forked from kamyu104/LeetCode-Solutions
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsliding-puzzle.py
111 lines (99 loc) · 3.93 KB
/
sliding-puzzle.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
# Time: O((m * n) * (m * n)!)
# Space: O((m * n) * (m * n)!)
import heapq
import itertools
# A* Search Algorithm
class Solution(object):
def slidingPuzzle(self, board):
"""
:type board: List[List[int]]
:rtype: int
"""
def dot(p1, p2):
return p1[0]*p2[0]+p1[1]*p2[1]
def heuristic_estimate(board, R, C, expected):
result = 0
for i in xrange(R):
for j in xrange(C):
val = board[C*i + j]
if val == 0: continue
r, c = expected[val]
result += abs(r-i) + abs(c-j)
return result
R, C = len(board), len(board[0])
begin = tuple(itertools.chain(*board))
end = tuple(range(1, R*C) + [0])
expected = {(C*i+j+1) % (R*C) : (i, j)
for i in xrange(R) for j in xrange(C)}
min_steps = heuristic_estimate(begin, R, C, expected)
closer, detour = [(begin.index(0), begin)], []
lookup = set()
while True:
if not closer:
if not detour:
return -1
min_steps += 2
closer, detour = detour, closer
zero, board = closer.pop()
if board == end:
return min_steps
if board not in lookup:
lookup.add(board)
r, c = divmod(zero, C)
for direction in ((-1, 0), (1, 0), (0, -1), (0, 1)):
i, j = r+direction[0], c+direction[1]
if 0 <= i < R and 0 <= j < C:
new_zero = i*C+j
tmp = list(board)
tmp[zero], tmp[new_zero] = tmp[new_zero], tmp[zero]
new_board = tuple(tmp)
r2, c2 = expected[board[new_zero]]
r1, c1 = divmod(zero, C)
r0, c0 = divmod(new_zero, C)
is_closer = dot((r1-r0, c1-c0), (r2-r0, c2-c0)) > 0
(closer if is_closer else detour).append((new_zero, new_board))
return min_steps
# Time: O((m * n) * (m * n)! * log((m * n)!))
# Space: O((m * n) * (m * n)!)
# A* Search Algorithm
class Solution2(object):
def slidingPuzzle(self, board):
"""
:type board: List[List[int]]
:rtype: int
"""
def heuristic_estimate(board, R, C, expected):
result = 0
for i in xrange(R):
for j in xrange(C):
val = board[C*i + j]
if val == 0: continue
r, c = expected[val]
result += abs(r-i) + abs(c-j)
return result
R, C = len(board), len(board[0])
begin = tuple(itertools.chain(*board))
end = tuple(range(1, R*C) + [0])
end_wrong = tuple(range(1, R*C-2) + [R*C-1, R*C-2, 0])
expected = {(C*i+j+1) % (R*C) : (i, j)
for i in xrange(R) for j in xrange(C)}
min_heap = [(0, 0, begin.index(0), begin)]
lookup = {begin: 0}
while min_heap:
f, g, zero, board = heapq.heappop(min_heap)
if board == end: return g
if board == end_wrong: return -1
if f > lookup[board]: continue
r, c = divmod(zero, C)
for direction in ((-1, 0), (1, 0), (0, -1), (0, 1)):
i, j = r+direction[0], c+direction[1]
if 0 <= i < R and 0 <= j < C:
new_zero = C*i+j
tmp = list(board)
tmp[zero], tmp[new_zero] = tmp[new_zero], tmp[zero]
new_board = tuple(tmp)
f = g+1+heuristic_estimate(new_board, R, C, expected)
if f < lookup.get(new_board, float("inf")):
lookup[new_board] = f
heapq.heappush(min_heap, (f, g+1, new_zero, new_board))
return -1