forked from lh3/psmc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
psmc.tex
691 lines (627 loc) · 28.7 KB
/
psmc.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
\newif\ifPDF
\ifx\pdfoutput\undefined\PDFfalse
\else\ifnum\pdfoutput > 0\PDFtrue
\else\PDFfalse
\fi
\fi
\ifPDF
\documentclass[pdftex,10pt]{article}
\RequirePackage[hyperindex,colorlinks,plainpages=false]{hyperref}
\hypersetup{pdfauthor={Heng Li},linkcolor=blue,citecolor=blue,urlcolor=blue}
\usepackage{graphicx}
\DeclareGraphicsRule{*}{mps}{*}{}
\else
\documentclass[10pt]{article}
\usepackage{graphicx}
\fi
\usepackage{amsmath}
\usepackage{amsthm}
\addtolength{\textwidth}{3cm}
\addtolength{\hoffset}{-1.5cm}
\addtolength{\textheight}{4cm}
\addtolength{\voffset}{-2cm}
\makeindex
\usepackage{natbib}
\bibliographystyle{apalike}
\title{The Pairwise Sequentially Markovian Coalescent Model}
\author{Heng Li and Richard Durbin}
\date{24 January 2008}
\begin{document}
\theoremstyle{plain} \newtheorem{lem}{Lemma}
\theoremstyle{plain} \newtheorem{thm}{Theorem}
\theoremstyle{plain} \newtheorem{cor}{Corollary}
\theoremstyle{remark} \newtheorem{rem}{Remark}
\maketitle
This document gives the mathematical basis for the PSMC, including all
necessary theorems and equations, with discussion. Lemma~\ref{lem:f1}
and~\ref{lem:sd} give two general facts which will be used
later. Theorem~\ref{thm:psmc} proves several central results of the
continuous-time PSMC model. This theorem establishes the foundation of
the whole PSMC theory. Corollary~\ref{cor:djp} and
Remark~\ref{rem:mutprob} show how to calculate or approximate various
probabilities when time is discretized. Remark~\ref{rem:hmm} presents
the construction of HMM, and Remark~\ref{rem:missdata} and
\ref{rem:overfit} explain several catches in
implementation. Remarks~\ref{rem:bootstrap}-\ref{rem:gof2} show methods
on estimating the variance and testing the goodness of fit (GOF).
\section{PSMC: The Pairwise Sequentially Markovian Model}
\subsection{General Fomulae}
This section presents two lemmas for general functions. Lemma~\ref{lem:f1}
will be used to prove the normalization of the conditioned transition probability in the PSMC continuous-time Markov chain; Lemma~\ref{lem:sd}
will be used to derive the stationary distribution of coalescent time.
\begin{lem}\label{lem:f1}
Given
\begin{equation}\label{equ:f}
f(t|s)=h(t)\int_0^{\min\{s,t\}}\frac{g(u)}{\int_0^sg(w)\,dw} \cdot e^{-\int_u^th(v)\,dv}\,du
\end{equation}
where $g(t)$ and $h(t)$ are any functions that can be integrated on $[0,\infty)$, the
following equation always stands:
\[\int_0^{\infty}f(t|s)\,dt=1\]
\end{lem}
\begin{proof}
Let:
\[t=\phi(\tilde t)\]
and
\[\tilde g(\tilde u)=\frac{g(\phi(\tilde u))}{h(\phi(\tilde u))}\]
where $\phi(\tilde t)$ satisfies $\phi(0)=0$ and
\[\phi'(\tilde u)\cdot h(\phi(\tilde u))=1\]
The integral becomes:
\[f(t|s)\,dt=\frac{f(\phi(\tilde t)|\phi(\tilde s))}{h(\phi(\tilde t))}\,d\tilde t
=\frac{\int_0^{\min\{\tilde s,\tilde t\}}\tilde g(\tilde u)e^{-(\tilde t-\tilde u)}d\tilde u}
{\int_0^{\tilde s}\tilde g(\tilde u)d\tilde u}\,d\tilde t\]
If we note that for any $g(t)$ that can be integrated:
\begin{eqnarray*}
&&\int_0^{\infty}e^{-v}dv\int_0^{\min\{v,t\}}g(u)e^u\,du\\
&=&\int_0^tg(u)e^udu\Bigg(\int_u^te^{-v}dv+\int_t^{\infty}e^{-v}dv\Bigg)\\
&=&\int_0^tg(u)\,du
\end{eqnarray*}
always stands, we get:
\[\int_0^{\infty}f(t|s)\,dt=\int_0^{\infty}\frac{\int_0^{\min\{\tilde s,\tilde t\}}\tilde g(\tilde u)e^{-(\tilde t-\tilde u)}d\tilde u}
{\int_0^{\tilde s}\tilde g(\tilde u)d\tilde u}\,d\tilde t=1\]
\end{proof}
\begin{lem}[Stationary distribution]\label{lem:sd}
Let:
\begin{equation}\label{equ:pi}
\pi(t)=\frac{h(t)}{C}e^{-\int_0^th(v)dv}\int_0^tg(u)\,du
\end{equation}
where $C$ is a scaling constant:
\begin{equation}
C=\int_0^{\infty}g(u)e^{-\int_0^uh(v)dv}\,du
\end{equation}
The following equations always stand:
\begin{equation*}
\int_0^{\infty}f(t|s)\pi(s)\,ds=\pi(t)
\end{equation*}
\begin{equation*}
\int_0^{\infty}\pi(t)\,dt=1
\end{equation*}
\end{lem}
\begin{proof}
\begin{eqnarray*}
&&\int_0^{\infty}f(t|s)\pi(s)\,ds\\
&=&\frac{h(t)}{C}\int_0^{\infty}\frac{ds}{\int_0^sg(w)\,dw}\cdot
\Bigg[h(s)e^{-\int_0^sh(v)dv}\int_0^sg(w)\,dw\bigg]
\int_0^{\min\{s,t\}}g(u)\,e^{-\int_u^th(v)dv}\,du\\
&=&\frac{h(t)}{C}\int_0^{\infty}h(s)e^{-\int_0^sh(v)dv}ds
