc) · 2.38 KB
/
int_test_encoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import os
import os.path as path
import filecmp
import subprocess
import glob
import torch
import json
import numpy.ma as ma
ENCODE_CMD = """python train.py --train_datasets cola --test_datasets cola \
--encode_mode \
--data_dir %s \
--init_checkpoint %s \
--encoder_type %s \
--output_dir %s """
def test_encoder(src_dir, checkpoint_path, encoder_type, target_dir, expected_dir):
subprocess.call("rm -rf %s" % target_dir, shell=True)
assert not os.access(
target_dir, os.F_OK
), "preprocessed target directory already exist"
cmd = ENCODE_CMD % (src_dir, checkpoint_path, encoder_type, target_dir)
print("execute cmd:")
print(cmd)
subprocess.call(cmd, shell=True, stdout=subprocess.DEVNULL)
# get masks from unit_test input file (cola_test.json)
input_lengths = []
with open(os.path.join(src_dir, "cola_test.json"), "r", encoding="utf-8") as fin:
for line in fin:
json_line = json.loads(line)
assert (
"token_id" in json_line
), "token_id is not in current test file, please check name of token ids in input json"
input_lengths.append(len(json_line["token_id"]))
encoding_0 = torch.load(os.path.join(target_dir, r"cola_encoding.pt"))
encoding_1 = torch.load(os.path.join(expected_dir, r"cola_encoding.pt"))
abs_diff = (encoding_0 - encoding_1).abs()
abs_avg = ((encoding_0 + encoding_1) / 2).abs()
tensor_mask = torch.LongTensor(
len(input_lengths), max(input_lengths), encoding_0.size()[-1]
).fill_(1)
for index, input_length in enumerate(input_lengths):
tensor_mask[index, :input_length, :] = torch.LongTensor(
input_length, encoding_0.size()[-1]
).fill_(0)
relative_diff = abs_diff / abs_avg
masked_array = ma.masked_array(relative_diff, mask=tensor_mask)
assert masked_array.mean() < 1e-4, "relative diff: %s" % masked_array.mean()
src_dir = "int_test_data/glue/input/encoder/bert_uncased_lower"
checkpoint_path = "mt_dnn_models/bert_model_base_uncased.pt"
encoder_type = 1
target_dir = "int_test_data/glue/test_output"
expected_dir = "int_test_data/glue/expected/encoder/bert_uncased_lower"
test_encoder(src_dir, checkpoint_path, encoder_type, target_dir, expected_dir)
# test again using downloading
checkpoint_path = "bert-base-uncased"
test_encoder(src_dir, checkpoint_path, encoder_type, target_dir, expected_dir)