forked from kamyu104/LeetCode-Solutions
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathintersection-of-two-arrays-ii.cpp
137 lines (123 loc) · 3.78 KB
/
intersection-of-two-arrays-ii.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
// If the given array is not sorted and the memory is unlimited:
// - Time: O(m + n)
// - Space: O(min(m, n))
// elif the given array is already sorted:
// if m << n or m >> n:
// - Time: O(min(m, n) * log(max(m, n)))
// - Space: O(1)
// else:
// - Time: O(m + n)
// - Soace: O(1)
// else: (the given array is not sorted and the memory is limited)
// - Time: O(max(m, n) * log(max(m, n)))
// - Space: O(1)
// If the given array is not sorted and the memory is unlimited.
// Time: O(m + n)
// Space: O(min(m, n))
// Hash solution.
class Solution {
public:
vector<int> intersect(vector<int>& nums1, vector<int>& nums2) {
if (nums1.size() > nums2.size()) {
return intersect(nums2, nums1);
}
unordered_map<int, int> lookup;
for (const auto& i : nums1) {
++lookup[i];
}
vector<int> result;
for (const auto& i : nums2) {
if (lookup[i] > 0) {
result.emplace_back(i);
--lookup[i];
}
}
return result;
}
};
// If the given array is already sorted, and the memory is limited, and (m << n or m >> n).
// Time: O(min(m, n) * log(max(m, n)))
// Space: O(1)
// Binary search solution.
class Solution {
public:
vector<int> intersect(vector<int>& nums1, vector<int>& nums2) {
if (nums1.size() > nums2.size()) {
return intersect(nums2, nums1);
}
// Make sure it is sorted, doesn't count in time.
sort(nums1.begin(), nums1.end());
sort(nums2.begin(), nums2.end());
vector<int> result;
auto it = nums2.cbegin();
for (const auto& i : nums1) {
it = lower_bound(it, nums2.cend(), i);
if (it != nums2.end() && *it == i) {
result.emplace_back(*it++);
}
}
return result;
}
};
// If the given array is already sorted, and the memory is limited or m ~ n.
// Time: O(m + n)
// Soace: O(1)
// Two pointers solution.
class Solution {
public:
vector<int> intersect(vector<int>& nums1, vector<int>& nums2) {
vector<int> result;
// Make sure it is sorted, doesn't count in time.
sort(nums1.begin(), nums1.end());
sort(nums2.begin(), nums2.end());
auto it1 = nums1.cbegin(), it2 = nums2.cbegin();
while (it1 != nums1.cend() && it2 != nums2.cend()) {
if (*it1 < *it2) {
++it1;
} else if (*it1 > *it2) {
++it2;
} else {
result.emplace_back(*it1);
++it1, ++it2;
}
}
return result;
}
};
// If the given array is not sorted, and the memory is limited.
// Time: O(max(m, n) * log(max(m, n)))
// Space: O(1)
// Two pointers solution.
class Solution {
public:
vector<int> intersect(vector<int>& nums1, vector<int>& nums2) {
vector<int> result;
// O(max(m, n) * log(max(m, n)))
sort(nums1.begin(), nums1.end());
sort(nums2.begin(), nums2.end());
auto it1 = nums1.cbegin(), it2 = nums2.cbegin();
while (it1 != nums1.cend() && it2 != nums2.cend()) {
if (*it1 < *it2) {
++it1;
} else if (*it1 > *it2) {
++it2;
} else {
result.emplace_back(*it1);
++it1, ++it2;
}
}
return result;
}
};
// Time: O(mlogm + nlogn)
// Space: O(m + n)
// simple solution
class Solution2 {
public:
vector<int> intersect(vector<int>& nums1, vector<int>& nums2) {
vector<int> result;
sort(begin(nums1), end(nums1)); sort(begin(nums2), end(nums2));
set_intersection(cbegin(nums1), cend(nums1), cbegin(nums2), cend(nums2), back_inserter(result));
return result;
}
};