\int_0^{\min\{s,t\}}g(u)\,e^{-\int_u^th(v)dv}\,du\\
&=&\frac{h(t)}{C}\int_0^tg(u)\,e^{-\int_u^th(v)dv}\,du
\int_u^{\infty}e^{-\int_0^sh(v)dv}h(s)\,ds\\
&=&\frac{h(t)}{C}\int_0^tg(u)\,e^{-\int_u^th(v)dv}\,du\int_u^{\infty}
d\,\Big[-e^{-\int_0^sh(v)\,dv}\Big]\\
&=&\frac{h(t)}{C}\int_0^tg(u)\,e^{-\int_u^th(v)dv}\,e^{-\int_0^uh(v)dv}\,du\\
&=&\frac{h(t)}{C}e^{-\int_0^th(v)dv}\int_0^tg(u)\,du
\end{eqnarray*}
i.e.:
$$\int_0^{\infty}f(t|s)\pi(s)\,ds=\pi(t)$$
Then $\pi(t)$ is the density of the stationary distribution. Furthermore, as we require that
\begin{eqnarray*}
1&=&\int_0^{\infty}\pi(t)\,dt\\
&=&\int_0^{\infty}\frac{h(t)}{C}e^{-\int_0^th(v)dv}\,dt\int_0^tg(u)\,du\\
&=&\int_0^{\infty}g(u)\,du\int_u^{\infty}\frac{h(t)}{C}e^{-\int_0^th(v)dv}\,dt\\
&=&\frac{1}{C}\int_0^{\infty}g(u)\,du\int_u^{\infty}d\,
\Big[-e^{-\int_0^th(v)\,dv}\Big]\\
&=&\frac{1}{C}\int_0^{\infty}g(u)e^{-\int_0^uh(v)dv}\,du
\end{eqnarray*}
the constant $C$ can thus be calculated.
\end{proof}
\subsection{List of Symbols}
\begin{center}
\begin{tabular}{lll}
\hline
Symbol & Type & Meaning \\
\hline
$a,b$ & discrete & Coordinate on the sequence\\
$t,s,\Delta$ & continuous & Coalescent time \\
$T_a$ & continuous, r.v. & Coalescent time at $a$ \\
$R_a$ & binary, r.v. & Recombination or not between $a$ and $a+1$ \\
$X_a$ & binary, r.v. & Mutation or not at $a$ \\
$N,N_0$ & continuous & Population size \\
$\lambda,\lambda_0$ & continuous & Relative population size \\
$\theta,\theta_0$ & continuous & Per-site mutation rate \\
$\rho,\rho_0$ & continuous & Per-site recombination rate \\
$p,q$ & function & transition probability \\
$i,j,k,l$ & discrete & State of the HMM \\
$u,v,w$ & continuous & Coalescent time (in integration) \\
$C,C_{\pi},C_{\sigma}$ & continous & Scaling constant \\
\hline
\end{tabular}
\end{center}
\subsection{PSMC Model}
In this section, Theorem~\ref{thm:psmc} estabilishes the foundation of
the PSMC continuous-time Markov chain. It gives the equations of transition,
and the stationary distribution. The following corollaries
show how to approximate the constants in the Theorem when the scaled mutation
and recombination rates are small.
The discrete-time Markov chain, which will be presented in the next section,
is derived from the continuous-time Markov chain by integrating probability desities
in time intervals.
\begin{thm}[PSMC]\label{thm:psmc}
Let the population size be:
\begin{equation*}
N(t)=N_0\lambda(t)
\end{equation*}
where $t$ equals the number of generations divided by $2N_0$. The
scaled mutation rate and recombination rate per nucleotide are
$\theta$ and $\rho$. respectively. Given two haplotypes, let $T_a$ be
the coalescent time at position $a\in[1,L]$, and define:
\begin{equation*}
R_a=\left\{\begin{array}{ll}
1 & \mbox{a recombination happens between $a$ and $a+1$} \\
0 & \mbox{otherwise}
\end{array}\right.
\end{equation*}
\begin{equation*}
\Lambda(t)=\int_0^t\lambda(u)\,du
\end{equation*}
\begin{equation}
C_{\pi}=\int_0^{\infty}e^{-\int_0^u\frac{dv}{\lambda(v)}}\,du
\end{equation}
\begin{equation}
C_{\sigma}=\int_0^{\infty}\frac{\pi(t)}{1-e^{-\rho t}}dt
\end{equation}
According to the SMC (Sequentially Markov Coalescent)
model~\citep{McVean:2005lr,Marjoram:2006fk}, the following equations stand:
\begin{equation}\label{equ:q}
q(t|s)\,dt=\Pr\{T_{a+1}=t|T_a=s,R_a=1\}
=\frac{dt}{\lambda(t)}\int_0^{\min\{s,t\}}\frac{1}{s}\cdot e^{-\int_u^t\frac{dv}{\lambda(v)}}\,du
\end{equation}
\begin{equation}\label{equ:pi2}
\pi(t)=\Pr\{T_{a+1}=t|R_a=1\}=\frac{t}{C_{\pi}\lambda(t)}e^{-\int_0^t\frac{dv}{\lambda(v)}}
\end{equation}
\begin{equation}\label{equ:a}
p(t|s)=\Pr\{T_{a+1}=t|T_a=s\}=(1-e^{-\rho s})q(t|s) + e^{-\rho s}\delta(t-s)
\end{equation}
\begin{equation}\label{equ:sigma1}
\sigma(t)=\Pr\{T_a=t\}=\frac{\pi(t)}{C_{\sigma}(1-e^{-\rho t})}
\end{equation}
\begin{equation}\label{equ:px}
\Pr\{R_a=1\}=\frac{1}{C_{\sigma}}
\end{equation}
Furthermore,
\begin{equation}\label{equ:pi3}
\int_0^{\infty}q(t|s)\pi(s)\,ds=\pi(t)
\end{equation}
\begin{equation}\label{equ:sigma2}
\int_0^{\infty}p(t|s)\sigma(s)\,ds=\sigma(t)
\end{equation}
and
\begin{equation}
\int_0^{\infty}q(t|s)\,dt=\int_0^{\infty}p(t|s)\,dt=\int_0^{\infty}\pi(t)\,dt
=\int_0^{\infty}\sigma(t)\,dt=1
\end{equation}
\end{thm}
\begin{proof}
Equation~\ref{equ:q} is the root of all the other equations.
