forked from NVIDIA/cuda-samples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
nbody_opengles.cpp
1136 lines (928 loc) · 31.7 KB
/
nbody_opengles.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <X11/Xlib.h>
#include <GLES2/gl2.h>
#include <EGL/egl.h>
#include <string.h>
#include "render_particles.h"
#include <cstdlib>
#include <cstdio>
#include <algorithm>
#include <assert.h>
#include <math.h>
#include <unistd.h>
#include <cuda_runtime.h>
#include <helper_cuda.h>
#include <helper_functions.h>
#include "bodysystemcuda.h"
#include "bodysystemcpu.h"
#include "cuda_runtime.h"
EGLDisplay eglDisplay = EGL_NO_DISPLAY;
EGLSurface eglSurface = EGL_NO_SURFACE;
EGLContext eglContext = EGL_NO_CONTEXT;
// view params
int ox = 0, oy = 0;
int buttonState = 0;
float camera_trans[] = {0, -2, -150};
float camera_rot[] = {0, 0, 0};
float camera_trans_lag[] = {0, -2, -150};
float camera_rot_lag[] = {0, 0, 0};
const float inertia = 0.1f;
bool benchmark = false;
bool compareToCPU = false;
bool QATest = false;
int blockSize = 256;
bool useHostMem = false;
bool fp64 = false;
bool useCpu = false;
int numDevsRequested = 1;
bool displayEnabled = true;
unsigned int dispno = 0;
unsigned int window_width = 720;
unsigned int window_height = 480;
bool bPause = false;
bool bFullscreen = false;
bool bDispInteractions = false;
bool bSupportDouble = false;
int flopsPerInteraction = 20;
char deviceName[100];
enum { M_VIEW = 0, M_MOVE };
int numBodies = 16384;
std::string tipsyFile = "";
int numIterations = 0; // run until exit
void computePerfStats(double &interactionsPerSecond, double &gflops,
float milliseconds, int iterations) {
// double precision uses intrinsic operation followed by refinement,
// resulting in higher operation count per interaction.
// (Note Astrophysicists use 38 flops per interaction no matter what,
// based on "historical precedent", but they are using FLOP/s as a
// measure of "science throughput". We are using it as a measure of
// hardware throughput. They should really use interactions/s...
// const int flopsPerInteraction = fp64 ? 30 : 20;
interactionsPerSecond = (float)numBodies * (float)numBodies;
interactionsPerSecond *= 1e-9 * iterations * 1000 / milliseconds;
gflops = interactionsPerSecond * (float)flopsPerInteraction;
}
////////////////////////////////////////
// Demo Parameters
////////////////////////////////////////
struct NBodyParams {
float m_timestep;
float m_clusterScale;
float m_velocityScale;
float m_softening;
float m_damping;
float m_pointSize;
float m_x, m_y, m_z;
void print() {
printf("{ %f, %f, %f, %f, %f, %f, %f, %f, %f },\n", m_timestep,
m_clusterScale, m_velocityScale, m_softening, m_damping, m_pointSize,
m_x, m_y, m_z);
}
};
NBodyParams demoParams[] = {
{0.016f, 1.54f, 8.0f, 0.1f, 1.0f, 1.0f, 0, -2, -100},
{0.016f, 0.68f, 20.0f, 0.1f, 1.0f, 0.8f, 0, -2, -30},
{0.0006f, 0.16f, 1000.0f, 1.0f, 1.0f, 0.07f, 0, 0, -1.5f},
{0.0006f, 0.16f, 1000.0f, 1.0f, 1.0f, 0.07f, 0, 0, -1.5f},
{0.0019f, 0.32f, 276.0f, 1.0f, 1.0f, 0.07f, 0, 0, -5},
{0.0016f, 0.32f, 272.0f, 0.145f, 1.0f, 0.08f, 0, 0, -5},
{0.016000f, 6.040000f, 0.000000f, 1.000000f, 1.000000f, 0.760000f, 0, 0,
-50},
};
int numDemos = sizeof(demoParams) / sizeof(NBodyParams);
bool cycleDemo = true;
int activeDemo = 0;
float demoTime = 10000.0f; // ms
StopWatchInterface *demoTimer = NULL, *timer = NULL;
// run multiple iterations to compute an average sort time
NBodyParams activeParams = demoParams[activeDemo];
// The UI.
bool bShowSliders = true;
// fps
static int fpsCount = 0;
static int fpsLimit = 5;
cudaEvent_t startEvent, stopEvent;
cudaEvent_t hostMemSyncEvent;
template <typename T>
class NBodyDemo {
public:
static void Create() { m_singleton = new NBodyDemo; }
static void Destroy() { delete m_singleton; }
static void init(int numBodies, int numDevices, int blockSize, bool usePBO,
bool useHostMem, bool useCpu) {
m_singleton->_init(numBodies, numDevices, blockSize, usePBO, useHostMem,
useCpu);
}
static void reset(int numBodies, NBodyConfig config) {
m_singleton->_reset(numBodies, config);
}
static void selectDemo(int index) { m_singleton->_selectDemo(index); }
static bool compareResults(int numBodies) {
return m_singleton->_compareResults(numBodies);
}
static void runBenchmark(int iterations) {
m_singleton->_runBenchmark(iterations);
}
static void updateParams() {
m_singleton->m_nbody->setSoftening(activeParams.m_softening);
m_singleton->m_nbody->setDamping(activeParams.m_damping);
}
static void updateSimulation() {
m_singleton->m_nbody->update(activeParams.m_timestep);
}
static void display() {
m_singleton->m_renderer->setSpriteSize(activeParams.m_pointSize);
if (useHostMem) {
// This event sync is required because we are rendering from the host
// memory that CUDA is writing. If we don't wait until CUDA is done
// updating it, we will render partially updated data, resulting in a
// jerky frame rate.
if (!useCpu) {
cudaEventSynchronize(hostMemSyncEvent);
}
m_singleton->m_renderer->setPositions(
m_singleton->m_nbody->getArray(BODYSYSTEM_POSITION),
m_singleton->m_nbody->getNumBodies());
} else {
m_singleton->m_renderer->setPBO(
m_singleton->m_nbody->getCurrentReadBuffer(),
m_singleton->m_nbody->getNumBodies(), (sizeof(T) > 4));
}
// display particles
m_singleton->m_renderer->display();
}
static void getArrays(T *pos, T *vel) {
T *_pos = m_singleton->m_nbody->getArray(BODYSYSTEM_POSITION);
T *_vel = m_singleton->m_nbody->getArray(BODYSYSTEM_VELOCITY);
memcpy(pos, _pos, m_singleton->m_nbody->getNumBodies() * 4 * sizeof(T));
memcpy(vel, _vel, m_singleton->m_nbody->getNumBodies() * 4 * sizeof(T));
}
static void setArrays(const T *pos, const T *vel) {
if (pos != m_singleton->m_hPos) {
memcpy(m_singleton->m_hPos, pos, numBodies * 4 * sizeof(T));
}
if (vel != m_singleton->m_hVel) {
memcpy(m_singleton->m_hVel, vel, numBodies * 4 * sizeof(T));
}
m_singleton->m_nbody->setArray(BODYSYSTEM_POSITION, m_singleton->m_hPos);
m_singleton->m_nbody->setArray(BODYSYSTEM_VELOCITY, m_singleton->m_hVel);
if (!benchmark && !useCpu && !compareToCPU) {
m_singleton->_resetRenderer();
}
}
private:
static NBodyDemo *m_singleton;
BodySystem<T> *m_nbody;
BodySystemCUDA<T> *m_nbodyCuda;
BodySystemCPU<T> *m_nbodyCpu;
ParticleRenderer *m_renderer;
T *m_hPos;
T *m_hVel;
float *m_hColor;
private:
NBodyDemo()
: m_nbody(0),
m_nbodyCuda(0),
m_nbodyCpu(0),
m_renderer(0),
m_hPos(0),
m_hVel(0),
m_hColor(0) {}
~NBodyDemo() {
if (m_nbodyCpu) {
delete m_nbodyCpu;
}
if (m_nbodyCuda) {
delete m_nbodyCuda;
}
if (m_hPos) {
delete[] m_hPos;
}
if (m_hVel) {
delete[] m_hVel;
}
if (m_hColor) {
delete[] m_hColor;
}
sdkDeleteTimer(&demoTimer);
if (!benchmark && !compareToCPU) delete m_renderer;
}
void _init(int numBodies, int numDevices, int blockSize, bool bUsePBO,
bool useHostMem, bool useCpu) {
if (useCpu) {
m_nbodyCpu = new BodySystemCPU<T>(numBodies);
m_nbody = m_nbodyCpu;
m_nbodyCuda = 0;
} else {
m_nbodyCuda = new BodySystemCUDA<T>(numBodies, numDevices, blockSize,
bUsePBO, useHostMem);
m_nbody = m_nbodyCuda;
m_nbodyCpu = 0;
}
// allocate host memory
m_hPos = new T[numBodies * 4];
m_hVel = new T[numBodies * 4];
m_hColor = new float[numBodies * 4];
m_nbody->setSoftening(activeParams.m_softening);
m_nbody->setDamping(activeParams.m_damping);
if (useCpu) {
sdkCreateTimer(&timer);
sdkStartTimer(&timer);
} else {
checkCudaErrors(cudaEventCreate(&startEvent));
checkCudaErrors(cudaEventCreate(&stopEvent));
checkCudaErrors(cudaEventCreate(&hostMemSyncEvent));
}
if (!benchmark && !compareToCPU) {
m_renderer = new ParticleRenderer(window_width, window_height);
_resetRenderer();
}
sdkCreateTimer(&demoTimer);
sdkStartTimer(&demoTimer);
}
void _reset(int numBodies, NBodyConfig config) {
if (tipsyFile == "") {
randomizeBodies(config, m_hPos, m_hVel, m_hColor,
activeParams.m_clusterScale, activeParams.m_velocityScale,
numBodies, true);
setArrays(m_hPos, m_hVel);
} else {
m_nbody->loadTipsyFile(tipsyFile);
::numBodies = m_nbody->getNumBodies();
}
}
void _resetRenderer() {
if (fp64) {
float color[4] = {0.4f, 0.8f, 0.1f, 1.0f};
m_renderer->setBaseColor(color);
} else {
float color[4] = {1.0f, 0.6f, 0.3f, 1.0f};
m_renderer->setBaseColor(color);
}
m_renderer->setColors(m_hColor, m_nbody->getNumBodies());
m_renderer->setSpriteSize(activeParams.m_pointSize);
m_renderer->setCameraPos(camera_trans);
}
void _selectDemo(int index) {
assert(index < numDemos);
activeParams = demoParams[index];
camera_trans[0] = camera_trans_lag[0] = activeParams.m_x;
camera_trans[1] = camera_trans_lag[1] = activeParams.m_y;
camera_trans[2] = camera_trans_lag[2] = activeParams.m_z;
reset(numBodies, NBODY_CONFIG_SHELL);
sdkResetTimer(&demoTimer);
m_singleton->m_renderer->setCameraPos(camera_trans);
}
bool _compareResults(int numBodies) {
assert(m_nbodyCuda);
bool passed = true;
m_nbody->update(0.001f);
{
m_nbodyCpu = new BodySystemCPU<T>(numBodies);
m_nbodyCpu->setArray(BODYSYSTEM_POSITION, m_hPos);
m_nbodyCpu->setArray(BODYSYSTEM_VELOCITY, m_hVel);
m_nbodyCpu->update(0.001f);
T *cudaPos = m_nbodyCuda->getArray(BODYSYSTEM_POSITION);
T *cpuPos = m_nbodyCpu->getArray(BODYSYSTEM_POSITION);
T tolerance = 0.0005f;
for (int i = 0; i < numBodies; i++) {
if (fabs(cpuPos[i] - cudaPos[i]) > tolerance) {
passed = false;
printf("Error: (host)%f != (device)%f\n", cpuPos[i], cudaPos[i]);
}
}
}
return passed;
}
void _runBenchmark(int iterations) {
// once without timing to prime the device
if (!useCpu) {
m_nbody->update(activeParams.m_timestep);
}
if (useCpu) {
sdkCreateTimer(&timer);
sdkStartTimer(&timer);
} else {
checkCudaErrors(cudaEventRecord(startEvent, 0));
}
for (int i = 0; i < iterations; ++i) {
m_nbody->update(activeParams.m_timestep);
}
float milliseconds = 0;
if (useCpu) {
sdkStopTimer(&timer);
milliseconds = sdkGetTimerValue(&timer);
sdkStartTimer(&timer);
} else {
checkCudaErrors(cudaEventRecord(stopEvent, 0));
checkCudaErrors(cudaEventSynchronize(stopEvent));
checkCudaErrors(
cudaEventElapsedTime(&milliseconds, startEvent, stopEvent));
}
double interactionsPerSecond = 0;
double gflops = 0;
computePerfStats(interactionsPerSecond, gflops, milliseconds, iterations);
printf("%d bodies, total time for %d iterations: %.3f ms\n", numBodies,
