Model | Description | Dataset | Download |
---|---|---|---|
transformer_lm.gbw.adaptive_huge |
Adaptive Inputs (Baevski and Auli, 2018) 1026M params |
Google Billion Words | download (.tar.bz2) |
transformer_lm.wiki103.adaptive |
Adaptive Inputs (Baevski and Auli, 2018) 247M params |
WikiText-103 | download (.tar.bz2) |
transformer_lm.wmt19.en |
English LM (Ng et al., 2019) |
WMT News Crawl | download (.tar.gz) |
transformer_lm.wmt19.de |
German LM (Ng et al., 2019) |
WMT News Crawl | download (.tar.gz) |
transformer_lm.wmt19.ru |
Russian LM (Ng et al., 2019) |
WMT News Crawl | download (.tar.gz) |
We require a few additional Python dependencies for preprocessing:
pip install fastBPE sacremoses
To sample from a language model using PyTorch Hub:
import torch
# List available models
torch.hub.list('pytorch/fairseq') # [..., 'transformer_lm.wmt19.en', ...]
# Load an English LM trained on WMT'19 News Crawl data
en_lm = torch.hub.load('pytorch/fairseq', 'transformer_lm.wmt19.en', tokenizer='moses', bpe='fastbpe')
en_lm.eval() # disable dropout
# Move model to GPU
en_lm.cuda()
# Sample from the language model
en_lm.sample('Barack Obama', beam=1, sampling=True, sampling_topk=10, temperature=0.8)
# "Barack Obama is coming to Sydney and New Zealand (...)"
# Compute perplexity for a sequence
en_lm.score('Barack Obama is coming to Sydney and New Zealand')['positional_scores'].mean().neg().exp()
# tensor(15.1474)
# The same interface can be used with custom models as well
from fairseq.models.transformer_lm import TransformerLanguageModel
custom_lm = TransformerLanguageModel.from_pretrained('/path/to/model/dir', 'checkpoint100.pt', tokenizer='moses', bpe='fastbpe')
custom_lm.sample('Barack Obama', beam=5)
# "Barack Obama (...)"
First download and prepare the WikiText-103 dataset:
cd examples/language_model/
bash prepare-wikitext-103.sh
cd ../..
Next preprocess/binarize the data:
TEXT=examples/language_model/wikitext-103
fairseq-preprocess \
--only-source \
--trainpref $TEXT/wiki.train.tokens \
--validpref $TEXT/wiki.valid.tokens \
--testpref $TEXT/wiki.test.tokens \
--destdir data-bin/wikitext-103 \
--workers 20
Next we'll train a basic transformer language model on wikitext-103. For more advanced examples (e.g., using adaptive inputs), please see the Transformer LM README.
To train a basic LM (assumes 2 GPUs):
$ fairseq-train --task language_modeling \
data-bin/wikitext-103 \
--save-dir checkpoints/transformer_wikitext-103 \
--arch transformer_lm --share-decoder-input-output-embed \
--dropout 0.1 \
--optimizer adam --adam-betas '(0.9, 0.98)' --weight-decay 0.01 --clip-norm 0.0 \
--lr 0.0005 --lr-scheduler inverse_sqrt --warmup-updates 4000 --warmup-init-lr 1e-07 \
--tokens-per-sample 512 --sample-break-mode none \
--max-tokens 2048 --update-freq 16 \
--fp16 \
--max-update 50000
If you run out of memory, try reducing --max-tokens
(max number of tokens per
batch) or --tokens-per-sample
(max sequence length). You can also adjust
--update-freq
to accumulate gradients and simulate training on a different
number of GPUs.
fairseq-eval-lm data-bin/wikitext-103 \
--path checkpoints/transformer_wiki103/checkpoint_best.pt \
--sample-break-mode complete --max-tokens 3072 \
--context-window 2560 --softmax-batch 1024
Please see the convolutional LM README for instructions to train convolutional language models.