forked from alainbryden/bitburner-scripts
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoptimize-stanek.js
390 lines (347 loc) · 16.1 KB
/
optimize-stanek.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
const FragmentType = {
HackingChance: 2,
HackingSpeed: 3,
HackingMoney: 4,
HackingGrow: 5,
Hacking: 6,
Strength: 7,
Defense: 8,
Dexterity: 9,
Agility: 10,
Charisma: 11,
HacknetMoney: 12,
HacknetCost: 13,
Rep: 14,
WorkMoney: 15,
Crime: 16,
Bladeburner: 17,
Booster: 18,
}
const FragmentId = {
Hacking1: 0,
Hacking2: 1,
HackingSpeed: 5,
HackingMoney: 6,
HackingGrow: 7,
Strength: 10,
Defense: 12,
Dexterity: 14,
Agility: 16,
Charisma: 18,
HacknetMoney: 20,
HacknetCost: 21,
Rep: 25,
WorkMoney: 27,
Crime: 28,
Bladeburner: 30,
//Booster1: 100,
//Booster2: 101,
//Booster3: 102,
//Booster4: 103,
//Booster5: 104,
//Booster6: 105,
//Booster7: 106,
//Booster8: 107,
};
let planStatsCount = 0;
let planBoostersCount = 0;
/** @typedef {{ key: number, fragment: Fragment, x: number; y: number; rot: number;
* coords: [number, number][]; adjacent: [number, number][];
* adjacentBoosters: Int16Array; adjacentStats: Int16Array;
* overlapWithBoosters: Int16Array; overlapWithStats: Int16Array }} Placement */
/** @typedef {{ stats: Placement[]; boosters: Placement[] }} Plan */
export function autocomplete(data, args) {
return [...Object.keys(FragmentType)];
}
/** @param {NS} ns */
export async function main(ns) {
/*
if (ns.args.length == 0) {
tlog(ns, "ERROR", "At least one fragment type required");
return;
}
if (!ns.args.every(arg => Object.keys(FragmentType).includes(arg))) {
tlog("ERROR", "Invalid fragment type(s): %s",
ns.args.filter(arg => !Object.keys(FragmentType).includes(arg)));
return;
}*/
// 1. Set up priority order of stat fragments to include
const targetIds = [
FragmentId.Rep, FragmentId.Hacking2, FragmentId.Hacking1, // Basics, always want
, FragmentId.HackingSpeed, // Priority 2, improve hack EXP gain and income?
, FragmentId.HacknetMoney, FragmentId.HacknetCost // Priority 3, hacknet good for lots of things?
, FragmentId.HackingGrow, FragmentId.HackingMoney // Priority 4, improves growth, income for RAM from hacking?
//etc...
];
const allFragments = ns.stanek.fragmentDefinitions();
const statFrags = allFragments.filter(frag => targetIds.includes(frag.id));
const boosterFrags = allFragments.filter(frag => frag.type == FragmentType.Booster);
// 2. Pick dimensions (why not pick many!)
//const height = 6; //ns.stanek.giftHeight()
//const width = 6; //ns.stanek.giftWidth(); // NOTE: Width is always the same, or one more than height.
