-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreuniens_betaseries_analysis.py
232 lines (167 loc) · 11 KB
/
reuniens_betaseries_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import os
from posix import listdir
from numpy.core.defchararray import startswith
import pandas as pd
import numpy as np
import nibabel as nb
import scipy.stats as stats
from glob import glob
from copy import deepcopy
%matplotlib inline
import matplotlib.pyplot as plt
from pylab import *
import seaborn as sns
import statsmodels.api as sm
import statsmodels.formula.api as smf
import statannot
proj_dir = '/home/data/madlab/McMakin_EMU/derivatives'
subjects = os.listdir(f'{proj_dir}/dwi/mvrn/mvrn_preed_thal_hemikmeans/')
mask_filenames = {}
cope_test = {}
cope_study = {}
# Iterating over subjects to get their respective contrasts based on our masks of interest (RE, CA1, mPFC)
for sid in subjects:
# Defining path to STUDY RE, CA1, and mPFC masks (in subject-specific space)
mask_filenames[sid]= glob(f'{proj_dir}/masks/mvrn/new_midthal/new_RE_inepi/study/{sid}/temp2epi/_subject_id_{sid}/*.nii')
mask_filenames[sid].extend(glob(f'{proj_dir}/masks/mvrn/new_midthal/CA1_inepi/study/{sid}/temp2epi/_subject_id_{sid}/*.nii.gz'))
mask_filenames[sid].extend(glob(f'{proj_dir}/masks/mvrn/new_midthal/mPFC_inepi/study/{sid}/temp2epi/_subject_id_{sid}/*.nii.gz'))
# Defining path to TEST RE, CA1, and mPFC masks (in subject-specific space)
mask_filenames[sid].extend(glob(f'{proj_dir}/masks/mvrn/new_midthal/new_RE_inepi/test/{sid}/temp2epi/_subject_id_{sid}/*.nii'))
mask_filenames[sid].extend(glob(f'{proj_dir}/masks/mvrn/new_midthal/CA1_inepi/test/{sid}/temp2epi/_subject_id_{sid}/*.nii.gz'))
mask_filenames[sid].extend(glob(f'{proj_dir}/masks/mvrn/new_midthal/mPFC_inepi/test/{sid}/temp2epi/_subject_id_{sid}/*.nii.gz'))
# Getting the STUDY & TEST BSC contrats per subject
cope_study[sid] = sorted(glob(f'{proj_dir}/frstlvl/study_lss_betaseries/{sid}/*_?????_*.nii.gz'))
cope_test[sid] = sorted(glob(f'{proj_dir}/frstlvl/test_lss_betaseries/{sid}/Lures*_????.nii.gz'))
# Checking that I'm capturing all my masks and copes
# print(mask_filenames[sid])
# print(cope_study[sid])
print('Dict Complete')
all_data = {}
# subjects = ['1001']
for sid in subjects:
print(sid, 'Mask')
curr_subj_dict = {}
subj_mask = {}
copes = {}
for mask in mask_filenames[sid]:
name, _ = os.path.basename(mask).split('_trans')
# Loading matrices with our mask data
subj_mask[name] = nb.load(mask).get_fdata()[:,:,:,0]
# Splitting copes labels so as to get relevant portion (e.g., LureCRNeg_run1)
# Study
for cp_std in cope_study[sid]:
name, _, _ = os.path.basename(cp_std).split('.')
# Loading matrices with our cope study data
copes[name] = nb.load(cp_std).get_fdata()
# Test
for cp_tst in cope_test[sid]:
name, _, _ = os.path.basename(cp_tst).split('.')