\begin{enumerate}
\item When a recombination happens, the probability that it happens in $[u,u+du)$ is:
\[P_1(u|s)\,du=\frac{1}{s}\,du\]
At time $u$, two alleles coalesce at $[t,t+dt)$ is~\citep{Hein:2005yq,Griffiths:1994fk}:
\[P_2(t|u)\,dt=\frac{1}{\lambda(t)}\exp\Bigg\{-\int_u^t\frac{dv}{\lambda(v)}\Bigg\}\,dt\]
When we know $s$ and $t$, $u\in[0,\min\{s,t\})$. Then:
\[q(t|s)=\int_0^{\min\{s,t\}}P_2(t|u)\cdot P_1(u|s)\,du
=\frac{1}{\lambda(t)}\int_0^{\min\{s,t\}}\frac{1}{s}
\cdot e^{-\int_u^t\frac{dv}{\lambda(v)}}\,du\]
This proves Equation~\ref{equ:q}.
\item In Lemma~\ref{lem:f1} and Lemma~\ref{lem:sd}, let $g(u)=1$ and
$h(u)=1/\lambda(u)$. We have:
\[\int_0^{\infty}q(t|s)\,dt=1\]
\[\int_0^{\infty}q(t|s)\pi(s)\,ds=\pi(t)\]
This proves Equation~\ref{equ:pi2} and~\ref{equ:pi3}.
\item Equation~\ref{equ:a} comes \emph{naturally}, and
\[ \int_0^{\infty}p(t|s)=(1-e^{-\rho s})\int_0^{\infty}q(t|s)\,dt + e^{-\rho s}=1 \]
\begin{eqnarray*}
\int_0^{\infty}p(t|s)\sigma(s)\,ds&=&\frac{1}{C_a}\int_0^{\infty}(1-e^{-\rho s})
\frac{q(t|s)\pi(s)}{1-e^{-\rho s}}\,ds
+\frac{e^{-\rho t}}{C_{\sigma}(1-e^{-\rho t})}\pi(t)\\
&=&\frac{\pi(t)}{C_{\sigma}(1-e^{-\rho t})}\\
&=&\sigma(t)
\end{eqnarray*}
This proves Equation~\ref{equ:sigma1} and~\ref{equ:sigma2}.
\item Given coalescent time $T_a=t$, the probability that a
recombination happens between $a$ and $a+1$ is:
\begin{equation*}
\Pr\{R_a=1|T_a=t\}=1-e^{-\rho t}
\end{equation*}
Then
\[\Pr\{R_a=1\}=\int_0^{\infty}(1-e^{-\rho t})\sigma(t)\,dt=\frac{1}{C_{\sigma}}\]
This proves Equation~\ref{equ:px}.
\end{enumerate}
\end{proof}
\begin{cor}[Approximating $C_{\sigma}$]\label{cor:sigma}
When $\rho_0$ is sufficiently small:
\begin{equation}
C_{\sigma}=\frac{1}{C_{\pi}\rho}+\frac{1}{2}+o(\rho)
\end{equation}
\end{cor}
\begin{proof}
\begin{eqnarray*}
C_{\sigma}&=&\int_0^{\infty}\frac{t}{C_{\pi}\lambda(t)[1-e^{-\rho t}]}e^{-\int_0^t\frac{dv}{\lambda(v)}}\,dt\\
&=&\frac{1}{C_{\pi}\rho}\int_0^{\infty}\Big[1+\frac{\rho t}{2}+o(\rho^2)\Big]
\frac{1}{\lambda(t)}e^{-\int_0^t\frac{dv}{\lambda(v)}}\,dt\\
&=&\frac{1}{C_{\pi}\rho}\int_0^{\infty}\frac{1}{\lambda(t)}e^{-\int_0^t\frac{dv}{\lambda(v)}}\,dt
+\frac{1}{2}\int_0^{\infty}\pi(t)\,dt+o(\rho)\\
&=&\frac{1}{C_{\pi}\rho}+\frac{1}{2}+o(\rho)
\end{eqnarray*}
\end{proof}
\begin{cor}[Rate of pairwise difference]\label{cor:theta}
When both $\theta_0$ and $\rho_0$ are sufficiently small:
\begin{equation}\label{equ:theta}
\Pr\{X_a=1\}=C_{\pi}\theta\cdot\big[1+o(\rho+\theta)\big]
\end{equation}
\end{cor}
\begin{proof}
\begin{eqnarray*}
\Pr\{X_a=1\}&=&\int_0^{\infty}\Pr\{X_a=1|T_a=t\}\Pr\{T_a=t\}\,dt\\
&=&\int_0^{\infty}(1-e^{-\theta t})\sigma(t)\,dt\\
&=&\frac{1}{C_{\sigma}}\int\frac{1-e^{-\theta t}}{1-e^{-\rho t}}\pi(t)\,dt\\
&=&\frac{1}{C_{\sigma}}\int\frac{\theta+o(\theta^2)}{\rho+o(\rho^2)}\pi(t)\,dt\\
&=&\frac{\theta}{C_{\sigma}\rho}\int\Big[1+o(\rho+\theta)\Big]\pi(t)\,dt\\
&=&C_{\pi}\theta\cdot\big[1+o(\rho+\theta)\big]
\end{eqnarray*}
\end{proof}
\begin{cor}[First-order approximation]
Under the first-order approximation with respect to $\theta$ and
$\rho$, the following equations stand:
\[
\Pr\{R_a=1\}=\frac{1}{C_{\pi}}=C_{\pi}\rho
\]
\[
\Pr\{X_a=1\}=C_{\pi}\theta
\]
\[
\sigma(t)=\frac{1}{\lambda(t)}e^{-\int_0^t\frac{dv}{\lambda(v)}}
\]
\[
