forked from mrahtz/learning-from-human-preferences
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreward_predictor.py
392 lines (340 loc) · 14.9 KB
/
reward_predictor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
import logging
import os.path as osp
import time
import easy_tf_log
import numpy as np
from numpy.testing import assert_equal
import tensorflow as tf
from utils import RunningStat, batch_iter
class RewardPredictorEnsemble:
"""
An ensemble of reward predictors and associated helper functions.
"""
def __init__(self,
cluster_job_name,
core_network,
lr=1e-4,
cluster_dict=None,
batchnorm=False,
dropout=0.0,
n_preds=1,
log_dir=None):
self.n_preds = n_preds
graph, self.sess = self.init_sess(cluster_dict, cluster_job_name)
# Why not just use soft device placement? With soft placement,
# if we have a bug which prevents an operation being placed on the GPU
# (e.g. we're using uint8s for operations that the GPU can't do),
# then TensorFlow will be silent and just place the operation on a CPU.
# Instead, we want to say: if there's a GPU present, definitely try and
# put things on the GPU. If it fails, tell us!
if tf.test.gpu_device_name():
worker_device = "/job:{}/task:0/gpu:0".format(cluster_job_name)
else:
worker_device = "/job:{}/task:0".format(cluster_job_name)
device_setter = tf.train.replica_device_setter(
cluster=cluster_dict,
ps_device="/job:ps/task:0",
worker_device=worker_device)
self.rps = []
with graph.as_default():
for pred_n in range(n_preds):
with tf.device(device_setter):
with tf.variable_scope("pred_{}".format(pred_n)):
rp = RewardPredictorNetwork(
core_network=core_network,
dropout=dropout,
batchnorm=batchnorm,
lr=lr)
self.rps.append(rp)
self.init_op = tf.global_variables_initializer()
# Why save_relative_paths=True?
# So that the plain-text 'checkpoint' file written uses relative paths,
# which seems to be needed in order to avoid confusing saver.restore()
# when restoring from FloydHub runs.
self.saver = tf.train.Saver(max_to_keep=1, save_relative_paths=True)
self.summaries = self.add_summary_ops()
self.checkpoint_file = osp.join(log_dir,
'reward_predictor_checkpoints',
'reward_predictor.ckpt')
self.train_writer = tf.summary.FileWriter(
osp.join(log_dir, 'reward_predictor', 'train'), flush_secs=5)
self.test_writer = tf.summary.FileWriter(
osp.join(log_dir, 'reward_predictor', 'test'), flush_secs=5)
self.n_steps = 0
self.r_norm = RunningStat(shape=n_preds)
misc_logs_dir = osp.join(log_dir, 'reward_predictor', 'misc')
easy_tf_log.set_dir(misc_logs_dir)
@staticmethod
def init_sess(cluster_dict, cluster_job_name):
graph = tf.Graph()
cluster = tf.train.ClusterSpec(cluster_dict)
config = tf.ConfigProto(gpu_options={'allow_growth': True})
server = tf.train.Server(cluster, job_name=cluster_job_name, config=config)
sess = tf.Session(server.target, graph)
return graph, sess
def add_summary_ops(self):
summary_ops = []
for pred_n, rp in enumerate(self.rps):
name = 'reward_predictor_accuracy_{}'.format(pred_n)
op = tf.summary.scalar(name, rp.accuracy)
summary_ops.append(op)
name = 'reward_predictor_loss_{}'.format(pred_n)
op = tf.summary.scalar(name, rp.loss)
summary_ops.append(op)
mean_accuracy = tf.reduce_mean([rp.accuracy for rp in self.rps])
op = tf.summary.scalar('reward_predictor_accuracy_mean', mean_accuracy)
summary_ops.append(op)
mean_loss = tf.reduce_mean([rp.loss for rp in self.rps])
op = tf.summary.scalar('reward_predictor_loss_mean', mean_loss)
summary_ops.append(op)
summaries = tf.summary.merge(summary_ops)
return summaries
def init_network(self, load_ckpt_dir=None):
if load_ckpt_dir:
ckpt_file = tf.train.latest_checkpoint(load_ckpt_dir)
if ckpt_file is None:
msg = "No reward predictor checkpoint found in '{}'".format(
load_ckpt_dir)
raise FileNotFoundError(msg)
self.saver.restore(self.sess, ckpt_file)
print("Loaded reward predictor checkpoint from '{}'".format(ckpt_file))
else:
self.sess.run(self.init_op)
def save(self):
ckpt_name = self.saver.save(self.sess,
self.checkpoint_file,
self.n_steps)
print("Saved reward predictor checkpoint to '{}'".format(ckpt_name))
def raw_rewards(self, obs):
"""
Return (unnormalized) reward for each frame of a single segment
from each member of the ensemble.
