-
Notifications
You must be signed in to change notification settings - Fork 2
/
arcalg_framework_newforest.py
731 lines (665 loc) · 42.1 KB
/
arcalg_framework_newforest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
import matplotlib.pyplot as plt
import pyart
import numpy as np
import numpy.ma as ma
from metpy.units import check_units, concatenate, units
from matplotlib.patches import PathPatch
from matplotlib.path import Path
from siphon.radarserver import RadarServer
#rs = RadarServer('http://thredds-aws.unidata.ucar.edu/thredds/radarServer/nexrad/level2/S3/')
#rs = RadarServer('http://thredds.ucar.edu/thredds/radarServer/nexrad/level2/IDD/')
from datetime import datetime, timedelta
from siphon.cdmr import Dataset
import cartopy.crs as ccrs
import cartopy.feature as cfeature
from cartopy.io.shapereader import Reader
from cartopy.feature import ShapelyFeature
from shapely.geometry import polygon as sp
import pyproj
import shapely.ops as ops
from shapely.ops import transform
from shapely.geometry.polygon import Polygon
from functools import partial
from shapely import geometry
import netCDF4
from scipy import ndimage as ndi
#from skimage.feature import peak_local_max
#from skimage import data, img_as_float
from pyproj import Geod
from metpy.calc import wind_direction, wind_speed, wind_components
import matplotlib.lines as mlines
import pandas as pd
import scipy.stats as stats
import csv
import pickle
from sklearn.ensemble import RandomForestClassifier
import nexradaws
import os
from grid_section_arcalg import gridding_arcalg
from kdp_section import kdp_genesis
from gradient_section_arcalg import grad_mask_arcalg
from ungridded_arcalg import quality_control_arcalg
from stormid_section import storm_objects
from zdr_arc_section import zdrarc
#from hail_section import hail_objects
from zhh_section import zhh_objects
from kdpfoot_section import kdp_objects
#from zdr_col_section import zdrcol
def multi_case_algorithm_ML1_newforest(storm_relative_dir, zdrlev, kdplev, REFlev, REFlev1, big_storm, zero_z_trigger, storm_to_track, year, month, day, hour, start_min, duration, calibration, station, Bunkers_m, track_dis=10, GR_mins=1.0):
#Set vector perpendicular to FFD Z gradient
storm_relative_dir = storm_relative_dir
#Set storm motion
Bunkers_m = Bunkers_m
#Set ZDR Threshold for outlining arcs
zdrlev = [zdrlev]
#Set KDP Threshold for finding KDP feet
kdplev = [kdplev]
#Set reflectivity thresholds for storm tracking algorithm
REFlev = [REFlev]
REFlev1 = [REFlev1]
#Set storm size threshold that triggers subdivision of big storms
big_storm = big_storm #km^2
Outer_r = 30 #km
Inner_r = 6 #km
#Set trigger to ignore strangely-formatted files right before 00Z
#Pre-SAILS #: 17
#SAILS #: 25
zero_z_trigger = zero_z_trigger
storm_to_track = storm_to_track
zdr_outlines = []
#Here, set the initial time of the archived radar loop you want.
#Our specified time
dt = datetime(year,month, day, hour, start_min)
station = station
end_dt = dt + timedelta(hours=duration)
print(dt, end_dt)
#Set up nexrad interface
conn = nexradaws.NexradAwsInterface()
scans = conn.get_avail_scans_in_range(dt,end_dt,station)
results = conn.download(scans, 'RadarFolder')
#Setting counters for figures and Pandas indices
f = 27
n = 1
storm_index = 0
scan_index = 0
tracking_index = 0
#Create geod object for later distance and area calculations
g = Geod(ellps='sphere')
#Open the placefile
f = open("ARCALG_newforest"+station+str(dt.year)+str(dt.month)+str(dt.day)+str(dt.hour)+str(dt.minute)+"_Placefile.txt", "w+")
f.write("Title: ZDR Arc Algorithm Placefile \n")
f.write("Refresh: 8 \n \n")
#Load ML algorithm
forest_loaded = pickle.load(open('NewData2022RandomForest.pkl', 'rb'))
# forest_loaded_col = pickle.load(open('BestRandomForestColumnsLEN200.pkl', 'rb'))
#Actual algorithm code starts here
#Create a list for the lists of arc outlines
zdr_out_list = []
tracks_dataframe = []
for i,scan in enumerate(results.iter_success(),start=1):
#Local file option:
#Loop over all files in the dataset and pull out each 0.5 degree tilt for analysis
try:
radar1 = scan.open_pyart()
except:
print('bad radar file')
continue
#Local file option
print('File Reading')