for (let height = 3; height <= 5; height++)
for (let width = height; width <= height + 1; width++) {
const [score, plan] = await planFragments(ns, width, height, statFrags, boosterFrags);
ns.tprint(score);
const strFragments = [];
// Output the layout so you can stick it in a database
for (const elem of [...plan.stats, ...plan.boosters])
strFragments.push(`{"id":${elem.fragment.id},"x":${elem.x},"y":${elem.y},"rotation":${elem.rot}}`);
ns.tprint(`\n{"height": ${height}, "width": ${width}, "fragments": [\n ${strFragments.join(",\n ")}\n]}`);
}
}
/** @param {NS} ns */
function tlog(ns, prefix, format, ...args) {
ns.tprintf(prefix + ": " + format, ...args);
}
/** @param {NS} ns
* @param {number} width
* @param {number} height
* @param {Fragment[]} statFrags
* @param {Fragment[]} boosterFrags */
async function planFragments(ns, width, height, statFrags, boosterFrags) {
const t0 = performance.now();
/** @type {Placement[]} */
const placements = [];
/** @type {Placement[]} */
const statPlacements = [];
/** @type {Placement[]} */
const boosterPlacements = [];
/** @type {Map<number, Placement[]>} */
const statFragsPlacements = new Map(statFrags.map(frag => [frag.id, []]));
/** @type {Map<number, Placement[]>} */
const boosterFragsPlacements = new Map(boosterFrags.map(frag => [frag.id, []]));
/** @type {number[][][]} */
//const overlapping = [...new Array(width)].map(() => [...new Array(height)].map(() => []));
let statSeqn = 0, boosterSeqn = 0;
for (let x = 0; x < width; x++) {
await ns.sleep(0); // Don't hang the game
for (let y = 0; y < height; y++) {
for (let rot = 0; rot < 4; rot++) {
for (const frag of [...statFrags, ...boosterFrags]) {
const coords = coverage(x, y, rot, frag)
if (coords.every(([x, y]) => x < width && y < height)) {
const key = frag.type == FragmentType.Booster ? boosterSeqn++ : statSeqn++; //`${frag.id}@${x}-${y}-${rot}`;
const placement = {
key, fragment: frag, x, y, rot,
coords, adjacent: adjacents(width, height, coords)
};
placements.push(placement);
if (frag.type == FragmentType.Booster) {
boosterPlacements[key] = placement;
boosterFragsPlacements.get(frag.id).push(placement);
}
else {
statPlacements[key] = placement;
statFragsPlacements.get(frag.id).push(placement);
}
//coords.forEach(([x, y]) => overlapping[x][y].push(key));
}
}
}
}
}
ns.tprint(`Placements: ${placements.length}`)
// Canonise coordinate arrays so we can use equality comparisons on them
const canonicalCoords = [...new Array(width)].map((_, x) => [...new Array(height)].map((_, y) => [x, y]));
for (const placement of placements) {
placement.coords = placement.coords.map(([x, y]) => canonicalCoords[x][y]);
placement.adjacent = placement.adjacent.map(([x, y]) => canonicalCoords[x][y]);
}
// Pre-compute all adjacencies
for (const placement of placements) {
placement.adjacentBoosters = [];
placement.adjacentStats = [];
placement.overlapWithBoosters = [];
placement.overlapWithStats = [];
for (const other of boosterPlacements) {
if (placement.coords.some(coord => other.adjacent.includes(coord)))
placement.adjacentBoosters.push(other.key);
if (placement.coords.some(coord => other.coords.includes(coord))) {
placement.overlapWithBoosters.push(other.key);
}
}
for (const other of statPlacements) {
if (placement.coords.some(coord => other.adjacent.includes(coord)))
placement.adjacentStats.push(other.key);
if (placement.coords.some(coord => other.coords.includes(coord))) {
placement.overlapWithStats.push(other.key);
}
}
}
// Turn arrays to fixed type, now that we know their contents
for (const placement of placements) {
placement.adjacentBoosters = Int16Array.from(placement.adjacentBoosters);
placement.adjacentStats = Int16Array.from(placement.adjacentStats);
placement.overlapWithBoosters = Int16Array.from(placement.overlapWithBoosters);
placement.overlapWithStats = Int16Array.from(placement.overlapWithStats);
}
