forked from rdegiovanni/mBERT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
run-codebert.py
63 lines (46 loc) · 1.76 KB
/
run-codebert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
#!/usr/bin/python
import sys
import json
import collections
import string
from transformers import RobertaConfig, RobertaTokenizer, RobertaForMaskedLM, pipeline
def load_vocab(vocab_file):
"""Loads a vocabulary file into a dictionary."""
vocab = collections.OrderedDict()
f = open(vocab_file,)
reader = json.load(f)
for token in reader.keys():
index = reader[token]
token = token.encode("ascii", "ignore").decode()
token = ''.join(token.split())
#print("token: '",token,"'")
vocab[index] = token
f.close()
return vocab
CODEBERT_MLM="pre-trained/codebert-base-mlm"
model = RobertaForMaskedLM.from_pretrained(CODEBERT_MLM)
tokenizer = RobertaTokenizer.from_pretrained(CODEBERT_MLM)
CODE = sys.argv[1]
# Load vocab file
my_dict = load_vocab('pre-trained/codebert-base-mlm/vocab.json')
tokenized_CODE = tokenizer.tokenize(CODE)
tokens_count = str(len(tokenized_CODE))
mask_index = tokenized_CODE.index("<mask>")
start_index = max(0, mask_index - 256)
stop_index = min(len(tokenized_CODE), mask_index + 256) - 1
SHRINKED_TOKENS = tokenized_CODE[start_index:max(stop_index,511)]
assert(len(SHRINKED_TOKENS)) #512 is the maximum sequence length for codebert model
tokens_ids = tokenizer.convert_tokens_to_ids(SHRINKED_TOKENS)
SHRINKED_CODE = tokenizer.decode(tokens_ids)
fill_mask = pipeline('fill-mask', model=model, tokenizer=tokenizer)
outputs = fill_mask(SHRINKED_CODE)
for out in outputs:
json_str = json.dumps(out)
json_object = json.loads(json_str)
token_str_exists = False; #"token_str" in json_object
if not token_str_exists:
index = json_object["token"]
token_str = my_dict[index]
token_str = token_str.encode("ascii", "ignore").decode()
json_object['token_str'] = token_str
print(json_object)