#Make sure the file isn't a strange format
if radar1.nsweeps > zero_z_trigger:
continue
#Updating this to account for recently-added sub-0.5 degree tilts
tilt_vals = []
for i in range(radar1.nsweeps):
radar2 = radar1.extract_sweeps([i])
#print(np.mean(radar2.elevation['data']))
tilt_vals.append(np.mean(radar2.elevation['data']))
tilt_vals = np.asarray(tilt_vals)
max_tilt = 0.65
if np.min(tilt_vals) < 0.40:
max_tilt = np.min(tilt_vals) + 0.07
#print('Max tilt is ', max_tilt)
for i in range(radar1.nsweeps):
print('in loop')
print(radar1.nsweeps)
try:
radar4 = radar1.extract_sweeps([i])
except:
print('bad file')
#Checking to make sure the tilt in question has all needed data and is the right elevation
if ((np.mean(radar4.elevation['data']) < max_tilt) and (np.max(np.asarray(radar4.fields['differential_reflectivity']['data'])) != np.min(np.asarray(radar4.fields['differential_reflectivity']['data'])))):
n = n+1
#Calling ungridded_section; Pulling apart radar sweeps and creating ungridded data arrays
[radar,n,range_2d,ungrid_lons,ungrid_lats] = quality_control_arcalg(radar4,n,calibration)
time_start = netCDF4.num2date(radar.time['data'][0], radar.time['units'])
object_number=0.0
month = time_start.month
if month < 10:
month = '0'+str(month)
hour = time_start.hour
if hour < 10:
hour = '0'+str(hour)
minute = time_start.minute
if minute < 10:
minute = '0'+str(minute)
day = time_start.day
if day < 10:
day = '0'+str(day)
time_beg = time_start - timedelta(minutes=0.1)
time_end = time_start + timedelta(minutes=GR_mins)
sec_beg = time_beg.second
sec_end = time_end.second
min_beg = time_beg.minute
min_end = time_end.minute
h_beg = time_beg.hour
h_end = time_end.hour
d_beg = time_beg.day
d_end = time_end.day
if sec_beg < 10:
sec_beg = '0'+str(sec_beg)
if sec_end < 10:
sec_end = '0'+str(sec_end)
if min_beg < 10:
min_beg = '0'+str(min_beg)
if min_end < 10:
min_end = '0'+str(min_end)
if h_beg < 10:
h_beg = '0'+str(h_beg)
if h_end < 10:
h_end = '0'+str(h_end)
if d_beg < 10:
d_beg = '0'+str(d_beg)
if d_end < 10:
d_end = '0'+str(d_end)
#Calling kdp_section; Using NWS method, creating ungridded, smoothed KDP field
kdp_nwsdict = kdp_genesis(radar)
#Add field to radar
radar.add_field('KDP', kdp_nwsdict)
kdp_ungridded_nws = radar.fields['KDP']['data']
#Calling grid_section; Now let's grid the data on a ~250 m x 250 m grid
[REF,KDP,CC,ZDRmasked1,REFmasked,KDPmasked,rlons,rlats,rlons_2d,rlats_2d,cenlat,cenlon] = gridding_arcalg(radar)
#Calling gradient_section; Determining gradient direction and masking some Zhh and Zdr grid fields
[grad_mag,grad_ffd,ZDRmasked] = grad_mask_arcalg(REFmasked,REF,storm_relative_dir,ZDRmasked1,CC)
#Let's create a field for inferred hail
#Commenting out for the moment
# REF_Hail = np.copy(REFmasked)
# REF_Hail1 = ma.masked_where(ZDRmasked1 > 1.0, REF_Hail)
# REF_Hail2 = ma.masked_where(CC > 1.0, REF_Hail1)
# REF_Hail2 = ma.filled(REF_Hail2, fill_value = 1)
#Let's set up the map projection!
crs = ccrs.LambertConformal(central_longitude=-100.0, central_latitude=45.0)
#Set up our array of latitude and longitude values and transform our data to the desired projection.
tlatlons = crs.transform_points(ccrs.LambertConformal(central_longitude=265, central_latitude=25, standard_parallels=(25.,25.)),rlons[0,:,:],rlats[0,:,:])
tlons = tlatlons[:,:,0]
tlats = tlatlons[:,:,1]
#Limit the extent of the map area, must convert to proper coords.
LL = (cenlon-1.0,cenlat-1.0,ccrs.PlateCarree())
UR = (cenlon+1.0,cenlat+1.0,ccrs.PlateCarree())
print(LL)
#Get data to plot state and province boundaries
states_provinces = cfeature.NaturalEarthFeature(
category='cultural',
name='admin_1_states_provinces_lakes',
scale='50m',
facecolor='none')
#Make sure these shapefiles are in the same directory as the script
#fname = 'cb_2016_us_county_20m/cb_2016_us_county_20m.shp'
#fname2 = 'cb_2016_us_state_20m/cb_2016_us_state_20m.shp'
#counties = ShapelyFeature(Reader(fname).geometries(),ccrs.PlateCarree(), facecolor = 'none', edgecolor = 'black')
#states = ShapelyFeature(Reader(fname2).geometries(),ccrs.PlateCarree(), facecolor = 'none', edgecolor = 'black')
#Create a figure and plot up the initial data and contours for the algorithm
fig=plt.figure(n,figsize=(30.,25.))
