diff --git a/hm.tex b/hm.tex index 36ed056..5265418 100644 --- a/hm.tex +++ b/hm.tex @@ -892,7 +892,7 @@ \chapter*{Preface} \section{First steps with conserved quantities} \subsection{Back to one degree of freedom}\label{sec:bdf} - Consider the equation + Consider the one dimensional Newton's equation for a point particle with unit mass and position $x(t)$: \begin{equation}\label{eq:oscillator} \ddot x = F(x), \qquad F:\mathbb{R}\to\mathbb{R}, \quad t\in \mathbb{R}. \end{equation} @@ -905,8 +905,9 @@ \chapter*{Preface} \end{aligned} \right.. \end{equation} - The solutions of \eqref{eq:oscillatorfirstorder} are parametric curves\footnote{Usually called \emph{integral curves} of the ordinary differential equation.} $(x(t),y(t)):\mathbb{R}\to\mathbb{R}^2$ in the $(x,y)$-space. - % + The solutions of \eqref{eq:oscillatorfirstorder} are parametric curves $(x(t),y(t)):\mathbb{R}\to\mathbb{R}^2$ in the $(x,y)$-space. + These curves are often called \emphidx{trajectories} of the system or \emph{integral curves} of the ordinary differential equation, it depends mostly on the context and the research fields in which they appear. + If $y\neq0$, we can apply the chain rule, $\frac{\dd y}{\dd t} = \frac{\dd y}{\dd x} \frac{\dd x}{\dd t}$, to get \begin{equation}\label{eq:lef} \frac{F(x)}y = \frac{\dot y}{\dot x} = \frac{\dd y}{\dd x}.