From 618b2ec27715cfbaba988cb0392b3010eb257f4b Mon Sep 17 00:00:00 2001 From: mrjleo Date: Sun, 15 Dec 2024 12:17:31 +0000 Subject: [PATCH] deploy: de010fc04a4f9b81a39700cd695b313f87b41a4f --- docs/index.html | 2 +- docs/main/fast_forward/util/index.html | 4 +- docs/main/fast_forward/util/pyterrier.html | 212 ++++++++++----------- docs/main/search.js | 2 +- 4 files changed, 107 insertions(+), 113 deletions(-) diff --git a/docs/index.html b/docs/index.html index 60260b1..febde85 100644 --- a/docs/index.html +++ b/docs/index.html @@ -37,7 +37,7 @@ diff --git a/docs/main/fast_forward/util/index.html b/docs/main/fast_forward/util/index.html index 21a0788..c8b9f31 100644 --- a/docs/main/fast_forward/util/index.html +++ b/docs/main/fast_forward/util/index.html @@ -21,13 +21,13 @@ -../--pyterrier.html89.09 KB2024-12-15 11:50:12 +../--pyterrier.html89.95 KB2024-12-15 12:17:30 diff --git a/docs/main/fast_forward/util/pyterrier.html b/docs/main/fast_forward/util/pyterrier.html index 1bb14ad..7b5cd7b 100644 --- a/docs/main/fast_forward/util/pyterrier.html +++ b/docs/main/fast_forward/util/pyterrier.html @@ -143,65 +143,63 @@

23 self._index = index 24 super().__init__() 25 -26 def transform(self, topics_or_res: "pd.DataFrame") -> "pd.DataFrame": +26 def transform(self, inp: "pd.DataFrame") -> "pd.DataFrame": 27 """Compute the scores for all query-document pairs in the data frame. 28 29 The previous scores are moved to the "score_0" column. 30 -31 :param topics_or_res: The PyTerrier data frame. +31 :param inp: The PyTerrier data frame. 32 :return: A data frame with the computed scores. 33 """ 34 ff_scores = self._index( 35 Ranking( -36 topics_or_res.rename(columns={"qid": "q_id", "docno": "id"}), +36 inp.rename(columns={"qid": "q_id", "docno": "id"}), 37 copy=False, 38 is_sorted=True, 39 ) 40 )._df.rename(columns={"q_id": "qid", "id": "docno"}) 41 -42 return topics_or_res[["qid", "docno", "score"]].merge( +42 result = inp[["qid", "docno", "score"]].merge( 43 ff_scores[["qid", "docno", "score", "query"]], 44 on=["qid", "docno"], 45 suffixes=("_0", None), 46 ) -47 -48 def __repr__(self) -> str: -49 """Return a string representation. -50 -51 The representation is unique w.r.t. the index and its query encoder. -52 -53 :return: The representation. -54 """ -55 cls_name = self.__class__.__name__ -56 index_id = id(self._index) -57 encoder_id = id(self._index._query_encoder) -58 return f"{cls_name}({index_id}, {encoder_id})" -59 +47 return pt.model.add_ranks(result, single_query=False) +48 +49 def __repr__(self) -> str: +50 """Return a string representation. +51 +52 The representation is unique w.r.t. the index and its query encoder. +53 +54 :return: The representation. +55 """ +56 cls_name = self.__class__.__name__ +57 index_id = id(self._index) +58 encoder_id = id(self._index._query_encoder) +59 return f"{cls_name}({index_id}, {encoder_id})" 60 -61class FFInterpolate(pt.Transformer): -62 """PyTerrier transformer that interpolates scores computed by `FFScore`.""" -63 -64 def __init__(self, alpha: float) -> None: -65 """Create an FFInterpolate transformer. -66 -67 :param alpha: The interpolation parameter. -68 """ -69 # attribute name needs to be exactly this for pyterrier.GridScan to work -70 self.alpha = alpha -71 super().__init__() -72 -73 def transform(self, topics_or_res: "pd.DataFrame") -> "pd.DataFrame": -74 """Interpolate the scores as `alpha * score_0 + (1 - alpha) * score`. -75 -76 :param topics_or_res: The PyTerrier data frame. -77 :return: A data frame with the interpolated scores. -78 """ -79 new_df = topics_or_res[["qid", "docno", "query"]].copy() -80 new_df["score"] = ( -81 self.alpha * topics_or_res["score_0"] -82 + (1 - self.alpha) * topics_or_res["score"] -83 ) -84 return new_df +61 +62class FFInterpolate(pt.Transformer): +63 """PyTerrier transformer that interpolates scores computed by `FFScore`.""" +64 +65 def __init__(self, alpha: float) -> None: +66 """Create an FFInterpolate transformer. +67 +68 :param alpha: The interpolation parameter. +69 """ +70 # attribute name needs to be exactly this for pyterrier.GridScan to work +71 self.alpha = alpha +72 super().__init__() +73 +74 def transform(self, inp: "pd.DataFrame") -> "pd.DataFrame": +75 """Interpolate the scores as `alpha * score_0 + (1 - alpha) * score`. +76 +77 :param inp: The PyTerrier data frame. +78 :return: A data frame with the interpolated scores. +79 """ +80 new_df = inp[["qid", "docno", "query"]].copy() +81 new_df["score"] = self.alpha * inp["score_0"] + (1 - self.alpha) * inp["score"] +82 return pt.model.add_ranks(new_df, single_query=False) @@ -228,39 +226,40 @@