// Exclude rotational symmetries from search by only using
// - rot 0 placements if the board is square
// - rot 0 and rot 1 placements if the board is non-square
// of the first fragment
// Select the stat fragment with most potential placements as the first fragment,
// to get the biggest reduction of search space
const statFragsKeys = [...statFrags]
//.sort((a, b) => statFragsPlacements.get(b.id).length - statFragsPlacements.get(a.id).length)
.map(frag => statFragsPlacements.get(frag.id).map(placement => placement.key));
statFragsKeys[0] = statFragsKeys[0].filter(key =>
width == height ? statPlacements[key].rot == 0 : (statPlacements[key].rot == 0 || statPlacements[key].rot == 1));
/// Compute stat fragment layout that maximises potential stat-booster fragment adjacencies
const blockedStats0 = new Uint8Array(statPlacements.length);
const blockedBoosters0 = new Uint8Array(boosterPlacements.length);
const boosterStatAdjacencies0 = new Uint8Array(boosterPlacements.length);
const plan0 = { stats: [], boosters: [] };
const bestResult0 = [-Infinity, { stats: [...plan0.stats], boosters: [...plan0.boosters] }];
planStatsCount = 0;
planBoostersCount = 0;
const t1 = performance.now();
const [score, plan] = await planStats(ns, statPlacements, boosterPlacements, statFragsKeys,
blockedStats0, plan0, bestResult0, blockedBoosters0, boosterStatAdjacencies0);
const t2 = performance.now();
tlog(ns, "DEBUG", "Computed Stanek plan. Prep work %.3fmsec, layout search %.3fmsec, %d planStats calls, %d planBoosters calls",
t1 - t0, t2 - t1, planStatsCount, planBoostersCount);
return [score, plan];
}
/** @param {NS} ns
* @param {Placement[]} statPlacements
* @param {Placement[]} boosterPlacements
* @param {number[][]} statFragsKeys - the remaining desired fragment ids to be placed on the board
* @param {Uint8Array} blockedStats
* @param {Plan} plan
* @param {[number, Plan]} bestResult
* @param {Uint8Array} blockedBoosters
* @param {Uint8Array} boosterStatAdjacencies
* @return {[number, Plan, Uint8Array, Uint8Array]} */
async function planStats(ns, statPlacements, boosterPlacements, statFragsKeys, blockedStats, plan, bestResult, blockedBoosters, boosterStatAdjacencies) {
planStatsCount++;
if (planStatsCount % 100000 == 0)
await ns.sleep(0); // Don't hang the game
let [currentBestScore, _] = bestResult;
currentBestScore = currentBestScore || 0;
// If at least one fragment has been placed, see what the best score is we can get by adding boosters
if (plan.stats.length > 0) {
// Mark boosters that are not blocked, but also not adjacent to a stat fragment as unavailable
// and count the remaining available boosters
let availableBoostersCount = 0;
for (let i = 0; i < blockedBoosters.length; i++) {
if (boosterStatAdjacencies[i] === 0) // No adjacent stat fragments => block
blockedBoosters[i]++;
else if (blockedBoosters[i] === 0) // Has adjacent stat fragments, and not blocked
availableBoostersCount++;
}
const [boosterScore, boosterPlan] = planBoosters(plan, boosterPlacements, boosterStatAdjacencies,
blockedBoosters, availableBoostersCount, 0, bestResult);
// Undo changes
for (let i = 0; i < blockedBoosters.length; i++)
if (boosterStatAdjacencies[i] === 0)
blockedBoosters[i]--;
if (boosterScore || 0 > currentBestScore) {
bestResult = [boosterScore, boosterPlan];
currentBestScore = boosterScore;
}
}
// If there are fragments left to place, recurse to see if we can improve the score by placing more
if (statFragsKeys.length > 0) {
for (const key of statFragsKeys[0]) {
if (blockedStats[key] !== 0) continue;
const placement = statPlacements[key];
const adjacentBoosters = placement.adjacentBoosters;
const overlapWithBoosters = placement.overlapWithBoosters;
const overlapWithStats = placement.overlapWithStats;
// Add the fragment placement to plan and update usability in-place to account for the new blocks
plan.stats.push(placement);