# Loading matrices with our cope test data
copes[name] = nb.load(cp_tst).get_fdata()
# Getting contrast labels only (without run number) for study and test
for session in ['study', 'test']:
if session == 'study':
# Listing STUDY contrasts for negative, neutral, and positive stimuli
orig_study_contrasts = os.listdir(f'{proj_dir}/frstlvl/{session}_lss_betaseries/{sid}')
# Removing the run and nii.gz parts of the contrast labels
split_study_contrasts = [x[:-12] for x in orig_study_contrasts]
elif session == 'test':
# Listing TEST contrasts for negative, neutral, and positive stimuli
orig_test_contrasts = os.listdir(f'{proj_dir}/frstlvl/{session}_lss_betaseries/{sid}')
# Removing the run and nii.gz parts of the contrast labels
split_test_contrasts = [x[:-12] for x in orig_test_contrasts]
# Adding study contratst to dict.
for cont_study in split_study_contrasts:
if f'{cont_study}_run1' in copes.keys() and f'{cont_study}_run2' not in copes.keys():
copes[f'{cont_study}_combined'] = deepcopy(copes[f'{cont_study}_run1'])
elif f'{cont_study}_run2' in copes.keys() and f'{cont_study}_run1' not in copes.keys():
copes[f'{cont_study}_combined'] = deepcopy(copes[f'{cont_study}_run2'])
elif f'{cont_study}_run1' in copes.keys() and f'{cont_study}_run2' in copes.keys():
copes[f'{cont_study}_combined'] = np.concatenate((copes[f'{cont_study}_run1'], copes[f'{cont_study}_run2']), axis=3)
for cont_test in split_test_contrasts:
# original attempt
if f'{cont_test}_run1' in copes.keys() and f'{cont_test}_run2' not in copes.keys() and f'{cont_test}_run3' not in copes.keys() and f'{cont_test}_run4' not in copes.keys():
copes[f'{cont_test}_combined'] = deepcopy(copes[f'{cont_test}_run1'])
elif f'{cont_test}_run2' in copes.keys() and f'{cont_test}_run1' not in copes.keys() and f'{cont_test}_run3' not in copes.keys() and f'{cont_test}_run4' not in copes.keys():
copes[f'{cont_test}_combined'] = deepcopy(copes[f'{cont_test}_run2'])
elif f'{cont_test}_run3' in copes.keys() and f'{cont_test}_run1' not in copes.keys() and f'{cont_test}_run2' not in copes.keys() and f'{cont_test}_run4' not in copes.keys():
copes[f'{cont_test}_combined'] = deepcopy(copes[f'{cont_test}_run3'])
elif f'{cont_test}_run4' in copes.keys() and f'{cont_test}_run1' not in copes.keys() and f'{cont_test}_run2' not in copes.keys() and f'{cont_test}_run3' not in copes.keys():
copes[f'{cont_test}_combined'] = deepcopy(copes[f'{cont_test}_run4'])
elif f'{cont_test}_run1' in copes.keys() and f'{cont_test}_run2' in copes.keys() and f'{cont_test}_run3' in copes.keys() and f'{cont_test}_run4' in copes.keys():
copes[f'{cont_test}_combined'] = np.concatenate((copes[f'{cont_test}_run1'], copes[f'{cont_test}_run2'], copes[f'{cont_test}_run3'], copes[f'{cont_test}_run4']), axis=3)
# Adding combination of available contrast parameter-runs for subjects that do not meet the criteria from above
elif f'{cont_test}_run1' in copes.keys() and f'{cont_test}_run2' in copes.keys() and f'{cont_test}_run4' in copes.keys():
copes[f'{cont_test}_combined'] = np.concatenate((copes[f'{cont_test}_run1'], copes[f'{cont_test}_run2'], copes[f'{cont_test}_run4']), axis=3)
elif f'{cont_test}_run1' in copes.keys() and f'{cont_test}_run3' in copes.keys() and f'{cont_test}_run4' in copes.keys():
copes[f'{cont_test}_combined'] = np.concatenate((copes[f'{cont_test}_run1'], copes[f'{cont_test}_run3'], copes[f'{cont_test}_run4']), axis=3)