ax = plt.subplot(111,projection=ccrs.PlateCarree())
ax.coastlines('50m',edgecolor='black',linewidth=0.75)
#ax.add_feature(counties, edgecolor = 'black', linewidth = 0.5)
#ax.add_feature(states, edgecolor = 'black', linewidth = 1.5)
ax.set_extent([LL[0],UR[0],LL[1],UR[1]])
REFlevels = np.arange(20,73,2)
#Options for Z backgrounds/contours
#refp = ax.pcolormesh(ungrid_lons, ungrid_lats, ref_c, cmap=plt.cm.gist_ncar, vmin = 10, vmax = 73)
#refp = ax.pcolormesh(ungrid_lons, ungrid_lats, ref_ungridded_base, cmap='HomeyerRainbow', vmin = 10, vmax = 73)
#refp = ax.pcolormesh(rlons_2d, rlats_2d, REFrmasked, cmap=pyart.graph.cm_colorblind.HomeyerRainbow, vmin = 10, vmax = 73)
refp2 = ax.contour(rlons_2d, rlats_2d, REFmasked, [40], colors='grey', linewidths=5, zorder=1)
#refp3 = ax.contour(rlons_2d, rlats_2d, REFmasked, [45], color='r')
#plt.contourf(rlons_2d, rlats_2d, ZDR_sum_stuff, depth_levels, cmap=plt.cm.viridis)
#Option to have a ZDR background instead of Z:
#zdrp = ax.pcolormesh(ungrid_lons, ungrid_lats, zdr_c, cmap=plt.cm.nipy_spectral, vmin = -2, vmax = 6)
#Storm tracking algorithm starts here
#Reflectivity smoothed for storm tracker
smoothed_ref = ndi.gaussian_filter(REFmasked, sigma = 3, order = 0)
#1st Z contour plotted
refc = ax.contour(rlons[0,:,:],rlats[0,:,:],smoothed_ref,REFlev, alpha=.01)
#Set up projection for area calculations
proj_old = partial(pyproj.transform, pyproj.Proj(init='epsg:4326'),
pyproj.Proj(init='epsg:3857'))
proj = partial(pyproj.transform, pyproj.Proj(init='epsg:4326'),
pyproj.Proj("+proj=aea +lat_1=37.0 +lat_2=41.0 +lat_0=39.0 +lon_0=-106.55"))
#Main part of storm tracking algorithm starts by looping through all contours looking for Z centroids
#This method for breaking contours into polygons based on this stack overflow tutorial:
#https://gis.stackexchange.com/questions/99917/converting-matplotlib-contour-objects-to-shapely-objects
#Calling stormid_section
[storm_ids,max_lons_c,max_lats_c,ref_areas,storm_index] = storm_objects(refc,proj_old,REFlev,REFlev1,big_storm,smoothed_ref,ax,rlons,rlats,storm_index,tracking_index,scan_index,tracks_dataframe, track_dis)
#Setup tracking index for storm of interest
tracking_ind=np.where(np.asarray(storm_ids)==storm_to_track)[0]
max_lons_c = np.asarray(max_lons_c)
max_lats_c = np.asarray(max_lats_c)
ref_areas = np.asarray(ref_areas)
#Create the ZDR and KDP contours which will later be broken into polygons
if np.max(ZDRmasked) > zdrlev:
zdrc = ax.contour(rlons[0,:,:],rlats[0,:,:],ZDRmasked,zdrlev,linewidths = 2, colors='purple', alpha = .5)
else:
zdrc=[]
if np.max(KDPmasked) > kdplev:
kdpc = ax.contour(rlons[0,:,:],rlats[0,:,:],KDPmasked,kdplev,linewidths = 2, colors='green', alpha = 0.01)
else:
kdpc=[]
# if np.max(REF_Hail2) > 50.0:
# hailc = ax.contour(rlons[0,:,:],rlats[0,:,:],REF_Hail2,[50],linewidths = 4, colors='pink', alpha = 0.01)
# else:
# hailc=[]
if np.max(REFmasked) > 35.0:
zhhc = ax.contour(rlons[0,:,:],rlats[0,:,:],REFmasked,[35.0],linewidths = 3,colors='orange', alpha = 0.8)
else:
zhhc=[]
plt.contour(ungrid_lons, ungrid_lats, range_2d, [73000], linewidths=7, colors='r')
plt.savefig('testfig.png')
print('Testfig Saved')
if len(max_lons_c) > 0:
#Calling zdr_arc_section; Create ZDR arc objects using a similar method as employed in making the storm objects
[zdr_storm_lon,zdr_storm_lat,zdr_dist,zdr_forw,zdr_back,zdr_areas,zdr_centroid_lon,zdr_centroid_lat,zdr_mean,zdr_cc_mean,zdr_max,zdr_masks,zdr_outlines,ax,f] = zdrarc(zdrc,ZDRmasked,CC,REF,grad_ffd,grad_mag,KDP,forest_loaded,ax,f,time_start,month,d_beg,h_beg,min_beg,sec_beg,d_end,h_end,min_end,sec_end,rlons,rlats,max_lons_c,max_lats_c,zdrlev,proj,storm_relative_dir,Outer_r,Inner_r,tracking_ind)
#Calling hail_section; Identify Hail core objects in a similar way to the ZDR arc objects