24 self._index = index 25 super().__init__() 26 -27 def transform(self, topics_or_res: "pd.DataFrame") -> "pd.DataFrame": +27 def transform(self, inp: "pd.DataFrame") -> "pd.DataFrame": 28 """Compute the scores for all query-document pairs in the data frame. 29 30 The previous scores are moved to the "score_0" column. 31 -32 :param topics_or_res: The PyTerrier data frame. +32 :param inp: The PyTerrier data frame. 33 :return: A data frame with the computed scores. 34 """ 35 ff_scores = self._index( 36 Ranking( -37 topics_or_res.rename(columns={"qid": "q_id", "docno": "id"}), +37 inp.rename(columns={"qid": "q_id", "docno": "id"}), 38 copy=False, 39 is_sorted=True, 40 ) 41 )._df.rename(columns={"q_id": "qid", "id": "docno"}) 42 -43 return topics_or_res[["qid", "docno", "score"]].merge( +43 result = inp[["qid", "docno", "score"]].merge( 44 ff_scores[["qid", "docno", "score", "query"]], 45 on=["qid", "docno"], 46 suffixes=("_0", None), 47 ) -48 -49 def __repr__(self) -> str: -50 """Return a string representation. -51 -52 The representation is unique w.r.t. the index and its query encoder. -53 -54 :return: The representation. -55 """ -56 cls_name = self.__class__.__name__ -57 index_id = id(self._index) -58 encoder_id = id(self._index._query_encoder) -59 return f"{cls_name}({index_id}, {encoder_id})" +48 return pt.model.add_ranks(result, single_query=False) +49 +50 def __repr__(self) -> str: +51 """Return a string representation. +52 +53 The representation is unique w.r.t. the index and its query encoder. +54 +55 :return: The representation. +56 """ +57 cls_name = self.__class__.__name__ +58 index_id = id(self._index) +59 encoder_id = id(self._index._query_encoder) +60 return f"{cls_name}({index_id}, {encoder_id})" @@ -304,33 +303,34 @@

Parameters
def - transform( self, topics_or_res: pandas.core.frame.DataFrame) -> pandas.core.frame.DataFrame: + transform(self, inp: pandas.core.frame.DataFrame) -> pandas.core.frame.DataFrame:
-
27    def transform(self, topics_or_res: "pd.DataFrame") -> "pd.DataFrame":
+            
27    def transform(self, inp: "pd.DataFrame") -> "pd.DataFrame":
 28        """Compute the scores for all query-document pairs in the data frame.
 29
 30        The previous scores are moved to the "score_0" column.
 31
-32        :param topics_or_res: The PyTerrier data frame.
+32        :param inp: The PyTerrier data frame.
 33        :return: A data frame with the computed scores.
 34        """
 35        ff_scores = self._index(
 36            Ranking(
-37                topics_or_res.rename(columns={"qid": "q_id", "docno": "id"}),
+37                inp.rename(columns={"qid": "q_id", "docno": "id"}),
 38                copy=False,
 39                is_sorted=True,
 40            )
 41        )._df.rename(columns={"q_id": "qid", "id": "docno"})
 42
-43        return topics_or_res[["qid", "docno", "score"]].merge(
+43        result = inp[["qid", "docno", "score"]].merge(
 44            ff_scores[["qid", "docno", "score", "query"]],
 45            on=["qid", "docno"],
 46            suffixes=("_0", None),
 47        )
+48        return pt.model.add_ranks(result, single_query=False)
 
