forked from kamyu104/LeetCode-Solutions
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathminimum-time-for-k-virus-variants-to-spread.cpp
200 lines (189 loc) · 6.84 KB
/
minimum-time-for-k-virus-variants-to-spread.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
// Time: O(nlogn * logr), r is the sum of range x size and range y size
// Space: O(n)
// competitive programming solution
class Solution {
public:
int minDayskVariants(vector<vector<int>>& points, int k) {
std::transform(begin(points), end(points), begin(points),
[](const auto& v) {
return vector<int>({v[0] + v[1], v[0] - v[1]}); // rotate
});
const auto& compare_y = [](const vector<int>& a, const vector<int>& b) { return a[1] < b[1]; };
const int min_x = (*min_element(cbegin(points), cend(points)))[0];
const int max_x = (*max_element(cbegin(points), cend(points)))[0];
const int min_y = (*min_element(cbegin(points), cend(points), compare_y))[1];
const int max_y = (*max_element(cbegin(points), cend(points), compare_y))[1];
int64_t left = 0, right = ((int64_t(max_x) - min_x) + (int64_t(max_y) - min_y) + 1) / 2;
while (left <= right) {
const auto& mid = left + (right - left) / 2;
if (check(points, k, mid)) {
right = mid - 1;
} else {
left = mid + 1;
}
}
return left;
}
private:
class SegmentTree {
public:
SegmentTree(int N)
: N_(N),
tree_(2 * N),
lazy_(N)
{
H_ = 1;
while ((1 << H_) < N) {
++H_;
}
}
void update(int L, int R, int h) {
L += N_; R += N_;
int L0 = L, R0 = R;
while (L <= R) {
if ((L & 1) == 1) {
apply(L++, h);
}
if ((R & 1) == 0) {
apply(R--, h);
}
L >>= 1; R >>= 1;
}
pull(L0); pull(R0);
}
int query(int L, int R) {
L += N_; R += N_;
auto result = 0;
push(L); push(R);
while (L <= R) {
if ((L & 1) == 1) {
result = max(result, tree_[L++]);
}
if ((R & 1) == 0) {
result = max(result, tree_[R--]);
}
L >>= 1; R >>= 1;
}
return result;
}
private:
int N_, H_;
vector<int> tree_, lazy_;
void apply(int x, int val) {
tree_[x] += val;
if (x < N_) {
lazy_[x] += val;
}
}
void pull(int x) {
while (x > 1) {
x >>= 1;
tree_[x] = max(tree_[x * 2], tree_[x * 2 + 1]);
if (lazy_[x]) {
tree_[x] += lazy_[x];
}
}
}
void push(int x) {
for (int h = H_; h > 0; --h) {
int y = x >> h;
if (lazy_[y] != 0) {
apply(y * 2, lazy_[y]);
apply(y * 2 + 1, lazy_[y]);
lazy_[y] = 0;
}
}
}
};
bool check(const vector<vector<int>>& points, int k, int l) { // Time: O(nlogn), Space: O(n)
using Event = tuple<int64_t, int64_t, int64_t, int64_t>;
vector<Event> intervals;
unordered_set<int64_t> y_set;
for (const auto& p : points) {
// add [y0, y1] by 1 in [x0, x1+1)
int64_t x0 = int64_t(p[0]) - l, y0 = int64_t(p[1]) - l, x1 = int64_t(p[0]) + l, y1 = int64_t(p[1]) + l;
intervals.emplace_back(x0 , +1, y0, y1);
intervals.emplace_back(x1 + 1, -1, y0, y1);
y_set.emplace(y0);
y_set.emplace(y1);
}
sort(begin(intervals), end(intervals));
vector<int64_t> sorted_y(cbegin(y_set), cend(y_set));
sort(begin(sorted_y), end(sorted_y));
unordered_map<int64_t, int> y_to_idx;
for (int i = 0; i < size(sorted_y); ++i) { // coordinate compression
y_to_idx[sorted_y[i]] = i;
}
SegmentTree st(size(y_to_idx));
for (const auto& [_, v, y0, y1] : intervals) { // line sweep
st.update(y_to_idx[y0], y_to_idx[y1], v);
if (st.query(0, size(y_to_idx) - 1) >= k) {
return true;
}
}
return false;
}
};
// Time: O(n^2 * logr), r is the sum of range x size and range y size
// Space: O(n)
// interview solution
class Solution2 {
public:
int minDayskVariants(vector<vector<int>>& points, int k) {
std::transform(begin(points), end(points), begin(points),
[](const auto& v) {
return vector<int>({v[0] + v[1], v[0] - v[1]}); // rotate
});
const auto& compare_y = [](const vector<int>& a, const vector<int>& b) { return a[1] < b[1]; };
const int min_x = (*min_element(cbegin(points), cend(points)))[0];
const int max_x = (*max_element(cbegin(points), cend(points)))[0];
const int min_y = (*min_element(cbegin(points), cend(points), compare_y))[1];
const int max_y = (*max_element(cbegin(points), cend(points), compare_y))[1];
int64_t left = 0, right = ((int64_t(max_x) - min_x) + (int64_t(max_y) - min_y) + 1) / 2;
while (left <= right) {
const auto& mid = left + (right - left) / 2;
if (check(points, k, mid)) {
right = mid - 1;
} else {
left = mid + 1;
}
}
return left;
}
private:
bool check(const vector<vector<int>>& points, int k, int l) { // Time: O(n^2), Space: O(n)
unordered_map<int64_t, unordered_map<int64_t, int>> intervals;
unordered_set<int64_t> y_set;
for (const auto& p : points) {
// add [y0, y1+1) by 1 in [x0, x1+1)
int64_t x0 = int64_t(p[0]) - l, y0 = int64_t(p[1]) - l, x1 = int64_t(p[0]) + l, y1 = int64_t(p[1]) + l;
++intervals[x0][y0];
--intervals[x0][y1 + 1];
--intervals[x1 + 1][y0];
++intervals[x1 + 1][y1 + 1];
y_set.emplace(y0);
y_set.emplace(y1 + 1);
}
vector<int64_t> sorted_x;
for (const auto& [x, _] : intervals) {
sorted_x.emplace_back(x);
}
sort(begin(sorted_x), end(sorted_x));
vector<int64_t> sorted_y(cbegin(y_set), cend(y_set));
sort(begin(sorted_y), end(sorted_y));
unordered_map<int64_t, int> count;
for (const auto& x : sorted_x) { // line sweep
for (const auto& [y, c] : intervals[x]) {
count[y] += c;
}
int cnt = 0;
for (const auto& y : sorted_y) {
cnt += count[y];
if (cnt >= k) {
return true;
}
}
}
return false;
}
};