forked from kamyu104/LeetCode-Solutions
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfrog-position-after-t-seconds.cpp
141 lines (133 loc) · 4.34 KB
/
frog-position-after-t-seconds.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
// Time: O(n)
// Space: O(n)
// bfs solution with better precision
class Solution {
public:
double frogPosition(int n, vector<vector<int>>& edges, int t, int target) {
unordered_map<int, vector<int>> G;
G[1] = {};
for (const auto& edge : edges) {
G[edge[0]].emplace_back(edge[1]);
G[edge[1]].emplace_back(edge[0]);
}
vector<tuple<int, int, int, int>> stk = {{t, 1, 0, 1}};
while (!stk.empty()) {
vector<tuple<int, int, int, int>> new_stk;
while (!stk.empty()) {
const auto [t, node, parent, choices] = stk.back(); stk.pop_back();
if (!t || !(G.at(node).size() - int(parent != 0))) {
if (node == target) {
return 1.0 / choices;
}
continue;
}
for (const auto& child : G.at(node)) {
if (child == parent) {
continue;
}
new_stk.emplace_back(t - 1, child, node,
choices * (G.at(node).size() - int(parent != 0)));
}
}
stk = move(new_stk);
}
return 0.0;
}
};
// Time: O(n)
// Space: O(n)
// dfs solution with stack with better precision
class Solution2 {
public:
double frogPosition(int n, vector<vector<int>>& edges, int t, int target) {
unordered_map<int, vector<int>> G;
G[1] = {};
for (const auto& edge : edges) {
G[edge[0]].emplace_back(edge[1]);
G[edge[1]].emplace_back(edge[0]);
}
vector<tuple<int, int, int, int>> stk = {{t, 1, 0, 1}};
while (!stk.empty()) {
const auto [t, node, parent, choices] = stk.back(); stk.pop_back();
if (!t || !(G.at(node).size() - int(parent != 0))) {
if (node == target) {
return 1.0 / choices;
}
continue;
}
for (const auto& child : G.at(node)) {
if (child == parent) {
continue;
}
stk.emplace_back(t - 1, child, node,
choices * (G.at(node).size() - int(parent != 0)));
}
}
return 0.0;
}
};
// Time: O(n)
// Space: O(n)
// dfs solution with recursion with better precision
class Solution3 {
public:
double frogPosition(int n, vector<vector<int>>& edges, int t, int target) {
unordered_map<int, vector<int>> G;
G[1] = {};
for (const auto& edge : edges) {
G[edge[0]].emplace_back(edge[1]);
G[edge[1]].emplace_back(edge[0]);
}
int choices = dfs(G, target, t, 1, 0);
return choices ? 1.0 / choices : 0.0;
}
private:
int dfs(const unordered_map<int, vector<int>>& G,
int target, int t, int node, int parent) {
if (!t || !(G.at(node).size() - int(parent != 0))) {
return (node == target);
}
int result = 0;
for (const auto& child : G.at(node)) {
if (child == parent) {
continue;
}
if (result = dfs(G, target, t - 1, child, node)) {
break;
}
}
return result * (G.at(node).size() - int(parent != 0));
}
};
// Time: O(n)
// Space: O(n)
// dfs solution with recursion
class Solution4 {
public:
double frogPosition(int n, vector<vector<int>>& edges, int t, int target) {
unordered_map<int, vector<int>> G;
G[1] = {};
for (const auto& edge : edges) {
G[edge[0]].emplace_back(edge[1]);
G[edge[1]].emplace_back(edge[0]);
}
return dfs(G, target, t, 1, 0);
}
private:
double dfs(const unordered_map<int, vector<int>>& G,
int target, int t, int node, int parent) {
if (!t || !(G.at(node).size() - int(parent != 0))) {
return (node == target);
}
double result = 0.0;
for (const auto& child : G.at(node)) {
if (child == parent) {
continue;
}
if (result = dfs(G, target, t - 1, child, node)) {
break;
}
}
return result / (G.at(node).size() - int(parent != 0));
}
};