# [hail_areas,hail_centroid_lon,hail_centroid_lat,hail_storm_lon,hail_storm_lat,ax,f] = hail_objects(hailc,REF_Hail2,ax,f,time_start,month,d_beg,h_beg,min_beg,sec_beg,d_end,h_end,min_end,sec_end,rlons,rlats,max_lons_c,max_lats_c,proj)
#Calling zhh_section; Identify 35dBz storm area in a similar way to the ZDR arc objects
[zhh_areas,zhh_centroid_lon,zhh_centroid_lat,zhh_storm_lon,zhh_storm_lat,zhh_max,zhh_core_avg] = zhh_objects(zhhc,REFmasked,rlons,rlats,max_lons_c,max_lats_c,proj)
#Calling kdpfoot_section; Identify KDP foot objects in a similar way to the ZDR arc objects
[kdp_areas,kdp_centroid_lon,kdp_centroid_lat,kdp_storm_lon,kdp_storm_lat,kdp_max,ax,f] = kdp_objects(kdpc,KDPmasked,ax,f,time_start,month,d_beg,h_beg,min_beg,sec_beg,d_end,h_end,min_end,sec_end,rlons,rlats,max_lons_c,max_lats_c,kdplev,proj)
#Consolidating the arc objects associated with each storm:
zdr_areas_arr = np.zeros((len(zdr_areas)))
zdr_max_arr = np.zeros((len(zdr_max)))
zdr_mean_arr = np.zeros((len(zdr_mean)))
for i in range(len(zdr_areas)):
zdr_areas_arr[i] = zdr_areas[i].magnitude
zdr_max_arr[i] = zdr_max[i]
zdr_mean_arr[i] = zdr_mean[i]
zdr_centroid_lons = np.asarray(zdr_centroid_lon)
zdr_centroid_lats = np.asarray(zdr_centroid_lat)
zdr_con_areas = []
zdr_con_maxes = []
zdr_con_means = []
zdr_con_centroid_lon = []
zdr_con_centroid_lat = []
zdr_con_max_lon = []
zdr_con_max_lat = []
zdr_con_storm_lon = []
zdr_con_storm_lat = []
zdr_con_masks = []
zdr_con_dev = []
zdr_con_10max = []
zdr_con_mode = []
zdr_con_median = []
zdr_masks = np.asarray(zdr_masks)
#Consolidate KDP objects as well
kdp_areas_arr = np.zeros((len(kdp_areas)))
kdp_max_arr = np.zeros((len(kdp_max)))
for i in range(len(kdp_areas)):
kdp_areas_arr[i] = kdp_areas[i].magnitude
kdp_max_arr[i] = kdp_max[i]
kdp_centroid_lons = np.asarray(kdp_centroid_lon)
kdp_centroid_lats = np.asarray(kdp_centroid_lat)
kdp_con_areas = []
kdp_con_maxes = []
kdp_con_centroid_lon = []
kdp_con_centroid_lat = []
kdp_con_max_lon = []
kdp_con_max_lat = []
kdp_con_storm_lon = []
kdp_con_storm_lat = []
#Consolidate Hail objects as well
# hail_areas_arr = np.zeros((len(hail_areas)))
# for i in range(len(hail_areas)):
# hail_areas_arr[i] = hail_areas[i].magnitude
# hail_centroid_lons = np.asarray(hail_centroid_lon)
# hail_centroid_lats = np.asarray(hail_centroid_lat)
# hail_con_areas = []
# hail_con_centroid_lon = []
# hail_con_centroid_lat = []
# hail_con_storm_lon = []
# hail_con_storm_lat = []
#Consolidate Zhh objects as well
zhh_areas_arr = np.zeros((len(zhh_areas)))
zhh_max_arr = np.zeros((len(zhh_max)))
zhh_core_avg_arr = np.zeros((len(zhh_core_avg)))
for i in range(len(zhh_areas)):
zhh_areas_arr[i] = zhh_areas[i].magnitude
zhh_max_arr[i] = zhh_max[i]
zhh_core_avg_arr[i] = zhh_core_avg[i]
zhh_centroid_lons = np.asarray(zhh_centroid_lon)
zhh_centroid_lats = np.asarray(zhh_centroid_lat)
zhh_con_areas = []
zhh_con_maxes = []
zhh_con_core_avg = []
zhh_con_centroid_lon = []
zhh_con_centroid_lat = []
zhh_con_max_lon = []
zhh_con_max_lat = []
zhh_con_storm_lon = []
zhh_con_storm_lat = []
for i in enumerate(max_lons_c):
try:
#Find the arc objects associated with this storm:
zdr_objects_lons = zdr_centroid_lons[np.where(zdr_storm_lon == max_lons_c[i[0]])]
zdr_objects_lats = zdr_centroid_lats[np.where(zdr_storm_lon == max_lons_c[i[0]])]
#Get the sum of their areas
zdr_con_areas.append(np.sum(zdr_areas_arr[np.where(zdr_storm_lon == max_lons_c[i[0]])]))
#print("consolidated area", np.sum(zdr_areas_arr[np.where(zdr_storm_lon == max_lons_c[i[0]])]))
zdr_con_maxes.append(np.max(zdr_max_arr[np.where(zdr_storm_lon == max_lons_c[i[0]])]))
#print("consolidated max", np.max(zdr_areas_arr[np.where(zdr_storm_lon == max_lons_c[i[0]])]))