\int_0^t\sigma(u)\,du=1-e^{-\int_0^t\frac{dv}{\lambda(v)}}
\]
\end{cor}
\begin{rem}[Distribution of segment lengths]\label{cor:seglen}
Let $L_{a+1}$ be the length of the segment following a recombination
occurring at $a$. Conditional on the recombination, $L_{a+1}$ follows
a exponential distribution (more precisely, a geometric distribution
in fact):
\[
\Pr\{L_{a+1}=l|R_a=1,T_{a+1}=t\}\,dl = \rho te^{-\rho tl}\,dl
\]
Then,
\[
\Pr\{L=l\}\,dl=dl\int_0^{\infty}\frac{\rho t^2e^{-\rho tl}}{C_{\pi}\lambda(t)}e^{-\int_0^t\frac{dv}{\lambda(v)}}\,dt
=dl\,\frac{\rho}{C_{\pi}}\int_0^{\infty}e^{-\int_0^t\frac{dv}{\lambda(v)}}\,d\Big(t^2e^{-\rho tl}\Big)
\]
The mean segment length is thus
\begin{eqnarray*}
&&\int_0^{\infty}\rho tl e^{-\rho tl}\,dl\int_0^{\infty}\frac{t}{C_{\pi}\lambda(t)}e^{-\int_0^t\frac{dv}{\lambda(v)}}\,dt\\
&=&\frac{1}{C_{\pi}\rho}\int_0^{\infty}\frac{1}{\lambda(t)}e^{-\int_0^t\frac{dv}{\lambda(v)}}\,dt\\
&=&\frac{1}{C_{\pi}\rho}\approx C_{\sigma}
\end{eqnarray*}
\end{rem}
%\begin{cor}[PSMC']\label{cor:psmc2}
% According to SMC', the following equation stands:
% \begin{eqnarray*}
% q'(t|s)\,dt&=&\Pr\{T_{a+1}=t|T_a=s,R_a=1\}\\
% &=&\frac{1}{2}\delta(t-s)\Bigg[1-\int_0^s\frac{\lambda(u)\,du}{\int_0^s\lambda(w)\,dw}
% e^{-\int_u^s\frac{2\,dv}{\lambda(v)}}\Bigg]\\
% &&+\frac{dt}{\lambda(t)}\int_0^{\min\{s,t\}}\frac{\lambda(u)\,du}{\int_0^s\lambda(w)\,dw}
% \cdot e^{-\int_u^{\min\{s,t\}}\frac{dv}{\lambda(v)}-\int_u^t\frac{dv}{\lambda(v)}}
% \end{eqnarray*}
%\end{cor}
%\begin{proof}
% At time $u$, there are three alleles $1$, $2$ and $3$. Allele $1$
% coalesces with $2$ at time $[s,s+ds)$. If $2$ and $3$ coalesce at
% $[t,t+dt)$, the probability is:
% \begin{eqnarray*}
% &&\frac{1}{3}\cdot3\cdot\frac{1}{\lambda(t)}e^{-\int_u^t\frac{3\,dv}{\lambda(v)}}\cdot\frac{1}{\lambda(s)}
% e^{-\int_t^s\frac{dv}{\lambda(v)}}\,dtds\\
% &=&\frac{1}{\lambda(t)}e^{-\int_u^t\frac{2\,dv}{\lambda(v)}}\cdot\frac{1}{\lambda(s)}
% e^{-\int_u^s\frac{dv}{\lambda(v)}}\,dtds
% \end{eqnarray*}
% If $1$ and $2$ coalesce first and then coalesce with $3$ at $[t,t+dt)$,
% the probability is:
% \begin{eqnarray*}
% &&\frac{1}{3}\cdot3\cdot\frac{1}{\lambda(s)}e^{-\int_u^s\frac{3\,dv}{\lambda(dv)}}\cdot\frac{1}{\lambda(t)}
% e^{-\int_s^t\frac{dv}{\lambda(v)}}\,dtds\\
% &=&\frac{1}{\lambda(t)}e^{-\int_u^s\frac{2\,dv}{\lambda(v)}}\cdot\frac{1}{\lambda(s)}
% e^{-\int_u^t\frac{dv}{\lambda(v)}}\,dtds
% \end{eqnarray*}
% Condition on $s$ and $3$ coalesces with $1$ or above, we have:
% \begin{equation*}
% P'_2(t|u)\,dt=\frac{dt}{\lambda(t)}e^{-\int_u^{\min\{s,t\}}\frac{dv}{\lambda(v)}-\int_u^t\frac{dv}{\lambda(v)}}
% \end{equation*}
%
% If a recombination happens, the probability that it happens at
% $[u,u+du)$ is:
% \[P_1(u|s)\,du=\frac{\lambda(u)}{\int_0^s\lambda(w)\,dw}\,du\]
% Then the probability that $3$ coalesces with $2$ under $s$ is:
% \begin{equation*}
% \int_0^s\,dt\int_0^tP'_2(t|u)P_1(u|s)\,du=\int_0^s\frac{dt}{\lambda(t)}\int_0^t
% e^{-\int_u^t\frac{2\,dv}{\lambda(v)}}\frac{\lambda(u)\,du}{\int_0^s\lambda(w)\,dw}
% =\frac{1}{2}\Bigg[1-\int_0^s\frac{\lambda(u)\,du}{\int_0^s\lambda(w)\,dw}e^{-\int_u^s\frac{2\,dv}{\lambda(v)}}\Bigg]
% \end{equation*}
%\end{proof}
%
%\begin{rem}
% Due to the theoretical complication, Corollary~\ref{cor:psmc2} is not
% used in practice.