"""
assert_equal(obs.shape[1:], (84, 84, 4))
n_steps = obs.shape[0]
feed_dict = {}
for rp in self.rps:
feed_dict[rp.training] = False
feed_dict[rp.s1] = [obs]
# This will return nested lists of sizes n_preds x 1 x nsteps
# (x 1 because of the batch size of 1)
rs = self.sess.run([rp.r1 for rp in self.rps], feed_dict)
rs = np.array(rs)
# Get rid of the extra x 1 dimension
rs = rs[:, 0, :]
assert_equal(rs.shape, (self.n_preds, n_steps))
return rs
def reward(self, obs):
"""
Return (normalized) reward for each frame of a single segment.
(Normalization involves normalizing the rewards from each member of the
ensemble separately, then averaging the resulting rewards across all
ensemble members.)
"""
assert_equal(obs.shape[1:], (84, 84, 4))
n_steps = obs.shape[0]
# Get unnormalized rewards
ensemble_rs = self.raw_rewards(obs)
logging.debug("Unnormalized rewards:\n%s", ensemble_rs)
# Normalize rewards
# Note that we implement this here instead of in the network itself
# because:
# * It's simpler not to do it in TensorFlow
# * Preference prediction doesn't need normalized rewards. Only
# rewards sent to the the RL algorithm need to be normalized.
# So we can save on computation.
# Page 4:
# "We normalized the rewards produced by r^ to have zero mean and
# constant standard deviation."
# Page 15: (Atari)
# "Since the reward predictor is ultimately used to compare two sums
# over timesteps, its scale is arbitrary, and we normalize it to have
# a standard deviation of 0.05"
# Page 5:
# "The estimate r^ is defined by independently normalizing each of
# these predictors..."
# We want to keep track of running mean/stddev for each member of the
# ensemble separately, so we have to be a little careful here.
assert_equal(ensemble_rs.shape, (self.n_preds, n_steps))
ensemble_rs = ensemble_rs.transpose()
assert_equal(ensemble_rs.shape, (n_steps, self.n_preds))
for ensemble_rs_step in ensemble_rs:
self.r_norm.push(ensemble_rs_step)
ensemble_rs -= self.r_norm.mean
ensemble_rs /= (self.r_norm.std + 1e-12)
ensemble_rs *= 0.05
ensemble_rs = ensemble_rs.transpose()
assert_equal(ensemble_rs.shape, (self.n_preds, n_steps))
logging.debug("Reward mean/stddev:\n%s %s",
self.r_norm.mean,
self.r_norm.std)
logging.debug("Normalized rewards:\n%s", ensemble_rs)
# "...and then averaging the results."
rs = np.mean(ensemble_rs, axis=0)
assert_equal(rs.shape, (n_steps, ))
logging.debug("After ensemble averaging:\n%s", rs)
return rs
def preferences(self, s1s, s2s):
"""
Predict probability of human preferring one segment over another
for each segment in the supplied batch of segment pairs.
"""
feed_dict = {}
for rp in self.rps:
feed_dict[rp.s1] = s1s
feed_dict[rp.s2] = s2s
feed_dict[rp.training] = False
preds = self.sess.run([rp.pred for rp in self.rps], feed_dict)
return preds
def train(self, prefs_train, prefs_val, val_interval):
"""
Train all ensemble members for one epoch.
"""
print("Training/testing with %d/%d preferences" % (len(prefs_train),
len(prefs_val)))
start_steps = self.n_steps
start_time = time.time()
for _, batch in enumerate(batch_iter(prefs_train.prefs,
batch_size=32,
shuffle=True)):
self.train_step(batch, prefs_train)
self.n_steps += 1
if self.n_steps and self.n_steps % val_interval == 0:
self.val_step(prefs_val)
end_time = time.time()
end_steps = self.n_steps
rate = (end_steps - start_steps) / (end_time - start_time)
easy_tf_log.tflog('reward_predictor_training_steps_per_second',
rate)
def train_step(self, batch, prefs_train):
s1s = [prefs_train.segments[k1] for k1, k2, pref, in batch]
s2s = [prefs_train.segments[k2] for k1, k2, pref, in batch]
prefs = [pref for k1, k2, pref, in batch]
feed_dict = {}
for rp in self.rps:
feed_dict[rp.s1] = s1s
feed_dict[rp.s2] = s2s
feed_dict[rp.pref] = prefs
feed_dict[rp.training] = True
ops = [self.summaries, [rp.train for rp in self.rps]]
summaries, _ = self.sess.run(ops, feed_dict)
self.train_writer.add_summary(summaries, self.n_steps)
def val_step(self, prefs_val):
val_batch_size = 32
if len(prefs_val) <= val_batch_size:
batch = prefs_val.prefs
else:
idxs = np.random.choice(len(prefs_val.prefs),
val_batch_size,
replace=False)
batch = [prefs_val.prefs[i] for i in idxs]
s1s = [prefs_val.segments[k1] for k1, k2, pref, in batch]
s2s = [prefs_val.segments[k2] for k1, k2, pref, in batch]
prefs = [pref for k1, k2, pref, in batch]
feed_dict = {}
for rp in self.rps:
feed_dict[rp.s1] = s1s
feed_dict[rp.s2] = s2s
feed_dict[rp.pref] = prefs
feed_dict[rp.training] = False
summaries = self.sess.run(self.summaries, feed_dict)
self.test_writer.add_summary(summaries, self.n_steps)
class RewardPredictorNetwork:
"""
Predict the reward that a human would assign to each frame of
the input trajectory, trained using the human's preferences between
pairs of trajectories.
