-
Notifications
You must be signed in to change notification settings - Fork 4
/
cluster_anchors_source.py
59 lines (49 loc) · 1.48 KB
/
cluster_anchors_source.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import argparse
import os
import pickle
import time
import faiss
import numpy as np
from sklearn.metrics.cluster import normalized_mutual_info_score
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
from utils.clustering import run_kmeans
os.environ["CUDA_VISIBLE_DEVICES"] = "4"
def main():
seed = 31
# fix random seeds
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
# load and transition to 24966*(19*256)
CAU = torch.load('features/full_dataset_objective_vectors.pkl')
x = np.reshape(CAU, (CAU.shape[0], CAU.shape[1] * CAU.shape[2])).astype('float32')
# kmeans
ncentroids = 10
cluster_centroids, cluster_index, cluster_loss = run_kmeans(x, ncentroids, verbose=True)
'''
# origin cluster
ncentroids = 10
niter = 20
d = x.shape[1]
kmeans = faiss.Kmeans(d, ncentroids, niter=niter, verbose=True, gpu=True)
kmeans.train(x)
# get the result
cluster_result = kmeans.centroids
cluster_loss = kmeans.obj
'''
print(cluster_centroids)
print(len(cluster_index))
print(cluster_loss)
torch.save(cluster_centroids, 'anchors/cluster_centroids_full_%d.pkl' % ncentroids)
torch.save(cluster_index, 'anchors/cluster_index_full_%d.pkl' % ncentroids)
'''
# import cluster
nmb = 10
deepcluster = clustering.Kmeans(nmb)
clustering_loss = deepcluster.cluster(CAU, verbose=True)
'''
if __name__ == '__main__':
main()