%\end{rem}
\subsection{Discrete-Time PSMC Model}
This section presents the discrete-time PSMC Markov Chain, its transition probabilities
between time intervals and the stationary distribution. The proof of Corolary~\ref{cor:djp}
is given in the Appendix.
\begin{cor}[Discrete-time PSMC]\label{cor:djp}
Let
\[ 0=t_0<t_1<\cdots<t_n<t_{n+1}=\infty \]
Assume in each time interval $[t_k,t_{k+1})$ function $\lambda(t)$ is a
constant $\lambda_k$. Define:
\begin{equation*}
\pi_k=\int_{t_k}^{t_{k+1}}\pi(t)\,dt
\end{equation*}
\begin{equation*}
\sigma_k=\int_{t_k}^{t_{k+1}}\sigma(t)\,dt
\end{equation*}
\begin{equation*}
q_{kl}=\frac{1}{\pi_k}\int_{t_k}^{t_{k+1}}ds\int_{t_l}^{t_{l+1}}q(t|s)\pi(s)\,dt
\end{equation*}
\begin{equation*}
p_{kl}=\frac{1}{\sigma_k}\int_{t_k}^{t_{k+1}}ds\int_{t_l}^{t_{l+1}}p(t|s)\sigma(s)\,dt
\end{equation*}
Then:
\begin{equation*}
\pi_k=\frac{1}{C_{\pi}}\Bigg[(\alpha_k-\alpha_{k+1})\Big(\sum_{i=0}^{k-1}\tau_i+\lambda_k\Big)
-\alpha_{k+1}\tau_k\Bigg]
\end{equation*}
\begin{equation}\label{equ:sigmak}
\sigma_k=\frac{1}{C_{\sigma}}
\Bigg[\frac{1}{C_{\pi}\rho}(\alpha_k-\alpha_{k+1})+\frac{\pi_k}{2}+o(\rho)\Bigg]
\end{equation}
Furthermore, for $l<k$:
\begin{equation*}
q_{kl}=\frac{\alpha_k-\alpha_{k+1}}{C_{\pi}\pi_k}\Bigg[(\alpha_l-\alpha_{l+1})\Big(\beta_l-\frac{\lambda_l}{\alpha_l}\Big)
+(t_{l+1}-t_l)\Bigg]
\end{equation*}
for $l=k$:
\begin{equation*}
q_{kl}=\frac{1}{C_{\pi}\pi_k}\Bigg[(\alpha_k-\alpha_{k+1})^2\Big(\beta_k-\frac{\lambda_k}{\alpha_k}\Big)
+2\lambda_k(\alpha_k-\alpha_{k+1})-2\alpha_{k+1}(t_{k+1}-t_k)\Bigg]
\end{equation*}
and for $l>k$:
\begin{equation*}
q_{kl}=\frac{\alpha_l-\alpha_{l+1}}{C_{\pi}\pi_k}
\Bigg[(\alpha_k-\alpha_{k+1})\Big(\beta_k-\frac{\lambda_k}{\alpha_k}\Big)+(t_{k+1}-t_k)\Bigg]
\end{equation*}
and
\begin{equation}\label{equ:pkl}
p_{kl}=\frac{\pi_k}{C_{\sigma}\sigma_k}q_{kl} + \delta_{kl}\Big(1-\frac{\pi_k}{C_{\sigma}\sigma_k}\Big)
\end{equation}
where:
\begin{equation*}
\tau_k = t_{k+1}-t_k
\end{equation*}
\begin{equation*}
\alpha_k=\exp\Bigg(-\sum_{i=0}^{k-1}\frac{t_{i+1}-t_i}{\lambda_i}\Bigg)
\end{equation*}
\begin{equation*}
\beta_k=\sum_{i=0}^{k-1}\lambda_i\Big(\frac{1}{\alpha_{i+1}}-\frac{1}{\alpha_i}\Big)
\end{equation*}
\begin{equation*}
C_{\pi}=\sum_{k=0}^n\lambda_k(\alpha_k-\alpha_{k+1})
\end{equation*}
\end{cor}
\begin{rem}[Mutation probability]\label{rem:mutprob}
The average mutation probability in an interval $[t_k,t_{k+1})$ cannot
be analytically calculated. But we can seek another way. From
Equation~\ref{equ:pkl}, a recombination occurs in $[t_k,t_{k+1})$ as if
it occurs at time
$-\log\Big[1-\pi_k/(C_{\sigma}\sigma_k)\Big]/\rho$. If we assume
mutation also exactly occurs at this time point, the probability of a
mutation is:
\begin{equation}\label{equ:ek1}
e_k(1) = \exp\Bigg[-\frac{\theta}{\rho}\log\Big(1-\frac{\pi_k}{C_{\sigma}\sigma_k}\Big)\Bigg]
= \Big(1-\frac{\pi_k}{C_{\sigma}\sigma_k}\Big)^{\theta/\rho}
\end{equation}
\end{rem}
\begin{rem}[Determining $N_0$]\label{rem:n0}
If we know $\mu$, the neutral mutation rate, $N_0=\theta/4\mu$. On
autosomes, $\mu$ is typically
$2.5\times10^{-8}$~\citep{Nachman:2000rq}. Note that
Equation~\ref{equ:theta} agrees with~\citet{Marth:2004vn} in case of
two haplotypes.
