From f45b78cef50fa36bed14e69db5dfd009f29d6e84 Mon Sep 17 00:00:00 2001 From: Matt Craig Date: Sun, 1 Oct 2023 14:47:51 -0500 Subject: [PATCH] Draft reimplementation of Broeg weights Much, much faster, and perhaps even correct --- .../differential_photometry/broeg_weights.py | 61 +++++++++++++++++++ 1 file changed, 61 insertions(+) diff --git a/stellarphot/differential_photometry/broeg_weights.py b/stellarphot/differential_photometry/broeg_weights.py index 39622e45..311e0090 100644 --- a/stellarphot/differential_photometry/broeg_weights.py +++ b/stellarphot/differential_photometry/broeg_weights.py @@ -143,3 +143,64 @@ def calc_comp_mag(photometry, weights_table, exclude_star_id=None): agged = joined.group_by('BJD').groups.aggregate(np.nansum) # Calculate the weighted mean magnitude return agged['weighted_mag'] + + +def broeg_weights2(mags, errors, max_iterations=10, convergence_threshold=0.0001): + """ + Calculate the Broeg weights for a given set of instrumental magnitudes and errors. + + Parameters + ---------- + + mags : array-like + The instrumental magnitudes. + + errors : array-like + The instrumental magnitude errors. + + Returns + ------- + array-like + The Broeg weights. + + Notes + ----- + + This implementation of the algorithm described in C. Broeg's + algorithm ('A new algorithm for differential photometry: + computing an optimum artificial comparison + star', 2005, http://adsabs.harvard.edu/abs/2005AN....326..134B) is based + heavily on the LEMON package at + """ + weight_vec = 1.0 / (errors.mean(axis=1)**2) + n_stars = mags.shape[0] + + weight_vecs = [weight_vec / weight_vec.sum()] + light_curves = [] + for i in range(max_iterations): + if i > 2: + # Check for convergence + if np.abs(weight_vecs[-1] - weight_vecs[-2]).max() < convergence_threshold: + weight_vecs = weight_vecs[:-1] + break + + weights = np.array( + [ + weight_vec for _ in range(n_stars) + ] + ) + weights[np.diag_indices(n_stars)] = 0.0 + weights_norm_factor = 1 / weights.sum(axis=1) + weights_norm_matrix = np.zeros([n_stars, n_stars]) + weights_norm_matrix[np.diag_indices(n_stars)] = weights_norm_factor + comp_mags = weights_norm_matrix @ weights @ mags + delta_mags = mags - comp_mags + light_curves.append(delta_mags) + # print(f"Iteration {i}: {weight_vec}") + # print(f"\tNormalized weights: {weights_norm_matrix @ weights}") + # print(f"Delta mags: {delta_mags}") + + weight_vec = 1 / delta_mags.std(axis=1)**2 + weight_vecs.append(weight_vec / weight_vec.sum()) + + return weight_vecs, light_curves