forked from jadianes/spark-movie-lens
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
46 lines (34 loc) · 1.59 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
from flask import Blueprint
main = Blueprint('main', __name__)
import json
from engine import RecommendationEngine
import logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
from flask import Flask, request
@main.route("/<int:user_id>/ratings/top/<int:count>", methods=["GET"])
def top_ratings(user_id, count):
logger.debug("User %s TOP ratings requested", user_id)
top_ratings = recommendation_engine.get_top_ratings(user_id,count)
return json.dumps(top_ratings)
@main.route("/<int:user_id>/ratings/<int:movie_id>", methods=["GET"])
def movie_ratings(user_id, movie_id):
logger.debug("User %s rating requested for movie %s", user_id, movie_id)
ratings = recommendation_engine.get_ratings_for_movie_ids(user_id, [movie_id])
return json.dumps(ratings)
@main.route("/<int:user_id>/ratings", methods = ["POST"])
def add_ratings(user_id):
# get the ratings from the Flask POST request object
ratings_list = request.form.keys()[0].strip().split("\n")
ratings_list = map(lambda x: x.split(","), ratings_list)
# create a list with the format required by the negine (user_id, movie_id, rating)
ratings = map(lambda x: (user_id, int(x[0]), float(x[1])), ratings_list)
# add them to the model using then engine API
recommendation_engine.add_ratings(ratings)
return json.dumps(ratings)
def create_app(spark_context, dataset_path):
global recommendation_engine
recommendation_engine = RecommendationEngine(spark_context, dataset_path)
app = Flask(__name__)
app.register_blueprint(main)
return app