\end{rem}
\section{PSMC Hidden Markov Model}
\subsection{The basic of HMM}
\begin{rem}[PSMC-HMM]\label{rem:hmm}
We denote a hidden state in the HMM by $k$, which means a coalescence
between the two haplotypes at this point in the sequence lies in the
time interval $[t_k,t_{k+1})$. A mutation is emmitted with a
probability $e_k(1)$ (Equation~\ref{equ:ek1}) and the transition
probability is $p_{kl}$ (Equation~\ref{equ:pkl}). The stationary
distribution of the hidden states is $\{\sigma_k\}$
(Equation~\ref{equ:sigmak}). All these parameters can be analytically
approximated with a precision of order-two Taylor expansion when
$\rho_0$ is sufficiently small.
\end{rem}
%\begin{rem}[PSMC-PHMM]\label{rem:phmm}
% It is possible to use PSMC to approximately model two diploid
% sequences. In this case, a hidden state is $(k,l)$ and the transition
% probability of $(k,l)\to(k',l')$ is $p_{kk'}p_{ll'}$. The stationary
% distribution of hidden states is $\{\sigma_k\sigma_{k'}\}$.
%\end{rem}
\begin{rem}[Missing data]\label{rem:missdata}
Missing data can be easily incorporated into an HMM. When there is no
observation at $a$, $e_k(x_a)=1$ for all $k$.
\end{rem}
\begin{rem}[Choosing time intervals]
We choose a set of $\{t_i\}_{i=0\ldots n}$ that are approximately
evenly distributed in the log space, but because we require $t_0=0$,
the intervals will not strictly evenly distributed. In practice, we
set \[t_i=0.1(e^{\frac{i}{n}\log(1+10T_{max})}-1)\] where
$T_{max}=t_n$ is chosen such that no more than a few percent of
coalescences occur beyond $T_{max}$.
\end{rem}
\begin{rem}[Reducing parameters]\label{rem:overfit}
In principle, we can estimate all the $n+1$ values of $\lambda_k$ with
EM. However, at both small and large $t$, the expected number of
segments is very small. Separate estimates of $\lambda_k$ in these
intervals will lead to overfitting due to insufficient data. An
effective way to tell whether overfitting occurs is to check
$C_{\sigma}\pi_k$, the expected number of segments in the interval
$[t_k,t_{k+1})$. If this number is small (less than $20$, for
instance), the $\lambda_k$ estimated from EM cannot be trusted due to
statistical fluctuations. In this case, we should use fewer free
parameters by using the same $\lambda$ spanning several adjacent
intervals. This will lower the resolution but will yield much better
estimation.
\end{rem}
\subsection{Assessing variance and fitness}
\begin{rem}[Bootstrapping]\label{rem:bootstrap}
The variance can be estimated by boostrapping. We split the input
diploid sequence into $L'$-long non-overlapping segments and randomly
resample the segments with replacement to generate a new diploid
sequence of the same length as the original one. Parameters are then
estimated from the new sequence. We repeat this process $B$ times and
regard the variance of the $B$ resampled estimates as the variance of
the estimate on the original sequence. Typically, we take
$L'=30,000,000$ and $B=100$.
\end{rem}
\begin{rem}[Measuring GOF with $\sigma_k$]\label{rem:gof-pi}
On one hand, from Equation~\ref{equ:sigmak} we can calculate
$\sigma_k$ from free parameters of the model without looking at the
data. On the other hand, from forward-backward algorithm we can
estimate the posterior expectation of the occurences $\hat{c}_k$
of state $k$:
\begin{equation*}
\hat{c}_k=\frac{1}{P(D)}\sum_if_k(i)b_k(i)
\end{equation*}
Normalizing $\hat{c}_k$ gives:
\begin{equation*}
\hat{\sigma}_k=\frac{\sum_if_k(i)b_k(i)}{\sum_{k,i}f_k(i)b_k(i)}
\end{equation*}
where $f_k(i)$ is the forward function of sequence position $i$ and
state $k$ and $b_k(i)$ is the backward function. If the model fits the
data, we would expect to see $\{\hat{\sigma}_k\}$ is identical to
$\{\sigma_k\}$. And therefore the relative entroy
$D(\sigma||\hat{\sigma})$ would be an indicator of GOF:
\begin{equation*}
G^{\sigma}=\sum_k\sigma_k\log\frac{\sigma_k}{\hat{\sigma}_k}
\end{equation*}
\end{rem}
\begin{rem}[Measuring GOF with $l$-long subsequences]\label{rem:gof2}
\citet{MacKay-Altman:2004lr} pointed out we can test GOF by comparing
the distribution of $l$-long subsequences from direct calculation with
the observed distribution. Given an integer $n\in[0,2^l-1]$, let
$\{p_n\}$ be the theoretical distribution of the binary sequence
represented by $n$ and let $\{\hat{p}_n\}$ be the one directly counted
from the observed sequence. The relative entroy between them is:
\begin{equation*}
G_l=\sum_{n=0}^{2^l-1}p_n\log\frac{p_n}{\hat{p}_n}
\end{equation*}
which measures GOF. Typically, $l$ is ranged from 10 to 20.