elif f'{cont_test}_run1' in copes.keys() and f'{cont_test}_run4' in copes.keys():
copes[f'{cont_test}_combined'] = np.concatenate((copes[f'{cont_test}_run1'], copes[f'{cont_test}_run4']), axis=3)
elif f'{cont_test}_run1' in copes.keys() and f'{cont_test}_run2' in copes.keys() and f'{cont_test}_run3' in copes.keys():
copes[f'{cont_test}_combined'] = np.concatenate((copes[f'{cont_test}_run1'], copes[f'{cont_test}_run2'], copes[f'{cont_test}_run3']), axis=3)
elif f'{cont_test}_run1' in copes.keys() and f'{cont_test}_run3' in copes.keys():
copes[f'{cont_test}_combined'] = np.concatenate((copes[f'{cont_test}_run1'], copes[f'{cont_test}_run3']), axis=3)
elif f'{cont_test}_run2' in copes.keys() and f'{cont_test}_run3' in copes.keys() and f'{cont_test}_run4' in copes.keys():
copes[f'{cont_test}_combined'] = np.concatenate((copes[f'{cont_test}_run2'], copes[f'{cont_test}_run3'], copes[f'{cont_test}_run4']), axis=3)
elif f'{cont_test}_run2' in copes.keys() and f'{cont_test}_run4' in copes.keys():
copes[f'{cont_test}_combined'] = np.concatenate((copes[f'{cont_test}_run2'], copes[f'{cont_test}_run4']), axis=3)
elif f'{cont_test}_run1' in copes.keys() and f'{cont_test}_run2' in copes.keys():
copes[f'{cont_test}_combined'] = np.concatenate((copes[f'{cont_test}_run1'], copes[f'{cont_test}_run2']), axis=3)
# printing masks results for each available cope per subject
for mask, mask_data in subj_mask.items():
for cope, contrast_data in copes.items():
curr_subj_dict[f'{mask}_{cope}'] = contrast_data[mask_data > 0].mean(axis=(0))
all_data[sid] = curr_subj_dict
area_list = []
contrast_list = []
# Creates a list of unique regions and contrasts
for x in all_data:
# Creating copy of dictionary so that it gets updated with the new names
# for the mask+copes.
orig_columns = all_data[x].copy().keys()
for y in orig_columns:
# Renaming masks+copes labels, such that we are separating
# the brain area from the copes name
if y.startswith('midthal'):
area,contrast = y.split('_vent_')
# print(area, contrast)
elif y.startswith('emu_CA1'):
new_name = y[4:]
# print(new_name)
area, contrast = new_name.split('_sf_')
# print(area, contrast)
elif y.startswith('emu_mvrn'):
new_name = y[9:]
temp_name = new_name.replace('mpfc_', 'mpfc_temp_')
area, contrast = temp_name.split('_temp_')
# print(area,contrast)
all_data[x][f'{area}-{contrast}'] = all_data[x][y]
area_list.append(area)
contrast_list.append(contrast)
area_list = list(set(area_list))
# print(area_list)
contrast_list = list(set(contrast_list))
stat_dict = {'Subject':[]}
for contrast in contrast_list:
for area in area_list:
# Checking to see if there are no areas
for area_2 in [x for x in area_list if area not in x]:
stat_dict[f'{area}_{area_2}-{contrast}'] = []
#Calculates Pearson R values for each regionXregionXcontrast pairing or returns a nan
#if a regionXcontrast is missing or if a contrast has less than 4 trials
for key in sorted(all_data):
stat_dict['Subject'].append(key)
for contrast in contrast_list:
for area in area_list:
# Checking to see if there are no areas
for area_2 in [x for x in area_list if area not in x]:
try:
if len(all_data[key][f'{area}-{contrast}']) > 4:
stat_dict[f'{area}_{area_2}-{contrast}'].append(\
stats.pearsonr(all_data[key][f'{area}-{contrast}'],
all_data[key][f'{area_2}-{contrast}'])[0])
else:
stat_dict[f'{area}_{area_2}-{contrast}'].append(np.nan)
except KeyError:
stat_dict[f'{area}_{area_2}-{contrast}'].append(np.nan)
stat_frame = pd.DataFrame.from_dict(stat_dict)