forked from kamyu104/LeetCode-Solutions
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathk-th-smallest-prime-fraction.cpp
47 lines (44 loc) · 1.34 KB
/
k-th-smallest-prime-fraction.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
// Time: O(nlogr)
// Space: O(1)
// Another cool O(n) solution by using quick select with median of median could be found here:
// https://leetcode.com/problems/k-th-smallest-prime-fraction/discuss/115545/O(n)
class Solution {
public:
vector<int> kthSmallestPrimeFraction(vector<int>& A, int K) {
vector<int> result;
double left = 0.0, right = 1.0;
while (right - left > 1e-8) {
double mid = left + (right - left) / 2.0;
if (check(mid, A, K, &result)) {
right = mid;
} else {
left = mid;
}
if (!result.empty()) {
break;
}
}
return result;
}
private:
bool check(double mid, const vector<int>& A, int K, vector<int> *result) {
vector<int> tmp(2);
int count = 0;
for (int i = 0, j = 0; i < A.size(); ++i) {
for (; j < A.size(); ++j) {
if (i < j && A[i] < A[j] * mid) {
if (tmp[0] == 0 || tmp[0] * A[j] < tmp[1] * A[i]) {
tmp[0] = A[i];
tmp[1] = A[j];
}
break;
}
}
count += A.size() - j;
}
if (count == K) {
*result = move(tmp);
}
return count >= K;
}
};