\end{rem}
\appendix
\section{Proof of Corollary~\ref{cor:djp}}\label{sec:pfl1}
\begin{proof}
\[
C_{\pi}=\int_0^{\infty}e^{-\int_0^u\frac{dv}{\lambda(v)}}\,du
=\sum_{k=0}^{n}\alpha_k\int_{t_k}^{t_{k+1}} e^{-\frac{u-t_k}{\lambda_k}}du
=\sum_{k=0}^n\lambda_k(\alpha_k-\alpha_{k+1})
\]
\begin{eqnarray*}
\pi_k&=&\int_{t_k}^{t_{k+1}}\pi(t)\,dt\\
&=&\frac{1}{C_{\pi}}\int_{t_k}^{t_{k+1}}\frac{dt}{\lambda(t)}e^{-\int_0^t\frac{dv}{\lambda(v)}}\cdot t\\
&=&\frac{1}{C_{\pi}\lambda_k}\int_{t_k}^{t_{k+1}}\alpha_k e^{-\frac{t-t_k}{\lambda_k}}\Bigg[\sum_{i=0}^{k-1}\tau_i
+(t-t_k)\Bigg]\,dt\\
&=&\frac{\alpha_k}{C_{\pi}\lambda_k}\Bigg[\sum_{i=0}^{k-1}\tau_i\int_{t_k}^{t_{k+1}}e^{-\frac{t-t_k}{\lambda_k}}dt
+\int_{t_k}^{t_{k+1}}(t-t_k)e^{-\frac{t-t_k}{\lambda_k}}dt\Bigg]\\
&=&\frac{\alpha_k}{C_{\pi}\lambda_k}\Bigg[\lambda_k\sum_{i=0}^{k-1}\tau_i\Big(1-e^{-\frac{\tau_k}{\lambda_k}}\Big)
+\lambda_k^2\int_0^{\frac{\tau_k}{\lambda_k}}ue^{-u}du\Bigg]\\
&=&\frac{\alpha_k}{C_{\pi}}\Bigg[\sum_{i=0}^{k-1}\tau_i\Big(1-e^{-\frac{\tau_k}{\lambda_k}}\Big)
+\Big(\lambda_k-\lambda_k e^{-\frac{\tau_k}{\lambda_k}}-\tau_k e^{-\frac{\tau_k}{\lambda_k}}\Big)\Bigg]\\
&=&\frac{1}{C_{\pi}}\Bigg[(\alpha_k-\alpha_{k+1})\Big(\sum_{i=0}^{k-1}\tau_i+\lambda_k\Big)
-\alpha_{k+1}\tau_k\Bigg]
\end{eqnarray*}
\begin{eqnarray*}
\sigma_k&=&\int_{t_k}^{t_{k+1}}\sigma(t)\,dt\\
&=&\int_{t_k}^{t_{k+1}}\frac{1}{C_{\sigma}(1-e^{-\rho t})}\cdot\frac{t}{C_{\pi}\lambda(t)}
e^{\int_0^t\frac{dv}{\lambda(v)}}\,dt\\
&=&\frac{1}{C_{\sigma}C_{\pi}\rho}\int_{t_k}^{t_{k+1}}\Big[1+\frac{1}{2}\rho t+o(\rho^2)\Big]
\frac{1}{\lambda(t)}e^{\int_0^t\frac{dv}{\lambda(v)}}\,dt\\
&=&\frac{1}{C_{\sigma}C_{\pi}\rho}\Bigg[\int_{t_k}^{t_{k+1}}\frac{1}{\lambda(t)}e^{\int_0^t\frac{dv}{\lambda(v)}}\,dt
+\frac{1}{2}C_{\pi}\rho\int_{t_k}^{t_{k+1}}\pi(t)\,dt+o(\rho^2)\Bigg]\\
&=&\frac{1}{C_{\sigma}}\Bigg[\frac{1}{C_{\pi}\rho}(\alpha_k-\alpha_{k+1})
+\frac{\pi_k}{2}+o(\rho)\Bigg]
\end{eqnarray*}
\begin{eqnarray*}
q_{kl}&=&\frac{1}{\pi_k}\int_{t_k}^{t_{k+1}}ds\int_{t_l}^{t_{l+1}}q(t|s)\pi(s)\,dt\\
&=&\frac{1}{C_{\pi}\pi_k}\int_{t_k}^{t_{k+1}}\frac{1}{\lambda(s)}e^{-\int_0^s\frac{dv}{\lambda(v)}}\,ds
\int_{t_l}^{t_{l+1}}\frac{dt}{\lambda(t)}\int_0^{\min\{s,t\}}e^{-\int_{u}^{t}\frac{dw}{\lambda(w)}}du\\
&=&\frac{\alpha_k}{C_{\pi}\pi_k\lambda_k\lambda_l}\int_{t_k}^{t_{k+1}}e^{-\frac{s-t_k}{\lambda_k}}\,ds
\int_{t_l}^{t_{l+1}}dt\int_0^{\min\{s,t\}}e^{-\int_{u}^{t}\frac{dw}{\lambda(w)}}du
\end{eqnarray*}
$l<k$:
\begin{eqnarray*}
q_{kl} &=&\frac{\alpha_k-\alpha_{k+1}}{C_{\pi}\pi_k\lambda_l}
\int_{t_l}^{t_{l+1}}dt\,\Bigg(e^{-\frac{t-t_l}{\lambda_l}}\sum_{i=0}^{l-1}\frac{\alpha_l}{\alpha_i}
\int_{t_i}^{t_{i+1}}e^{\frac{u-t_i}{\lambda_i}}\,du+\int_{t_l}^{t}e^{-\frac{t-u}{\lambda_l}}\,du\Bigg)\\
&=&\frac{\alpha_k-\alpha_{k+1}}{C_{\pi}\pi_k\lambda_l}
