forked from mrahtz/learning-from-human-preferences
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpref_db_test.py
executable file
·104 lines (83 loc) · 3.32 KB
/
pref_db_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
#!/usr/bin/env python3
import unittest
import numpy as np
from pref_db import PrefDB
class TestPrefDB(unittest.TestCase):
def test_similar_segs(self):
"""
Test that the preference database really distinguishes
between similar segments
(i.e. check that its hash function is working as it's supposed to).
"""
p = PrefDB(maxlen=5)
s1 = np.ones((25, 84, 84, 4))
s2 = np.ones((25, 84, 84, 4))
s2[12][24][24][2] = 0
p.append(s1, s2, [1.0, 0.0])
self.assertEqual(len(p.segments), 2)
def test_append_delete(self):
"""
Do a number of appends/deletes and check that the number of
preferences and segments is as expected at all times.
"""
p = PrefDB(maxlen=10)
s1 = np.random.randint(low=-10, high=10, size=(25, 84, 84, 4))
s2 = np.random.randint(low=-10, high=10, size=(25, 84, 84, 4))
p.append(s1, s2, [1.0, 0.0])
self.assertEqual(len(p.segments), 2)
self.assertEqual(len(p.prefs), 1)
p.append(s1, s2, [0.0, 1.0])
self.assertEqual(len(p.segments), 2)
self.assertEqual(len(p.prefs), 2)
s1 = np.random.randint(low=-10, high=10, size=(25, 84, 84, 4))
p.append(s1, s2, [1.0, 0.0])
self.assertEqual(len(p.segments), 3)
self.assertEqual(len(p.prefs), 3)
s2 = np.random.randint(low=-10, high=10, size=(25, 84, 84, 4))
p.append(s1, s2, [1.0, 0.0])
self.assertEqual(len(p.segments), 4)
self.assertEqual(len(p.prefs), 4)
s1 = np.random.randint(low=-10, high=10, size=(25, 84, 84, 4))
s2 = np.random.randint(low=-10, high=10, size=(25, 84, 84, 4))
p.append(s1, s2, [1.0, 0.0])
self.assertEqual(len(p.segments), 6)
self.assertEqual(len(p.prefs), 5)
prefs_pre = list(p.prefs)
p.del_first()
self.assertEqual(len(p.prefs), 4)
self.assertEqual(p.prefs, prefs_pre[1:])
# These segments were also used by the second preference,
# so the number of segments shouldn't have decreased
self.assertEqual(len(p.segments), 6)
p.del_first()
self.assertEqual(len(p.prefs), 3)
# One of the segments just deleted was only used by the first two
# preferences, so the length should have shrunk by one
self.assertEqual(len(p.segments), 5)
p.del_first()
self.assertEqual(len(p.prefs), 2)
# Another one should bite the dust...
self.assertEqual(len(p.segments), 4)
p.del_first()
self.assertEqual(len(p.prefs), 1)
self.assertEqual(len(p.segments), 2)
p.del_first()
self.assertEqual(len(p.prefs), 0)
self.assertEqual(len(p.segments), 0)
def test_circular(self):
p = PrefDB(maxlen=2)
p.append(0, 1, 10)
self.assertEqual(len(p), 1)
p.append(2, 3, 11)
self.assertEqual(len(p), 2)
p.append(4, 5, 12)
self.assertEqual(len(p), 2)
self.assertEqual(len(p.segments), 4)
self.assertIn(2, p.segments.values())
self.assertIn(3, p.segments.values())
self.assertIn(4, p.segments.values())
self.assertIn(5, p.segments.values())
self.assertEqual(p.prefs[0][2], 11)
self.assertEqual(p.prefs[1][2], 12)
if __name__ == '__main__':
unittest.main()