diff --git a/doc/OnlineDocs/explanation/analysis/doe/doe.rst b/doc/OnlineDocs/explanation/analysis/doe/doe.rst index 66feaa38ad0..a48f4546ab0 100644 --- a/doc/OnlineDocs/explanation/analysis/doe/doe.rst +++ b/doc/OnlineDocs/explanation/analysis/doe/doe.rst @@ -26,7 +26,7 @@ Pyomo.DoE provides the exploratory analysis and MBDoE capabilities to the Pyomo the allowable design spaces for design variables, and the assumed observation error model. During exploratory analysis, Pyomo.DoE checks if the model parameters can be inferred from the postulated measurements or preliminary data. MBDoE then recommends optimized experimental conditions for collecting more data. -Parameter estimation packages such as `Parmest `_ can perform parameter estimation using the available data to infer values for parameters, +Parameter estimation packages such as `Parmest `_ can perform parameter estimation using the available data to infer values for parameters, and facilitate an uncertainty analysis to approximate the parameter covariance matrix. If the parameter uncertainties are sufficiently small, the workflow terminates and returns the final model with quantified parametric uncertainty. If not, MBDoE recommends optimized experimental conditions to generate new data. diff --git a/doc/OnlineDocs/explanation/solvers/mindtpy.rst b/doc/OnlineDocs/explanation/solvers/mindtpy.rst index ce7650b5a05..bb47315fc70 100644 --- a/doc/OnlineDocs/explanation/solvers/mindtpy.rst +++ b/doc/OnlineDocs/explanation/solvers/mindtpy.rst @@ -26,7 +26,7 @@ at Purdue University and Carnegie Mellon University. .. _Duran & Grossmann, 1986: https://dx.doi.org/10.1007/BF02592064 .. _Westerlund & Petterson, 1995: http://dx.doi.org/10.1016/0098-1354(95)87027-X .. _Kesavan & Allgor, 2004: https://link.springer.com/article/10.1007/s10107-004-0503-1 -.. _MC++: https://pyomo.readthedocs.io/en/stable/contributed_packages/mcpp.html +.. _MC++: https://pyomo.readthedocs.io/en/stable/explanation/solvers/mcpp.html .. _Bernal & Peng, 2021: http://www.optimization-online.org/DB_HTML/2021/06/8452.html .. _Kronqvist & Bernal, 2018: https://link.springer.com/article/10.1007%2Fs10107-018-1356-3 .. _Bonami & Cornuéjols, 2009: https://link.springer.com/article/10.1007/s10107-008-0212-2 @@ -132,7 +132,7 @@ The LP/NLP based branch-and-bound algorithm in MindtPy is implemented based on t In Pyomo, `persistent solvers`_ are necessary to set or register callback functions. The single tree implementation currently only works with CPLEX and GUROBI, more exactly ``cplex_persistent`` and ``gurobi_persistent``. To use the `LazyConstraintCallback`_ function of CPLEX from Pyomo, the `CPLEX Python API`_ is required. This means both IBM ILOG CPLEX Optimization Studio and the CPLEX-Python modules should be installed on your computer. To use the `cbLazy`_ function of GUROBI from pyomo, `gurobipy`_ is required. -.. _`persistent solvers`: https://pyomo.readthedocs.io/en/stable/advanced_topics/persistent_solvers.html?highlight=persistent +.. _`persistent solvers`: https://pyomo.readthedocs.io/en/stable/explanation/solvers/persistent.html .. _CPLEX Python API: https://www.ibm.com/docs/en/icos/20.1.0?topic=cplex-setting-up-python-api .. _gurobipy: https://www.gurobi.com/documentation/9.1/quickstart_mac/cs_grbpy_the_gurobi_python.html .. _LazyConstraintCallback: https://www.ibm.com/docs/en/icos/20.1.0?topic=classes-cplexcallbackslazyconstraintcallback diff --git a/pyomo/contrib/incidence_analysis/README.md b/pyomo/contrib/incidence_analysis/README.md