-
Notifications
You must be signed in to change notification settings - Fork 0
/
solution.py
212 lines (188 loc) · 8 KB
/
solution.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
assignments = []
rows = 'ABCDEFGHI'
cols = '123456789'
def assign_value(values, box, value):
"""
Please use this function to update your values dictionary!
Assigns a value to a given box. If it updates the board record it.
"""
values[box] = value
if len(value) == 1:
assignments.append(values.copy())
return values
def naked_twins(values):
"""Eliminate values using the naked twins strategy.
Args:
values(dict): a dictionary of the form {'box_name': '123456789', ...}
Returns:
the values dictionary with the naked twins eliminated from peers.
"""
# find all instances of naked twins and eliminate the naked twins as possibilities for their peers
for unit in unitlist:
#two_digit_boxes = [box for box in unit if len(values[box]) == 2]
#print('#######################################')
#print(unit)
two_digit_values = list()
for outer_box in unit:
if len(values[outer_box]) == 2:
# if we come across a two-digit value a second time, its a naked twin
if values[outer_box] in two_digit_values:
# naked twin found - now elimnate values from others in unit
for inner_box in unit:
# do not modify the naked twins in the unit
if values[inner_box] != values[outer_box]:
# remove each of the digits from the boxes
for digit in values[outer_box]:
assign_value(values, inner_box, values[inner_box].replace(digit,''))
# the first time we come upon a two-digit square, store it's value
else:
two_digit_values.append(values[outer_box])
return values
# Find all instances of naked twins
# Eliminate the naked twins as possibilities for their peers
def cross(A, B):
"Cross product of elements in A and elements in B."
return [s+t for s in A for t in B]
boxes = cross(rows, cols)
row_units = [cross(r, cols) for r in rows]
column_units = [cross(rows, c) for c in cols]
diagnol_units = [[rows[x] + str(x + 1) for x in range(0,len(rows))],[rows[x] + str(9 - x) for x in range(0,len(rows))]]
square_units = [cross(rs, cs) for rs in ('ABC','DEF','GHI') for cs in ('123','456','789')]
unitlist = row_units + column_units + square_units + diagnol_units
units = dict((s, [u for u in unitlist if s in u]) for s in boxes)
peers = dict((s, set(sum(units[s],[]))-set([s])) for s in boxes)
def grid_values(grid):
"""
Convert grid into a dict of {square: char} with '123456789' for empties.
Args:
grid(string) - A grid in string form.
Returns:
A grid in dictionary form
Keys: The boxes, e.g., 'A1'
Values: The value in each box, e.g., '8'. If the box has no value, then the value will be '123456789'.
"""
assert len(grid) == 81, "Input grid must be a string of length 81 (9x9)"
count = 0
grid_dict = dict()
for c in grid:
if c == '.':
grid_dict[boxes[count]] = '123456789'
else:
grid_dict[boxes[count]] = c
count += 1
return grid_dict
def display(values):
"""
Display the values as a 2-D grid.
Args:
values(dict): The sudoku in dictionary form
"""
width = 1+max(len(values[s]) for s in boxes)
line = '+'.join(['-'*(width*3)]*3)
for r in rows:
print(''.join(values[r+c].center(width)+('|' if c in '36' else '')
for c in cols))
if r in 'CF': print(line)
return
def eliminate(values):
"""Eliminate values from peers of each box with a single value.
Go through all the boxes, and whenever there is a box with a single value,
eliminate this value from the set of values of all its peers.
Args:
values: Sudoku in dictionary form.
Returns:
Resulting Sudoku in dictionary form after eliminating values.
"""
# find all the boxes with a single digit
solved_values = [box for box in values.keys() if len(values[box]) == 1]
# for each of those boxes, use the value, find and eliminate from the peers
for box in solved_values:
digit = values[box]
for peer in peers[box]:
if len(values[peer]) != 1: # make sure we don't eliminate the last number
assign_value(values, peer, values[peer].replace(digit,''))
return values
def only_choice(values):
"""Finalize all values that are the only choice for a unit.
Go through all the units, and whenever there is a unit with a value
that only fits in one box, assign the value to this box.
Input: Sudoku in dictionary form.
Output: Resulting Sudoku in dictionary form after filling in only choices.
"""
for unit in unitlist:
for digit in '123456789':
dplaces = [box for box in unit if digit in values[box]]
if len(dplaces) == 1:
assign_value(values, dplaces[0], digit)
return values
def reduce_puzzle(values):
"""
Iterate eliminate() and only_choice(). If at some point, there is a box with no available values, return False.
If the sudoku is solved, return the sudoku.
If after an iteration of both functions, the sudoku remains the same, return the sudoku.
Input: A sudoku in dictionary form.
Output: The resulting sudoku in dictionary form.
"""
stalled = False
while not stalled:
# Check how many boxes have a determined value
solved_values_before = len([box for box in values.keys() if len(values[box]) == 1])
# Use the Eliminate Strategy
values = eliminate(values)
# Use the Only Choice Strategy
values = only_choice(values)
# Use the Naked Twins Strategy
values = naked_twins(values)
# Check how many boxes have a determined value, to compare
solved_values_after = len([box for box in values.keys() if len(values[box]) == 1])
# If no new values were added, stop the loop.
stalled = solved_values_before == solved_values_after
# Sanity check, return False if there is a box with zero available values:
if len([box for box in values.keys() if len(values[box]) == 0]):
return False
return values
def search(values):
"""
Using depth-first search and propagation, try all possible values.
Input: A sudoku in dictionary form.
Output: The resulting sudoku in dictionary form.
"""
""
# First, reduce the puzzle using the previous function
values = reduce_puzzle(values)
if values is False:
return False ## Failed earlier
if all(len(values[s]) == 1 for s in boxes):
return values ## Solved!
# Choose one of the unfilled squares with the fewest possibilities
n,s = min((len(values[s]), s) for s in boxes if len(values[s]) > 1)
# Now use recurrence to solve each one of the resulting sudokus, and
for value in values[s]:
new_sudoku = values.copy()
new_sudoku[s] = value
attempt = search(new_sudoku)
if attempt:
return attempt
def solve(grid):
"""
Find the solution to a Sudoku grid.
Args:
grid(string): a string representing a sudoku grid.
Example: '2.............62....1....7...6..8...3...9...7...6..4...4....8....52.............3'
Returns:
The dictionary representation of the final sudoku grid. False if no solution exists.
"""
# set up a dictionary of boxes from the string-expressed grid
values = grid_values(grid)
# kick off the depth-first search to find the solution
return search(values)
if __name__ == '__main__':
diag_sudoku_grid = '2.............62....1....7...6..8...3...9...7...6..4...4....8....52.............3'
display(solve(diag_sudoku_grid))
try:
from visualize import visualize_assignments
visualize_assignments(assignments)
except SystemExit:
pass
except:
print('We could not visualize your board due to a pygame issue. Not a problem! It is not a requirement.')