zdr_con_means.append(np.mean(zdr_mean_arr[np.where(zdr_storm_lon == max_lons_c[i[0]])]))
#print("consolidated mean", np.mean(zdr_areas_arr[np.where(zdr_storm_lon == max_lons_c[i[0]])]))
zdr_con_max_lon.append(rlons_2d[np.where(ZDRmasked==np.max(zdr_max_arr[np.where(zdr_storm_lon == max_lons_c[i[0]])]))])
zdr_con_max_lat.append(rlats_2d[np.where(ZDRmasked==np.max(zdr_max_arr[np.where(zdr_storm_lon == max_lons_c[i[0]])]))])
#Find the actual centroids
weighted_lons = zdr_objects_lons * zdr_areas_arr[np.where(zdr_storm_lon == max_lons_c[i[0]])]
zdr_con_centroid_lon.append(np.sum(weighted_lons) / np.sum(zdr_areas_arr[np.where(zdr_storm_lon == max_lons_c[i[0]])]))
weighted_lats = zdr_objects_lats * zdr_areas_arr[np.where(zdr_storm_lon == max_lons_c[i[0]])]
zdr_con_centroid_lat.append(np.sum(weighted_lats) / np.sum(zdr_areas_arr[np.where(zdr_storm_lon == max_lons_c[i[0]])]))
zdr_con_storm_lon.append(max_lons_c[i[0]])
zdr_con_storm_lat.append(max_lats_c[i[0]])
zdr_con_masks.append(np.sum(zdr_masks[np.where(zdr_storm_lon == max_lons_c[i[0]])],axis=0, dtype=bool))
mask_con = np.sum(zdr_masks[np.where(zdr_storm_lon == max_lons_c[i[0]])], axis=0, dtype=bool)
zdr_con_dev.append(np.std(ZDRmasked[mask_con]))
ZDRsorted = np.sort(ZDRmasked[mask_con])[::-1]
zdr_con_10max.append(np.mean(ZDRsorted[0:10]))
zdr_con_mode.append(stats.mode(ZDRmasked[mask_con]))
zdr_con_median.append(np.median(ZDRmasked[mask_con]))
except:
zdr_con_maxes.append(0)
zdr_con_means.append(0)
zdr_con_centroid_lon.append(0)
zdr_con_centroid_lat.append(0)
zdr_con_max_lon.append(0)
zdr_con_max_lat.append(0)
zdr_con_storm_lon.append(max_lons_c[i[0]])
zdr_con_storm_lat.append(max_lats_c[i[0]])
zdr_con_masks.append(0)
zdr_con_dev.append(0)
zdr_con_10max.append(0)
zdr_con_mode.append(0)
zdr_con_median.append(0)
try:
#Find the kdp objects associated with this storm:
kdp_objects_lons = kdp_centroid_lons[np.where(kdp_storm_lon == max_lons_c[i[0]])]
kdp_objects_lats = kdp_centroid_lats[np.where(kdp_storm_lon == max_lons_c[i[0]])]
#Get the sum of their areas
kdp_con_areas.append(np.sum(kdp_areas_arr[np.where(kdp_storm_lon == max_lons_c[i[0]])]))
kdp_con_maxes.append(np.max(kdp_max_arr[np.where(kdp_storm_lon == max_lons_c[i[0]])]))
kdp_con_max_lon.append(rlons_2d[np.where(KDPmasked==np.max(kdp_max_arr[np.where(kdp_storm_lon == max_lons_c[i[0]])]))])
kdp_con_max_lat.append(rlats_2d[np.where(KDPmasked==np.max(kdp_max_arr[np.where(kdp_storm_lon == max_lons_c[i[0]])]))])
#Find the actual centroids
weighted_lons_kdp = kdp_objects_lons * kdp_areas_arr[np.where(kdp_storm_lon == max_lons_c[i[0]])]
kdp_con_centroid_lon.append(np.sum(weighted_lons_kdp) / np.sum(kdp_areas_arr[np.where(kdp_storm_lon == max_lons_c[i[0]])]))
weighted_lats_kdp = kdp_objects_lats * kdp_areas_arr[np.where(kdp_storm_lon == max_lons_c[i[0]])]
kdp_con_centroid_lat.append(np.sum(weighted_lats_kdp) / np.sum(kdp_areas_arr[np.where(kdp_storm_lon == max_lons_c[i[0]])]))
kdp_con_storm_lon.append(max_lons_c[i[0]])
kdp_con_storm_lat.append(max_lats_c[i[0]])
except:
kdp_con_maxes.append(0)
kdp_con_max_lon.append(0)
kdp_con_max_lat.append(0)
kdp_con_centroid_lon.append(0)
kdp_con_centroid_lat.append(0)
kdp_con_storm_lon.append(0)
kdp_con_storm_lat.append(0)
# try:
# #Find the hail core objects associated with this storm:
# hail_objects_lons = hail_centroid_lons[np.where(hail_storm_lon == max_lons_c[i[0]])]
# hail_objects_lats = hail_centroid_lats[np.where(hail_storm_lon == max_lons_c[i[0]])]
# #Get the sum of their areas
# hail_con_areas.append(np.sum(hail_areas_arr[np.where(hail_storm_lon == max_lons_c[i[0]])]))
# #Find the actual centroids
# weighted_lons_hail = hail_objects_lons * hail_areas_arr[np.where(hail_storm_lon == max_lons_c[i[0]])]
# hail_con_centroid_lon.append(np.sum(weighted_lons_hail) / np.sum(hail_areas_arr[np.where(hail_storm_lon == max_lons_c[i[0]])]))
# weighted_lats_hail = hail_objects_lats * hail_areas_arr[np.where(hail_storm_lon == max_lons_c[i[0]])]
# hail_con_centroid_lat.append(np.sum(weighted_lats_hail) / np.sum(hail_areas_arr[np.where(hail_storm_lon == max_lons_c[i[0]])]))
# hail_con_storm_lon.append(max_lons_c[i[0]])
# hail_con_storm_lat.append(max_lats_c[i[0]])
# except:
# hail_con_centroid_lon.append(0)
# hail_con_centroid_lat.append(0)
# hail_con_storm_lon.append(0)
# hail_con_storm_lat.append(0)
try:
#Find the zhh objects associated with this storm:
zhh_objects_lons = zhh_centroid_lons[np.where(zhh_storm_lon == max_lons_c[i[0]])]
zhh_objects_lats = zhh_centroid_lats[np.where(zhh_storm_lon == max_lons_c[i[0]])]
#Get the sum of their areas
zhh_con_areas.append(np.sum(zhh_areas_arr[np.where(zhh_storm_lon == max_lons_c[i[0]])]))
zhh_con_maxes.append(np.max(zhh_max_arr[np.where(zhh_storm_lon == max_lons_c[i[0]])]))
zhh_con_core_avg.append(np.max(zhh_core_avg_arr[np.where(zhh_storm_lon == max_lons_c[i[0]])]))
zhh_con_max_lon.append(rlons_2d[np.where(REFmasked==np.max(zhh_max_arr[np.where(zhh_storm_lon == max_lons_c[i[0]])]))])
zhh_con_max_lat.append(rlats_2d[np.where(REFmasked==np.max(zhh_max_arr[np.where(zhh_storm_lon == max_lons_c[i[0]])]))])
#Find the actual centroids
weighted_lons_zhh = zhh_objects_lons * zhh_areas_arr[np.where(zhh_storm_lon == max_lons_c[i[0]])]
zhh_con_centroid_lon.append(np.sum(weighted_lons_zhh) / np.sum(zhh_areas_arr[np.where(zhh_storm_lon == max_lons_c[i[0]])]))
weighted_lats_zhh = zhh_objects_lats * zhh_areas_arr[np.where(zhh_storm_lon == max_lons_c[i[0]])]
zhh_con_centroid_lat.append(np.sum(weighted_lats_zhh) / np.sum(zhh_areas_arr[np.where(zhh_storm_lon == max_lons_c[i[0]])]))
zhh_con_storm_lon.append(max_lons_c[i[0]])
zhh_con_storm_lat.append(max_lats_c[i[0]])
except:
zhh_con_maxes.append(0)
zhh_con_core_avg.append(0)
zhh_con_max_lon.append(0)
zhh_con_max_lat.append(0)
zhh_con_centroid_lon.append(0)
zhh_con_centroid_lat.append(0)
zhh_con_storm_lon.append(0)
zhh_con_storm_lat.append(0)
#Calculate KDP-ZDR separation
# kdp_con_centroid_lons1 = np.asarray(kdp_con_centroid_lon)
# kdp_con_centroid_lats1 = np.asarray(kdp_con_centroid_lat)
# zdr_con_centroid_lons1 = np.asarray(zdr_con_centroid_lon)
# zdr_con_centroid_lats1 = np.asarray(zdr_con_centroid_lat)
# #Eliminate consolidated arcs smaller than a specified area
# area = 2 #km*2
# zdr_con_areas_arr = np.asarray(zdr_con_areas)
# zdr_con_centroid_lats = zdr_con_centroid_lats1[zdr_con_areas_arr > area]
# zdr_con_centroid_lons = zdr_con_centroid_lons1[zdr_con_areas_arr > area]
# kdp_con_centroid_lats = kdp_con_centroid_lats1[zdr_con_areas_arr > area]
# kdp_con_centroid_lons = kdp_con_centroid_lons1[zdr_con_areas_arr > area]
# zdr_con_max_lons1 = np.asarray(zdr_con_max_lon)[zdr_con_areas_arr > area]
# zdr_con_max_lats1 = np.asarray(zdr_con_max_lat)[zdr_con_areas_arr > area]
# kdp_con_max_lons1 = np.asarray(kdp_con_max_lon)[zdr_con_areas_arr > area]
# kdp_con_max_lats1 = np.asarray(kdp_con_max_lat)[zdr_con_areas_arr > area]
# zdr_con_max1 = np.asarray(zdr_con_maxes)[zdr_con_areas_arr > area]
# zdr_con_areas1 = zdr_con_areas_arr[zdr_con_areas_arr > area]
kdp_con_centroid_lat = np.asarray(kdp_con_centroid_lat)
kdp_con_centroid_lon = np.asarray(kdp_con_centroid_lon)
zdr_con_centroid_lat = np.asarray(zdr_con_centroid_lat)
zdr_con_centroid_lon = np.asarray(zdr_con_centroid_lon)
kdp_inds = np.where(kdp_con_centroid_lat*zdr_con_centroid_lat > 0)
distance_kdp_zdr = g.inv(kdp_con_centroid_lon[kdp_inds], kdp_con_centroid_lat[kdp_inds], zdr_con_centroid_lon[kdp_inds], zdr_con_centroid_lat[kdp_inds])
dist_kdp_zdr = distance_kdp_zdr[2] / 1000.