iterations, milliseconds);
printf("= %.3f billion interactions per second\n", interactionsPerSecond);
printf("= %.3f %s-precision GFLOP/s at %d flops per interaction\n", gflops,
(sizeof(T) > 4) ? "double" : "single", flopsPerInteraction);
}
};
void finalize() {
if (!useCpu) {
checkCudaErrors(cudaEventDestroy(startEvent));
checkCudaErrors(cudaEventDestroy(stopEvent));
checkCudaErrors(cudaEventDestroy(hostMemSyncEvent));
}
NBodyDemo<float>::Destroy();
if (bSupportDouble) NBodyDemo<double>::Destroy();
}
template <>
NBodyDemo<double> *NBodyDemo<double>::m_singleton = 0;
template <>
NBodyDemo<float> *NBodyDemo<float>::m_singleton = 0;
template <typename T_new, typename T_old>
void switchDemoPrecision() {
cudaDeviceSynchronize();
fp64 = !fp64;
flopsPerInteraction = fp64 ? 30 : 20;
T_old *oldPos = new T_old[numBodies * 4];
T_old *oldVel = new T_old[numBodies * 4];
NBodyDemo<T_old>::getArrays(oldPos, oldVel);
// convert float to double
T_new *newPos = new T_new[numBodies * 4];
T_new *newVel = new T_new[numBodies * 4];
for (int i = 0; i < numBodies * 4; i++) {
newPos[i] = (T_new)oldPos[i];
newVel[i] = (T_new)oldVel[i];
}
NBodyDemo<T_new>::setArrays(newPos, newVel);
cudaDeviceSynchronize();
delete[] oldPos;
delete[] oldVel;
delete[] newPos;
delete[] newVel;
}
void initGL(int *argc, char **argv) {
EGLint configAttrs[] = {EGL_RED_SIZE,
1,
EGL_GREEN_SIZE,
1,
EGL_BLUE_SIZE,
1,
EGL_DEPTH_SIZE,
16,
EGL_SAMPLE_BUFFERS,
0,
EGL_SAMPLES,
0,
EGL_RENDERABLE_TYPE,
EGL_OPENGL_ES2_BIT,
EGL_NONE};
EGLint contextAttrs[] = {EGL_CONTEXT_CLIENT_VERSION, 3, EGL_NONE};
EGLint windowAttrs[] = {EGL_NONE};
EGLConfig *configList = NULL;
EGLint configCount;
eglDisplay = eglGetDisplay(0);
if (eglDisplay == EGL_NO_DISPLAY) {
printf("EGL failed to obtain display\n");
exit(EXIT_FAILURE);
}
if (!eglInitialize(eglDisplay, 0, 0)) {
printf("EGL failed to initialize\n");
exit(EXIT_FAILURE);
}
if (!eglChooseConfig(eglDisplay, configAttrs, NULL, 0, &configCount) ||
!configCount) {
printf("EGL failed to return matching configs\n");
exit(EXIT_FAILURE);
}
configList = (EGLConfig *)malloc(configCount * sizeof(EGLConfig));
if (!eglChooseConfig(eglDisplay, configAttrs, configList, configCount,
&configCount) ||
!configCount) {
printf("EGL failed to populate config list\n");
exit(EXIT_FAILURE);
}
Display *xDisplay = XOpenDisplay(NULL);
if (!xDisplay) {
printf("X server failed to open a window\n");
exit(EXIT_FAILURE);
}
Window xRootWindow = DefaultRootWindow(xDisplay);
XSetWindowAttributes xCreateWindowAttributes;
xCreateWindowAttributes.event_mask = ExposureMask;
Window xWindow =
XCreateWindow(xDisplay, xRootWindow, 0, 0, window_width, window_height, 0,
CopyFromParent, InputOutput, CopyFromParent, CWEventMask,
&xCreateWindowAttributes);
XMapWindow(xDisplay, xWindow);
Atom netWmStateAtom = XInternAtom(xDisplay, "_NET_WM_STATE", false);
XEvent xEvent;
memset(&xEvent, 0, sizeof(xEvent));
xEvent.type = ClientMessage;
xEvent.xclient.window = xWindow;
xEvent.xclient.message_type = netWmStateAtom;
xEvent.xclient.format = 32;
xEvent.xclient.data.l[0] = 1;
xEvent.xclient.data.l[1] = false;
XSendEvent(xDisplay, xRootWindow, false, SubstructureNotifyMask, &xEvent);
eglSurface = eglCreateWindowSurface(
eglDisplay, configList[0], (EGLNativeWindowType)xWindow, windowAttrs);
if (!eglSurface) {
printf("EGL couldn't create window\n");
exit(EXIT_FAILURE);
}
eglBindAPI(EGL_OPENGL_ES_API);
eglContext = eglCreateContext(eglDisplay, configList[0], NULL, contextAttrs);
if (!eglContext) {
printf("EGL couldn't create context\n");
exit(EXIT_FAILURE);
}
if (!eglMakeCurrent(eglDisplay, eglSurface, eglSurface, eglContext)) {
printf("EGL couldn't make context/surface current\n");
exit(EXIT_FAILURE);
}
EGLint contextRendererType;
eglQueryContext(eglDisplay, eglContext, EGL_CONTEXT_CLIENT_TYPE,
&contextRendererType);
switch (contextRendererType) {
case EGL_OPENGL_ES_API:
printf("Using OpenGL ES API\n");
break;
case EGL_OPENGL_API:
printf("Using OpenGL API - this is unsupported\n");
exit(EXIT_FAILURE);
case EGL_OPENVG_API:
printf("Using OpenVG API - this is unsupported\n");
exit(EXIT_FAILURE);
default:
printf("Unknown context type\n");
exit(EXIT_FAILURE);
}
}
void selectDemo(int activeDemo) {
if (fp64) {
NBodyDemo<double>::selectDemo(activeDemo);
} else {
NBodyDemo<float>::selectDemo(activeDemo);
}
}
void updateSimulation() {
if (fp64) {
NBodyDemo<double>::updateSimulation();
} else {
NBodyDemo<float>::updateSimulation();
}
}
void displayNBodySystem() {
if (fp64) {
NBodyDemo<double>::display();
} else {
NBodyDemo<float>::display();
}
}
void display() {
static double gflops = 0;
static double ifps = 0;
static double interactionsPerSecond = 0;
// update the simulation
if (!bPause) {
if (cycleDemo && (sdkGetTimerValue(&demoTimer) > demoTime)) {
activeDemo = (activeDemo + 1) % numDemos;
selectDemo(activeDemo);
}
updateSimulation();
if (!useCpu) {
cudaEventRecord(hostMemSyncEvent,
0); // insert an event to wait on before rendering
}
}
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
if (displayEnabled) {
// view transform
for (int c = 0; c < 3; ++c) {
camera_trans_lag[c] += (camera_trans[c] - camera_trans_lag[c]) * inertia;
camera_rot_lag[c] += (camera_rot[c] - camera_rot_lag[c]) * inertia;
}
displayNBodySystem();
}
fpsCount++;
// this displays the frame rate updated every second (independent of frame
// rate)
if (fpsCount >= fpsLimit) {
char fps[256];
float milliseconds = 1;
// stop timer
if (useCpu) {
milliseconds = sdkGetTimerValue(&timer);
sdkResetTimer(&timer);
} else {
checkCudaErrors(cudaEventRecord(stopEvent, 0));
checkCudaErrors(cudaEventSynchronize(stopEvent));
}
milliseconds /= (float)fpsCount;
computePerfStats(interactionsPerSecond, gflops, milliseconds, 1);
ifps = 1.f / (milliseconds / 1000.f);
sprintf(fps,
"CUDA N-Body (%d bodies): "
"%0.1f fps | %0.1f BIPS | %0.1f GFLOP/s | %s",
numBodies, ifps, interactionsPerSecond, gflops,
fp64 ? "double precision" : "single precision");
fpsCount = 0;
fpsLimit = (ifps > 1.f) ? (int)ifps : 1;
if (bPause) {
fpsLimit = 0;
}
// restart timer
if (!useCpu) {
checkCudaErrors(cudaEventRecord(startEvent, 0));
}
}
}
void updateParams() {
if (fp64) {
NBodyDemo<double>::updateParams();
} else {
NBodyDemo<float>::updateParams();
}
}
// commented out to remove unused parameter warnings in Linux
void key(unsigned char key, int /*x*/, int /*y*/) {
switch (key) {
case ' ':
bPause = !bPause;
break;
case 27: // escape
case 'q':
case 'Q':
finalize();
exit(EXIT_SUCCESS);
break;
case 13: // return
if (bSupportDouble) {
if (fp64) {
switchDemoPrecision<float, double>();
} else {
switchDemoPrecision<double, float>();
}
printf("> %s precision floating point simulation\n",