index e998f417be3..6f2442869b5 100644 --- a/pyomo/contrib/incidence_analysis/README.md +++ b/pyomo/contrib/incidence_analysis/README.md @@ -7,7 +7,7 @@ These tools can be used to detect whether and (approximately) why the Jacobian of equality constraints is structurally or numerically singular, which commonly happens as the result of a modeling error. See the -[documentation](https://pyomo.readthedocs.io/en/stable/contributed_packages/incidence/index.html) +[documentation](https://pyomo.readthedocs.io/en/stable/explanation/analysis/incidence/index.html) for more information and examples. ## Dependencies diff --git a/pyomo/contrib/mindtpy/algorithm_base_class.py b/pyomo/contrib/mindtpy/algorithm_base_class.py index e015fc89e09..c91d78d91b7 100644 --- a/pyomo/contrib/mindtpy/algorithm_base_class.py +++ b/pyomo/contrib/mindtpy/algorithm_base_class.py @@ -185,7 +185,7 @@ def _log_solver_intro_message(self): ' Mixed-Integer Nonlinear Decomposition Toolbox in Pyomo (MindtPy) \n' '-----------------------------------------------------------------------------------------------\n' 'For more information, please visit \n' - 'https://pyomo.readthedocs.io/en/stable/contributed_packages/mindtpy.html' + 'https://pyomo.readthedocs.io/en/stable/explanation/solvers/mindtpy.html' ) self.config.logger.info( 'If you use this software, please cite the following:\n' diff --git a/pyomo/contrib/mindtpy/global_outer_approximation.py b/pyomo/contrib/mindtpy/global_outer_approximation.py index c43409a8493..3c162738be5 100644 --- a/pyomo/contrib/mindtpy/global_outer_approximation.py +++ b/pyomo/contrib/mindtpy/global_outer_approximation.py @@ -56,7 +56,7 @@ def check_config(self): if config.mip_solver not in {'cplex_persistent', 'gurobi_persistent'}: raise ValueError( "Only cplex_persistent and gurobi_persistent are supported for LP/NLP based Branch and Bound method." - "Please refer to https://pyomo.readthedocs.io/en/stable/contributed_packages/mindtpy.html#lp-nlp-based-branch-and-bound." + "Please refer to https://pyomo.readthedocs.io/en/stable/explanation/solvers/mindtpy.html#lp-nlp-based-branch-and-bound." ) if config.threads > 1: config.threads = 1 diff --git a/pyomo/contrib/mindtpy/outer_approximation.py b/pyomo/contrib/mindtpy/outer_approximation.py index ead5cadfeac..aee0893e2be 100644 --- a/pyomo/contrib/mindtpy/outer_approximation.py +++ b/pyomo/contrib/mindtpy/outer_approximation.py @@ -63,7 +63,7 @@ def check_config(self): if config.mip_solver not in {'cplex_persistent', 'gurobi_persistent'}: raise ValueError( "Only cplex_persistent and gurobi_persistent are supported for LP/NLP based Branch and Bound method." - "Please refer to https://pyomo.readthedocs.io/en/stable/contributed_packages/mindtpy.html#lp-nlp-based-branch-and-bound." + "Please refer to https://pyomo.readthedocs.io/en/stable/explanation/solvers/mindtpy.html#lp-nlp-based-branch-and-bound." ) if config.threads > 1: config.threads = 1 diff --git a/pyomo/contrib/mpc/README.md b/pyomo/contrib/mpc/README.md index 7e03163f703..27bfa00cfe6 100644 --- a/pyomo/contrib/mpc/README.md +++ b/pyomo/contrib/mpc/README.md @@ -2,7 +2,7 @@ Pyomo MPC is an extension for developing model predictive control simulations using Pyomo models. Please see the -[documentation](https://pyomo.readthedocs.io/en/stable/contributed_packages/mpc/index.html) +[documentation](https://pyomo.readthedocs.io/en/stable/explanation/analysis/mpc/index.html) for more detailed information. Pyomo MPC helps with, among other things, the following use cases: