forked from kamyu104/LeetCode-Solutions
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfind-median-from-data-stream.py
39 lines (33 loc) · 1.2 KB
/
find-median-from-data-stream.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
# Time: O(nlogn) for total n addNums, O(logn) per addNum, O(1) per findMedian.
# Space: O(n), total space
from heapq import heappush, heappop
class MedianFinder(object):
def __init__(self):
"""
Initialize your data structure here.
"""
self.__max_heap = []
self.__min_heap = []
def addNum(self, num):
"""
Adds a num into the data structure.
:type num: int
:rtype: void
"""
# Balance smaller half and larger half.
if not self.__max_heap or num > -self.__max_heap[0]:
heappush(self.__min_heap, num)
if len(self.__min_heap) > len(self.__max_heap) + 1:
heappush(self.__max_heap, -heappop(self.__min_heap))
else:
heappush(self.__max_heap, -num)
if len(self.__max_heap) > len(self.__min_heap):
heappush(self.__min_heap, -heappop(self.__max_heap))
def findMedian(self):
"""
Returns the median of current data stream
:rtype: float
"""
return (-self.__max_heap[0] + self.__min_heap[0]) / 2.0 \
if len(self.__min_heap) == len(self.__max_heap) \
else self.__min_heap[0]