forked from pengyanghua/optimus
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstatsor.py
132 lines (113 loc) · 5.96 KB
/
statsor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import time
import threading
import Queue
import params
class Statsor(object):
def __init__(self, name, logger, statsor_queue, hub_queue, timer, scheduler, progressor):
self.name = name
self.logger = logger
self.statsor_queue = statsor_queue
self.hub_queue = hub_queue
self.timer = timer
self.scheduler = scheduler
self.progressor = progressor
self.tic = time.time()
self.end = None
self.exit_flag = False
self.msg_handler = threading.Thread(target=self._msg_handle, args=())
self.msg_handler.start()
self.stats_txt = "exp-stats.txt"
f = open(self.stats_txt, 'w')
f.close()
def _msg_handle(self):
while not self.exit_flag:
try:
(t, src, dest, type, job) = self.statsor_queue.get(False)
except:
continue
self.logger.debug(self.name + ":: " + str((t, src, dest, type, job)))
assert t == self.timer.get_clock()
assert dest == "statsor"
if type == "control" and src == "scheduler":
# signal that the scheduler has finished its timeslot and we can start getting statistics
self._stats(t)
else:
raise RuntimeError
self.logger.debug(self.name + ":: " + self.name + " has exited.")
def _stats(self, t):
self.logger.info(self.name + ":: " + "time slot: " + str(t) + "")
num_submit_jobs = len(self.scheduler.uncompleted_jobs) + len(self.scheduler.completed_jobs)
num_completed_jobs = len(self.scheduler.completed_jobs)
num_uncompleted_jobs = len(self.scheduler.uncompleted_jobs)
self.logger.info(self.name + ":: " + "submitted jobs: " + str(num_submit_jobs) + ", " +
"completed jobs: " + str(num_completed_jobs) + ", " +
"uncompleted_jobs: " + str(num_uncompleted_jobs))
cluster_cpu_util = float('%.3f' % (1.0 * self.scheduler.cluster_used_cpu / self.scheduler.cluster_num_cpu))
cluster_mem_util = float('%.3f' % (1.0 * self.scheduler.cluster_used_mem / self.scheduler.cluster_num_mem))
cluster_bw_util = float('%.3f' % (1.0 * self.scheduler.cluster_used_bw / self.scheduler.cluster_num_bw))
cluster_gpu_util = float('%.3f' % (1.0 * self.scheduler.cluster_used_gpu / self.scheduler.cluster_num_gpu))
self.logger.info(self.name + ":: " + "CPU utilization: " + '%.3f' % (100.0 * cluster_cpu_util) + "%, " +
"MEM utilization: " + '%.3f' % (100.0 * cluster_mem_util) + "%, " +
"BW utilization: " + '%.3f' % (100.0 * cluster_bw_util) + "%, " +
"GPU utilization: " + '%.3f' % (100.0 * cluster_gpu_util) + "%, "
)
# get total number of running tasks
tot_num_running_tasks = self.progressor.num_running_tasks
completion_time_list = []
completion_slot_list = []
for job in self.scheduler.completed_jobs:
completion_time_list.append(job.end_time - job.arrival_time)
completion_slot_list.append(job.end_slot - job.arrival_slot + 1)
try:
avg_completion_time = 1.0 * sum(completion_time_list) / len(completion_time_list)
avg_completion_slot = sum(completion_slot_list) / len(completion_slot_list)
except:
self.logger.debug(self.name + ":: " + "No jobs are finished!!!")
else:
self.logger.debug(
self.name + ":: " + "average completion time (including speed measurement): " + '%.3f' % avg_completion_time + " seconds" + \
", average completion slots: " + str(avg_completion_slot))
stats_dict = dict()
stats_dict["JOB_SCHEDULER"] = params.JOB_SCHEDULER
stats_dict["JOB_ARRIVAL"] = params.JOB_ARRIVAL
stats_dict["JOB_DISTRIBUTION"] = params.JOB_DISTRIBUTION
stats_dict["timeslot"] = t
stats_dict["num_submit_jobs"] = num_submit_jobs
stats_dict["num_completed_jobs"] = num_completed_jobs
stats_dict["num_uncompleted_jobs"] = num_uncompleted_jobs
stats_dict["cluster_cpu_util"] = cluster_cpu_util
stats_dict["cluster_mem_util"] = cluster_mem_util
stats_dict["cluster_bw_util"] = cluster_bw_util
stats_dict["cluster_gpu_util"] = cluster_gpu_util
stats_dict["tot_num_running_tasks"] = tot_num_running_tasks
if self.scheduler.name == "TETRIS_Scheduler" or self.scheduler.name == "UTIL_Scheduler":
stats_dict["scaling_overhead"] = self.scheduler.scaling_overhead
if self.scheduler.name == "TETRIS_Scheduler" or self.scheduler.name == "UTIL_Scheduler":
stats_dict["testing_overhead"] = self.scheduler.testing_overhead
if len(completion_time_list) > 0:
stats_dict["avg_completion_time"] = float('%.3f' % (avg_completion_time))
else:
stats_dict["avg_completion_time"] = -1
try:
ps_cpu_usage = self.progressor.ps_cpu_occupations
worker_cpu_usage = self.progressor.worker_cpu_occupations
stats_dict["ps_cpu_usage"] = ps_cpu_usage
stats_dict["worker_cpu_usage"] = worker_cpu_usage
except Exception as e:
self.logger.debug(self.name + ":: " + str(e))
toc = time.time()
runtime = toc - self.tic
stats_dict["runtime"] = float('%.3f' % (runtime))
if len(self.scheduler.completed_jobs) == params.TOT_NUM_JOBS:
self.logger.info(self.name + ":: " + "All jobs are completed!")
if self.end is None:
self.end = runtime
stats_dict["makespan"] = float('%.3f' % (self.end))
else:
stats_dict["makespan"] = -1
with open(self.stats_txt, 'a') as f:
f.write(str(stats_dict) + "\n")
msg = (t, 'statsor', 'scheduler', 'completion', None)
self.hub_queue.put(msg)
def set_exit_flag(self, exit_flag):
self.exit_flag = exit_flag