for (let i = 0; i < overlapWithStats.length; i++)
blockedStats[overlapWithStats[i]]++;
for (let i = 0; i < overlapWithBoosters.length; i++)
blockedBoosters[overlapWithBoosters[i]]++;
for (let i = 0; i < adjacentBoosters.length; i++)
boosterStatAdjacencies[adjacentBoosters[i]]++;
// Find and score best plan that includes this fragment placement
const [bestPlanScore, bestPlan] = await planStats(ns, statPlacements, boosterPlacements, statFragsKeys.slice(1),
blockedStats, plan, bestResult, blockedBoosters, boosterStatAdjacencies);
if (bestPlanScore || 0 > currentBestScore)
bestResult = [bestPlanScore, bestPlan];
// Undo the changes
plan.stats.pop();
for (let i = 0; i < overlapWithStats.length; i++)
blockedStats[overlapWithStats[i]]--;
for (let i = 0; i < overlapWithBoosters.length; i++)
blockedBoosters[overlapWithBoosters[i]]--;
for (let i = 0; i < adjacentBoosters.length; i++)
boosterStatAdjacencies[adjacentBoosters[i]]--;
}
}
return bestResult;
}
/** @param {Plan} plan
* @param {Placement[]} boosterPlacements
* @param {Uint8Array} boosterStatAdjacencies
* @param {Uint8Array} blockedBoosters
* @param {number} availableCount
* @param {number} startIdx
* @param {[number, Plan]} bestResult
* @return {[number, Plan]} */
function planBoosters(plan, boosterPlacements, boosterStatAdjacencies, blockedBoosters, availableCount, startIdx, bestResult) {
planBoostersCount++;
if (availableCount == 0) {
const { stats, boosters } = plan;
let score = 0;
for (let i = 0; i < boosters.length; i++)
score += boosterStatAdjacencies[boosters[i].key];
score = stats.length * (1 + 0.1 * score); // piecesPlaced*(1+0.1*numAdjacencies)
if (score > bestResult[0])
return [score, { stats: [...stats], boosters: [...boosters] }]; // Clone plan
else
return bestResult;
}
for (let i = startIdx; i < blockedBoosters.length; i++) {
if (blockedBoosters[i] !== 0) continue;
const placement = boosterPlacements[i];
const overlapWithBoosters = placement.overlapWithBoosters;
// Add the fragment placement to plan and update usability in-place to account for the new blocks
plan.boosters.push(placement);
for (let j = 0; j < overlapWithBoosters.length; j++)
if ((blockedBoosters[overlapWithBoosters[j]]++) === 0) availableCount--; // Placement became blocked?
// Find and score best plan that includes this fragment placement
bestResult = planBoosters(plan, boosterPlacements, boosterStatAdjacencies, blockedBoosters, availableCount, i + 1, bestResult);
// Undo the changes
plan.boosters.pop();
for (let j = 0; j < overlapWithBoosters.length; j++)
if ((--blockedBoosters[overlapWithBoosters[j]]) === 0) availableCount++; // Placement became free?
}
return bestResult;
}
/** @param {number} x0
* @param {number} y0
* @param {number} rotation
* @param {Fragment} fragment
* @return {[number, number][]} */
function coverage(x0, y0, rotation, fragment) {
let shape = fragment.shape;
for (let i = 0; i < rotation; i++)
shape = shape[0].map((_, y) => shape.map((_, x) => shape[shape.length - 1 - x][y]));
return shape.map((row, y) => row.map((filled, x) => filled ? [x0 + x, y0 + y] : undefined))
.flat()
.filter(elem => elem != undefined);
}
/** @param {number} width
* @param {number} height
* @param {[number, number][]} coords
* @return {[number, number][]} */
function adjacents(width, height, coords) {
const adjacent = [...new Array(width)].map(() => [...new Array(height)].map(() => false));
// Mark grid squares adjacent to shape member squares
for (const [x, y] of coords) {
if (x - 1 >= 0) adjacent[x - 1][y] = true;
if (x + 1 < width) adjacent[x + 1][y] = true;
if (y - 1 >= 0) adjacent[x][y - 1] = true;
if (y + 1 < height) adjacent[x][y + 1] = true;
}
// Strip out the shape squares themselves
for (const [x, y] of coords)
adjacent[x][y] = false;
return adjacent.map((col, x) => col.map((is, y) => is ? [x, y] : undefined))
.flat()
.filter(elem => elem != undefined);
}