Network inputs:
- s1/s2 Trajectory pairs
- pref Preferences between each pair of trajectories
Network outputs:
- r1/r2 Reward predicted for each frame
- rs1/rs2 Reward summed over all frames for each trajectory
- pred Predicted preference
"""
def __init__(self, core_network, dropout, batchnorm, lr):
training = tf.placeholder(tf.bool)
# Each element of the batch is one trajectory segment.
# (Dimensions are n segments x n frames per segment x ...)
s1 = tf.placeholder(tf.float32, shape=(None, None, 84, 84, 4))
s2 = tf.placeholder(tf.float32, shape=(None, None, 84, 84, 4))
# For each trajectory segment, there is one human judgement.
pref = tf.placeholder(tf.float32, shape=(None, 2))
# Concatenate trajectory segments so that the first dimension is just
# frames
# (necessary because of conv layer's requirements on input shape)
s1_unrolled = tf.reshape(s1, [-1, 84, 84, 4])
s2_unrolled = tf.reshape(s2, [-1, 84, 84, 4])
# Predict rewards for each frame in the unrolled batch
_r1 = core_network(
s=s1_unrolled,
dropout=dropout,
batchnorm=batchnorm,
reuse=False,
training=training)
_r2 = core_network(
s=s2_unrolled,
dropout=dropout,
batchnorm=batchnorm,
reuse=True,
training=training)
# Shape should be 'unrolled batch size'
# where 'unrolled batch size' is 'batch size' x 'n frames per segment'
c1 = tf.assert_rank(_r1, 1)
c2 = tf.assert_rank(_r2, 1)
with tf.control_dependencies([c1, c2]):
# Re-roll to 'batch size' x 'n frames per segment'
__r1 = tf.reshape(_r1, tf.shape(s1)[0:2])
__r2 = tf.reshape(_r2, tf.shape(s2)[0:2])
# Shape should be 'batch size' x 'n frames per segment'
c1 = tf.assert_rank(__r1, 2)
c2 = tf.assert_rank(__r2, 2)
with tf.control_dependencies([c1, c2]):
r1 = __r1
r2 = __r2
# Sum rewards over all frames in each segment
_rs1 = tf.reduce_sum(r1, axis=1)
_rs2 = tf.reduce_sum(r2, axis=1)
# Shape should be 'batch size'
c1 = tf.assert_rank(_rs1, 1)
c2 = tf.assert_rank(_rs2, 1)
with tf.control_dependencies([c1, c2]):
rs1 = _rs1
rs2 = _rs2
# Predict preferences for each segment
_rs = tf.stack([rs1, rs2], axis=1)
# Shape should be 'batch size' x 2
c1 = tf.assert_rank(_rs, 2)
with tf.control_dependencies([c1]):
rs = _rs
_pred = tf.nn.softmax(rs)
# Shape should be 'batch_size' x 2
c1 = tf.assert_rank(_pred, 2)
with tf.control_dependencies([c1]):
pred = _pred
preds_correct = tf.equal(tf.argmax(pref, 1), tf.argmax(pred, 1))
accuracy = tf.reduce_mean(tf.cast(preds_correct, tf.float32))
_loss = tf.nn.softmax_cross_entropy_with_logits_v2(labels=pref,
logits=rs)
# Shape should be 'batch size'
c1 = tf.assert_rank(_loss, 1)
with tf.control_dependencies([c1]):
loss = tf.reduce_sum(_loss)
# Make sure that batch normalization ops are updated
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
train = tf.train.AdamOptimizer(learning_rate=lr).minimize(loss)
# Inputs
self.training = training
self.s1 = s1
self.s2 = s2
self.pref = pref
# Outputs
self.r1 = r1
self.r2 = r2
self.rs1 = rs1
self.rs2 = rs2
self.pred = pred
self.accuracy = accuracy
self.loss = loss
self.train = train