diff --git a/SO3Fun/@SO3FunHarmonic/quadrature.m b/SO3Fun/@SO3FunHarmonic/quadrature.m index 3d4b23d0a..b682f631e 100644 --- a/SO3Fun/@SO3FunHarmonic/quadrature.m +++ b/SO3Fun/@SO3FunHarmonic/quadrature.m @@ -60,8 +60,12 @@ % Curtis quadrature grid in fundamental region. % Therefore adjust the bandwidth to crystal and specimen symmetry. bw = adjustBandwidth(N,SRight,SLeft); -SO3G = quadratureSO3Grid(bw,'ClenshawCurtis',SRight,SLeft,'ABG'); - +if check_option(varargin,'GaussLegendre') + SO3G = quadratureSO3Grid(bw,'GaussLegendre',SRight,SLeft,'ABG'); +else + SO3G = quadratureSO3Grid(bw,'ClenshawCurtis',SRight,SLeft,'ABG'); +end + % Only evaluate unique orientations values = f.eval(SO3G); diff --git a/TensorAnalysis/@strainTensor/calcTaylor.m b/TensorAnalysis/@strainTensor/calcTaylor.m index bb6ae466a..c376da030 100644 --- a/TensorAnalysis/@strainTensor/calcTaylor.m +++ b/TensorAnalysis/@strainTensor/calcTaylor.m @@ -46,7 +46,8 @@ bw = get_option(varargin,'bandwidth',32); numOut = nargout; F = SO3FunHandle(@(rot) calcTaylorFun(rot,eps,sS,numOut,varargin{:}),sS.CS,eps.CS); - SO3F = SO3FunHarmonic(F,'bandwidth',bw); + % Use Gauss-Legendre quadrature, since the evaluation process is very expansive + SO3F = SO3FunHarmonic(F,'bandwidth',bw,'GaussLegendre'); M = SO3F(1); if nargout>1 b = [];