fp64 ? "Double" : "Single");
}
break;
case '`':
bShowSliders = !bShowSliders;
break;
case 'g':
case 'G':
bDispInteractions = !bDispInteractions;
break;
case 'c':
case 'C':
cycleDemo = !cycleDemo;
printf("Cycle Demo Parameters: %s\n", cycleDemo ? "ON" : "OFF");
break;
case '[':
activeDemo =
(activeDemo == 0) ? numDemos - 1 : (activeDemo - 1) % numDemos;
selectDemo(activeDemo);
break;
case ']':
activeDemo = (activeDemo + 1) % numDemos;
selectDemo(activeDemo);
break;
case 'd':
case 'D':
displayEnabled = !displayEnabled;
break;
case 'o':
case 'O':
activeParams.print();
break;
case '1':
if (fp64) {
NBodyDemo<double>::reset(numBodies, NBODY_CONFIG_SHELL);
} else {
NBodyDemo<float>::reset(numBodies, NBODY_CONFIG_SHELL);
}
break;
case '2':
if (fp64) {
NBodyDemo<double>::reset(numBodies, NBODY_CONFIG_RANDOM);
} else {
NBodyDemo<float>::reset(numBodies, NBODY_CONFIG_RANDOM);
}
break;
case '3':
if (fp64) {
NBodyDemo<double>::reset(numBodies, NBODY_CONFIG_EXPAND);
} else {
NBodyDemo<float>::reset(numBodies, NBODY_CONFIG_EXPAND);
}
break;
}
}
void showHelp() {
printf("\t-fullscreen (run n-body simulation in fullscreen mode)\n");
printf(
"\t-fp64 (use double precision floating point values for "
"simulation)\n");
printf("\t-hostmem (stores simulation data in host memory)\n");
printf("\t-benchmark (run benchmark to measure performance) \n");
printf(
"\t-numbodies=<N> (number of bodies (>= 1) to run in simulation) \n");
printf(
"\t-device=<d> (where d=0,1,2.... for the CUDA device to use)\n");
printf("\t-dispno=<n> (where n represents the display to use)\n");
printf(
"\t-width=<w> (where w represents the width of the window to "
"open)\n");
printf(
"\t-width=<h> (where h represents the height of the window to "
"open)\n");
printf(
"\t-numdevices=<i> (where i=(number of CUDA devices > 0) to use for "
"simulation)\n");
printf(
"\t-compare (compares simulation results running once on the "
"default GPU and once on the CPU)\n");
printf("\t-cpu (run n-body simulation on the CPU)\n");
printf("\t-tipsy=<file.bin> (load a tipsy model file for simulation)\n\n");
}
//////////////////////////////////////////////////////////////////////////////
// Program main
//////////////////////////////////////////////////////////////////////////////
int main(int argc, char **argv) {
bool bTestResults = true;
#if defined(__linux__)
setenv("DISPLAY", ":0", 0);
#endif
if (checkCmdLineFlag(argc, (const char **)argv, "help")) {
printf("\n> Command line options\n");
showHelp();
return 0;
}
printf(
"Run \"nbody_opengles -benchmark [-numbodies=<numBodies>]\" to measure "
"performance.\n");
showHelp();
bFullscreen =
(checkCmdLineFlag(argc, (const char **)argv, "fullscreen") != 0);
if (bFullscreen) {
bShowSliders = false;
}
benchmark = (checkCmdLineFlag(argc, (const char **)argv, "benchmark") != 0);
compareToCPU =
((checkCmdLineFlag(argc, (const char **)argv, "compare") != 0) ||
(checkCmdLineFlag(argc, (const char **)argv, "qatest") != 0));
QATest = (checkCmdLineFlag(argc, (const char **)argv, "qatest") != 0);
useHostMem = (checkCmdLineFlag(argc, (const char **)argv, "hostmem") != 0);
fp64 = (checkCmdLineFlag(argc, (const char **)argv, "fp64") != 0);
flopsPerInteraction = fp64 ? 30 : 20;
useCpu = (checkCmdLineFlag(argc, (const char **)argv, "cpu") != 0);
if (checkCmdLineFlag(argc, (const char **)argv, "numdevices")) {