\int_{t_l}^{t_{l+1}}dt\,\Bigg[\alpha_le^{-\frac{t-t_l}{\lambda_l}}\sum_{i=0}^{l-1}\lambda_i
\Big(\frac{1}{\alpha_{i+1}}-\frac{1}{\alpha_i}\Big)+\lambda_l\Big(1-e^{-\frac{t-t_l}{\lambda_l}}\Big)\Bigg]\\
&=&\frac{\alpha_k-\alpha_{k+1}}{C_{\pi}\pi_k}
\Big[\Big(1-\frac{\alpha_{l+1}}{\alpha_l}\Big)\beta_l\alpha_l+(t_{l+1}-t_l)-\lambda_l
\Big(1-\frac{\alpha_{l+1}}{\alpha_l}\Big)\Big]\\
&=&\frac{\alpha_k-\alpha_{k+1}}{C_{\pi}\pi_k}\Bigg[(\alpha_l-\alpha_{l+1})\Big(\beta_l-\frac{\lambda_l}{\alpha_l}\Big)
+(t_{l+1}-t_l)\Bigg]
\end{eqnarray*}
$l>k$:
\begin{eqnarray*}
q_{kl}&=&\frac{\alpha_k}{C_{\pi}\pi_k\lambda_k}\int_{t_k}^{t_{k+1}}e^{-\frac{s-t_k}{\lambda_k}}\,ds\cdot
(\alpha_l-\alpha_{l+1})\Bigg[\beta_k+\frac{\lambda_k^2}{\alpha_k}\Big(e^{\frac{s-t_k}{\lambda_k}}-1\Big)\Bigg]\\
&=&\frac{\alpha_k(\alpha_l-\alpha_{l+1})}{C_{\pi}\pi_k\lambda_k}\int_{t_k}^{t_{k+1}}e^{-\frac{s-t_k}{\lambda_k}}\,ds\cdot
\Bigg[\Big(\beta_k-\frac{\lambda_k}{\alpha_k}\Big)+\frac{\lambda_k}{\alpha_k}e^{\frac{s-t_k}{\lambda_k}}\Bigg]\\
&=&\frac{\alpha_l-\alpha_{l+1}}{C_{\pi}\pi_k}
\Bigg[(\alpha_k-\alpha_{k+1})\Big(\beta_k-\frac{\lambda_k}{\alpha_k}\Big)+(t_{k+1}-t_k)\Bigg]
\end{eqnarray*}
$l=k$:
\begin{eqnarray*}
q_{kl}&=&\frac{\alpha_k}{C_{\pi}\pi_k\lambda_k}\int_{t_k}^{t_{k+1}}e^{-\frac{s-t_k}{\lambda_k}}\,ds\cdot
\Bigg[\beta_k(\alpha_k-\alpha_{k+1})+(s-t_k)-\frac{\lambda_k\alpha_{k+1}}{\alpha_k}
\Big(e^{\frac{s-t_k}{\lambda_k}}-1\Big)\Bigg]\\
&=&\frac{\alpha_k}{C_{\pi}\pi_k}\int_0^{\tau_k}e^{-u}\,du\cdot
\Bigg[\beta_k(\alpha_k-\alpha_{k+1})+\frac{\lambda_k\alpha_{k+1}}{\alpha_k}
+\lambda_ku-\frac{\lambda_k\alpha_{k+1}}{\alpha_k}e^u\Bigg]\\
&=&\frac{1}{C_{\pi}\pi_k}\Bigg[\beta_k(\alpha_k-\alpha_{k+1})^2
+\frac{\lambda_k}{\alpha_k}(\alpha_k-\alpha_{k+1})(\alpha_k+\alpha_{k+1})-2\tau_k\alpha_{k+1}\Bigg]\\
&=&\frac{1}{C_{\pi}\pi_k}\Bigg[(\alpha_k-\alpha_{k+1})^2\Big(\beta_k-\frac{\lambda_k}{\alpha_k}\Big)
+2\lambda_k(\alpha_k-\alpha_{k+1})-2\alpha_{k+1}(t_{k+1}-t_k)\Bigg]
\end{eqnarray*}
\begin{eqnarray*}
p_{kl}&=&\frac{1}{\sigma_k}\int_{t_k}^{t_{k+1}}ds\int_{t_l}^{t_{l+1}}p(t|s)\sigma(s)\,dt\\
&=&\frac{1}{\sigma_k}\int_{t_k}^{t_{k+1}}\frac{\pi(s)\,ds}{C_{\sigma}(1-e^{-\rho s})}
\Bigg[\int_{t_l}^{t_{l+1}}(1-e^{-\rho s})q(t|s)\,dt+\delta_{kl}e^{-\rho s}\Bigg]\\
&=&\frac{1}{C_{\sigma}\sigma_k}\int_{t_k}^{t_{k+1}}\pi(s)\,ds\int_{t_l}^{t_{l+1}}q(t|s)\,dt
+\frac{\delta_{kl}}{C_{\sigma}\sigma_k}\int_{t_k}^{t_{k+1}}\Big(\frac{1}{1-e^{-\rho s}}-1\Big)\pi(s)\,ds\\
&=&\frac{\pi_kq_{kl}}{C_{\sigma}\sigma_k}+\frac{\delta_{kl}}{C_{\sigma}\sigma_k}
\Bigg[\int_{t_k}^{t_{k+1}}\frac{\pi(s)\,ds}{1-e^{-\rho s}}-\pi_k\Bigg]\\
&=&\frac{\pi_k q_{kl}}{C_{\sigma}\sigma_k}+\delta_{kl}\Big(1-\frac{\pi_k}{C_{\sigma}\sigma_k}\Big)
\end{eqnarray*}
\end{proof}
\bibliography{psmc}
\end{document}