#Now make an array for the distances which will have the same shape as the lats to prevent errors
shaped_dist = np.zeros((np.shape(zdr_con_areas)))
shaped_dist[kdp_inds] = dist_kdp_zdr
#Get separation angle for KDP-ZDR centroids
back_k = distance_kdp_zdr[1]
for i in range(back_k.shape[0]):
if distance_kdp_zdr[1][i] < 0:
back_k[i] = distance_kdp_zdr[1][i] + 360
forw_k = np.abs(back_k - storm_relative_dir)
rawangle_k = back_k - storm_relative_dir
#Account for weird angles
for i in range(back_k.shape[0]):
if forw_k[i] > 180:
forw_k[i] = 360 - forw_k[i]
rawangle_k[i] = (360-forw_k[i])*(-1)
rawangle_k = rawangle_k*(-1)
#Now make an array for the distances which will have the same shape as the lats to prevent errors
shaped_ang = np.zeros((np.shape(zdr_con_areas)))
shaped_ang[kdp_inds] = rawangle_k
shaped_ang = (180-np.abs(shaped_ang))*(shaped_ang/np.abs(shaped_ang))
new_angle_all = shaped_ang + storm_relative_dir
shaped_ang = (new_angle_all - Bunkers_m)* (-1)
shaped_ang = 180 - shaped_ang
###Now let's consolidate everything to fit the Pandas dataframe!
p_zdr_areas = []
p_zdr_maxes = []
p_zdr_means = []
p_zdr_devs = []
p_zdr_10max = []
p_zdr_mode = []
p_zdr_median = []
# p_hail_areas = []
p_zhh_areas = []
p_zhh_maxes = []
p_zhh_core_avgs = []
p_separations = []
p_sp_angle = []
for storm in enumerate(max_lons_c):
matching_ind = np.flatnonzero(np.isclose(max_lons_c[storm[0]], zdr_con_storm_lon, rtol=1e-05))
if matching_ind.shape[0] > 0:
p_zdr_areas.append((zdr_con_areas[matching_ind[0]]))
p_zdr_maxes.append((zdr_con_maxes[matching_ind[0]]))
p_zdr_means.append((zdr_con_means[matching_ind[0]]))
p_zdr_devs.append((zdr_con_dev[matching_ind[0]]))
p_zdr_10max.append((zdr_con_10max[matching_ind[0]]))
p_zdr_mode.append((zdr_con_mode[matching_ind[0]]))
p_zdr_median.append((zdr_con_median[matching_ind[0]]))
p_separations.append((shaped_dist[matching_ind[0]]))
p_sp_angle.append((shaped_ang[matching_ind[0]]))
else:
p_zdr_areas.append((0))
p_zdr_maxes.append((0))
p_zdr_means.append((0))
p_zdr_devs.append((0))
p_zdr_10max.append((0))
p_zdr_mode.append((0))
p_zdr_median.append((0))
p_separations.append((0))
p_sp_angle.append((0))
# matching_ind_hail = np.flatnonzero(np.isclose(max_lons_c[storm[0]], hail_con_storm_lon, rtol=1e-05))
# if matching_ind_hail.shape[0] > 0:
# p_hail_areas.append((hail_con_areas[matching_ind_hail[0]]))
# else:
# p_hail_areas.append((0))
matching_ind_zhh = np.flatnonzero(np.isclose(max_lons_c[storm[0]],zhh_con_storm_lon, rtol=1e-05))
if matching_ind_zhh.shape[0] > 0:
p_zhh_maxes.append((zhh_con_maxes[matching_ind_zhh[0]]))
p_zhh_areas.append((zhh_con_areas[matching_ind_zhh[0]]))
p_zhh_core_avgs.append((zhh_con_core_avg[matching_ind_zhh[0]]))
else:
p_zhh_areas.append((0))
p_zhh_maxes.append((0))
p_zhh_core_avgs.append((0))
#Now start plotting stuff!
if np.asarray(zdr_centroid_lon).shape[0] > 0:
ax.scatter(zdr_centroid_lon, zdr_centroid_lat, marker = '*', s = 100, color = 'black', zorder = 10, transform=ccrs.PlateCarree())
if np.asarray(kdp_centroid_lon).shape[0] > 0:
ax.scatter(kdp_centroid_lon, kdp_centroid_lat, marker = '^', s = 100, color = 'black', zorder = 10, transform=ccrs.PlateCarree())
#Uncomment to print all object areas
#for i in enumerate(zdr_areas):
# plt.text(zdr_centroid_lon[i[0]]+.016, zdr_centroid_lat[i[0]]+.016, "%.2f km^2" %(zdr_areas[i[0]].magnitude), size = 23)
#plt.text(zdr_centroid_lon[i[0]]+.016, zdr_centroid_lat[i[0]]+.016, "%.2f km^2 / %.2f km / %.2f dB" %(zdr_areas[i[0]].magnitude, zdr_dist[i[0]], zdr_forw[i[0]]), size = 23)
#plt.annotate(zdr_areas[i[0]], (zdr_centroid_lon[i[0]],zdr_centroid_lat[i[0]]))
#ax.contourf(rlons[0,:,:],rlats[0,:,:],KDPmasked,KDPlevels1,linewide = .01, colors ='b', alpha = .5)
#plt.tight_layout()
#plt.savefig('ZDRarcannotated.png')
storm_times = []
for l in range(len(max_lons_c)):
storm_times.append((time_start))
tracking_index = tracking_index + 1
#If there are no storms, set everything to empty arrays!
else:
storm_ids = []
storm_ids = []
max_lons_c = []
max_lats_c = []
p_zdr_areas = []
p_zdr_maxes = []
p_zdr_means = []
p_zdr_devs = []
p_zdr_10max = []
p_zdr_mode = []
p_zdr_median = []
#p_hail_areas = []
p_zhh_areas = []
p_zhh_maxes = []
p_zhh_core_avgs = []
p_separations = []
p_sp_angle = []
zdr_con_areas1 = []
storm_times = time_start
#Now record all data in a Pandas dataframe.