numDevsRequested =
getCmdLineArgumentInt(argc, (const char **)argv, "numdevices");
if (numDevsRequested < 1) {
printf(
"Error: \"number of CUDA devices\" specified %d is invalid. Value "
"should be >= 1\n",
numDevsRequested);
exit(bTestResults ? EXIT_SUCCESS : EXIT_FAILURE);
} else {
printf("number of CUDA devices = %d\n", numDevsRequested);
}
}
if (checkCmdLineFlag(argc, (const char **)argv, "dispno")) {
dispno = getCmdLineArgumentInt(argc, (const char **)argv, "dispno");
}
if (checkCmdLineFlag(argc, (const char **)argv, "width")) {
window_width = getCmdLineArgumentInt(argc, (const char **)argv, "width");
}
if (checkCmdLineFlag(argc, (const char **)argv, "height")) {
window_height = getCmdLineArgumentInt(argc, (const char **)argv, "height");
}
// for multi-device we currently require using host memory -- the devices
// share data via the host
if (numDevsRequested > 1) {
useHostMem = true;
}
int numDevsAvailable = 0;
bool customGPU = false;
cudaGetDeviceCount(&numDevsAvailable);
if (numDevsAvailable < numDevsRequested) {
printf("Error: only %d Devices available, %d requested. Exiting.\n",
numDevsAvailable, numDevsRequested);
exit(EXIT_SUCCESS);
}
printf("> %s mode\n", bFullscreen ? "Fullscreen" : "Windowed");
printf("> Simulation data stored in %s memory\n",
useHostMem ? "system" : "video");
printf("> %s precision floating point simulation\n",
fp64 ? "Double" : "Single");
printf("> %d Devices used for simulation\n", numDevsRequested);
int devID;
cudaDeviceProp props;
if (useCpu) {
useHostMem = true;
compareToCPU = false;
bSupportDouble = true;
#ifdef OPENMP
printf("> Simulation with CPU using OpenMP\n");
#else
printf("> Simulation with CPU\n");
#endif
}
if (!benchmark && !compareToCPU) {
initGL(&argc, argv);
}
if (!useCpu) {
if (checkCmdLineFlag(argc, (const char **)argv, "device")) {
customGPU = true;
}
#if defined(__aarch64__) || defined(__arm__)
// find iGPU on the system which is compute capable which will perform
// GLES-CUDA interop
devID = findIntegratedGPU();
#else
// use command-line specified CUDA device, otherwise use device with highest
// Gflops/s
devID = findCudaDevice(argc, (const char **)argv);
#endif
checkCudaErrors(cudaGetDevice(&devID));
checkCudaErrors(cudaGetDeviceProperties(&props, devID));
bSupportDouble = true;
// Initialize devices
if (numDevsRequested > 1 && customGPU) {
printf("You can't use --numdevices and --device at the same time.\n");
exit(EXIT_SUCCESS);
}
if (customGPU || numDevsRequested == 1) {
cudaDeviceProp props;
checkCudaErrors(cudaGetDeviceProperties(&props, devID));
printf("> Compute %d.%d CUDA device: [%s]\n", props.major, props.minor,
props.name);
} else {
for (int i = 0; i < numDevsRequested; i++) {
cudaDeviceProp props;
checkCudaErrors(cudaGetDeviceProperties(&props, i));
printf("> Compute %d.%d CUDA device: [%s]\n", props.major, props.minor,
props.name);
if (useHostMem) {
if (!props.canMapHostMemory) {
fprintf(stderr, "Device %d cannot map host memory!\n", devID);
exit(EXIT_SUCCESS);
}
if (numDevsRequested > 1) {
checkCudaErrors(cudaSetDevice(i));
}
checkCudaErrors(cudaSetDeviceFlags(cudaDeviceMapHost));
}
}
// CC 1.2 and earlier do not support double precision
if (props.major * 10 + props.minor <= 12) {
bSupportDouble = false;
}
}
// if(numDevsRequested > 1)
// checkCudaErrors(cudaSetDevice(devID));