new_cells = pd.DataFrame({
'scan': scan_index,
'storm_id' : storm_ids,
'storm_id1' : storm_ids,
'storm_lon' : max_lons_c,
'storm_lat' : max_lats_c,
'zdr_area' : p_zdr_areas,
'zdr_max' : p_zdr_maxes,
'zdr_mean' : p_zdr_means,
'zdr_std' : p_zdr_devs,
'zdr_10max' : p_zdr_10max,
'zdr_mode' : p_zdr_mode,
'zdr_median' : p_zdr_median,
#'hail_area' : p_hail_areas,
'zhh_area' : p_zhh_areas,
'zhh_max' : p_zhh_maxes,
'zhh_core_avg' : p_zhh_core_avgs,
'kdp_zdr_sep' : p_separations,
'kdp_zdr_angle' : p_sp_angle,
'times' : storm_times
})
new_cells.set_index(['scan', 'storm_id'], inplace=True)
if scan_index == 0:
tracks_dataframe = new_cells
else:
tracks_dataframe = tracks_dataframe.append(new_cells)
n = n+1
scan_index = scan_index + 1
#Plot the consolidated stuff!
#Write some text objects for the ZDR arc attributes to add to the placefile
f.write('TimeRange: '+str(time_start.year)+'-'+str(month)+'-'+str(d_beg)+'T'+str(h_beg)+':'+str(min_beg)+':'+str(sec_beg)+'Z '+str(time_start.year)+'-'+str(month)+'-'+str(d_end)+'T'+str(h_end)+':'+str(min_end)+':'+str(sec_end)+'Z')
f.write('\n')
f.write("Color: 139 000 000 \n")
f.write('Font: 1, 30, 1,"Arial" \n')
for y in range(len(p_zdr_areas)):
#f.write('Text: '+str(max_lats_c[y])+','+str(max_lons_c[y])+', 1, "X"," Arc Area: '+str(p_zdr_areas[y])+'\\n Arc Mean: '+str(p_zdr_means[y])+'\\n KDP-ZDR Separation: '+str(p_separations[y])+'\\n Separation Angle: '+str(p_sp_angle[y])+'" \n')
f.write('Text: '+str(max_lats_c[y])+','+str(max_lons_c[y])+', 1, "X"," Arc Area: %.2f km^2 \\n Arc Mean: %.2f dB \\n Arc 10 Max Mean: %.2f dB \\n KDP-ZDR Separation: %.2f km \\n Separation Angle: %.2f degrees \n' %(p_zdr_areas[y], p_zdr_means[y], p_zdr_10max[y], p_separations[y], p_sp_angle[y]))
title_plot = plt.title(station+' Radar Reflectivity, ZDR, and KDP '+str(time_start.year)+'-'+str(time_start.month)+'-'+str(time_start.day)+
' '+str(hour)+':'+str(minute)+' UTC', size = 25)
try:
plt.plot([zdr_con_centroid_lon[kdp_inds], kdp_con_centroid_lon[kdp_inds]], [zdr_con_centroid_lat[kdp_inds],kdp_con_centroid_lat[kdp_inds]], color = 'k', linewidth = 5, transform=ccrs.PlateCarree())
except:
print('Separation Angle Failure')
ref_centroid_lon = max_lons_c
ref_centroid_lat = max_lats_c
if len(max_lons_c) > 0:
ax.scatter(max_lons_c,max_lats_c, marker = "o", color = 'k', s = 500, alpha = .6)
for i in enumerate(ref_centroid_lon):
plt.text(ref_centroid_lon[i[0]]+.016, ref_centroid_lat[i[0]]+.016, "storm_id: %.1f" %(storm_ids[i[0]]), size = 25)
#Comment out this line if not plotting tornado tracks
#plt.plot([start_torlons, end_torlons], [start_torlats, end_torlats], color = 'purple', linewidth = 5, transform=ccrs.PlateCarree())
#Add legend stuff
zdr_outline = mlines.Line2D([], [], color='blue', linewidth = 5, linestyle = 'solid', label='ZDR Arc Outline(Area/Max)')
kdp_outline = mlines.Line2D([], [], color='green', linewidth = 5,linestyle = 'solid', label='"KDP Foot" Outline')
separation_vector = mlines.Line2D([], [], color='black', linewidth = 5,linestyle = 'solid', label='KDP/ZDR Centroid Separation Vector (Red Text=Distance)')
#tor_track = mlines.Line2D([], [], color='purple', linewidth = 5,linestyle = 'solid', label='Tornado Tracks')
elevation = mlines.Line2D([], [], color='grey', linewidth = 5,linestyle = 'solid', label='Height AGL (m)')
plt.legend(handles=[zdr_outline, kdp_outline, separation_vector, elevation], loc = 3, fontsize = 25)
alt_levs = [1000, 2000]
plt.savefig('Machine_Learning/ARCALG_newforest'+station+str(time_start.year)+str(time_start.month)+str(day)+str(hour)+str(minute)+'.png')
print('Figure Saved')
plt.close()
zdr_out_list.append(zdr_outlines)
#except:
# traceback.print_exc()
# continue
f.close()
plt.show()
print('Fin')
#export_csv = tracks_dataframe.to_csv(r'C:\Users\Nick\Downloads\tracksdataframe.csv',index=None,header=True)
return tracks_dataframe, zdr_out_list