@@ -341,7 +341,7 @@
Parameters
Parameters
    -
  • topics_or_res: The PyTerrier data frame.
  • +
  • inp: The PyTerrier data frame.
Returns
@@ -365,30 +365,27 @@
Returns
-
62class FFInterpolate(pt.Transformer):
-63    """PyTerrier transformer that interpolates scores computed by `FFScore`."""
-64
-65    def __init__(self, alpha: float) -> None:
-66        """Create an FFInterpolate transformer.
-67
-68        :param alpha: The interpolation parameter.
-69        """
-70        # attribute name needs to be exactly this for pyterrier.GridScan to work
-71        self.alpha = alpha
-72        super().__init__()
-73
-74    def transform(self, topics_or_res: "pd.DataFrame") -> "pd.DataFrame":
-75        """Interpolate the scores as `alpha * score_0 + (1 - alpha) * score`.
-76
-77        :param topics_or_res: The PyTerrier data frame.
-78        :return: A data frame with the interpolated scores.
-79        """
-80        new_df = topics_or_res[["qid", "docno", "query"]].copy()
-81        new_df["score"] = (
-82            self.alpha * topics_or_res["score_0"]
-83            + (1 - self.alpha) * topics_or_res["score"]
-84        )
-85        return new_df
+            
63class FFInterpolate(pt.Transformer):
+64    """PyTerrier transformer that interpolates scores computed by `FFScore`."""
+65
+66    def __init__(self, alpha: float) -> None:
+67        """Create an FFInterpolate transformer.
+68
+69        :param alpha: The interpolation parameter.
+70        """
+71        # attribute name needs to be exactly this for pyterrier.GridScan to work
+72        self.alpha = alpha
+73        super().__init__()
+74
+75    def transform(self, inp: "pd.DataFrame") -> "pd.DataFrame":
+76        """Interpolate the scores as `alpha * score_0 + (1 - alpha) * score`.
+77
+78        :param inp: The PyTerrier data frame.
+79        :return: A data frame with the interpolated scores.
+80        """
+81        new_df = inp[["qid", "docno", "query"]].copy()
+82        new_df["score"] = self.alpha * inp["score_0"] + (1 - self.alpha) * inp["score"]
+83        return pt.model.add_ranks(new_df, single_query=False)
 
@@ -406,14 +403,14 @@
Returns
-
65    def __init__(self, alpha: float) -> None:
-66        """Create an FFInterpolate transformer.
-67
-68        :param alpha: The interpolation parameter.
-69        """
-70        # attribute name needs to be exactly this for pyterrier.GridScan to work
-71        self.alpha = alpha
-72        super().__init__()
+            
66    def __init__(self, alpha: float) -> None:
+67        """Create an FFInterpolate transformer.
+68
+69        :param alpha: The interpolation parameter.
+70        """
+71        # attribute name needs to be exactly this for pyterrier.GridScan to work
+72        self.alpha = alpha
+73        super().__init__()
 
@@ -444,24 +441,21 @@
Parameters
def - transform( self, topics_or_res: pandas.core.frame.DataFrame) -> pandas.core.frame.DataFrame: + transform(self, inp: pandas.core.frame.DataFrame) -> pandas.core.frame.DataFrame:
-
74    def transform(self, topics_or_res: "pd.DataFrame") -> "pd.DataFrame":
-75        """Interpolate the scores as `alpha * score_0 + (1 - alpha) * score`.
-76
-77        :param topics_or_res: The PyTerrier data frame.
-78        :return: A data frame with the interpolated scores.
-79        """
-80        new_df = topics_or_res[["qid", "docno", "query"]].copy()
-81        new_df["score"] = (
-82            self.alpha * topics_or_res["score_0"]
-83            + (1 - self.alpha) * topics_or_res["score"]
-84        )
-85        return new_df
+            
75    def transform(self, inp: "pd.DataFrame") -> "pd.DataFrame":
+76        """Interpolate the scores as `alpha * score_0 + (1 - alpha) * score`.
+77
+78        :param inp: The PyTerrier data frame.
+79        :return: A data frame with the interpolated scores.
+80        """
+81        new_df = inp[["qid", "docno", "query"]].copy()
+82        new_df["score"] = self.alpha * inp["score_0"] + (1 - self.alpha) * inp["score"]
+83        return pt.model.add_ranks(new_df, single_query=False)
 
@@ -470,7 +464,7 @@
Parameters
Parameters
    -
  • topics_or_res: The PyTerrier data frame.
  • +
  • inp: The PyTerrier data frame.
Returns
diff --git a/docs/main/search.js b/docs/main/search.js index 304f4dc..44ffccb 100644 --- a/docs/main/search.js +++ b/docs/main/search.js @@ -1,6 +1,6 @@ window.pdocSearch = (function(){ /** elasticlunr - http://weixsong.github.io * Copyright (C) 2017 Oliver Nightingale * Copyright (C) 2017 Wei Song * MIT Licensed */!function(){function e(e){if(null===e||"object"!=typeof e)return e;var t=e.constructor();for(var n in e)e.hasOwnProperty(n)&&(t[n]=e[n]);return t}var t=function(e){var n=new t.Index;return n.pipeline.add(t.trimmer,t.stopWordFilter,t.stemmer),e&&e.call(n,n),n};t.version="0.9.5",lunr=t,t.utils={},t.utils.warn=function(e){return function(t){e.console&&console.warn&&console.warn(t)}}(this),t.utils.toString=function(e){return void 0===e||null===e?"":e.toString()},t.EventEmitter=function(){this.events={}},t.EventEmitter.prototype.addListener=function(){var e=Array.prototype.slice.call(arguments),t=e.pop(),n=e;if("function"!=typeof t)throw new TypeError("last argument must be a function");n.forEach(function(e){this.hasHandler(e)||(this.events[e]=[]),this.events[e].push(t)},this)},t.EventEmitter.prototype.removeListener=function(e,t){if(this.hasHandler(e)){var n=this.events[e].indexOf(t);-1!==n&&(this.events[e].splice(n,1),0==this.events[e].length&&delete this.events[e])}},t.EventEmitter.prototype.emit=function(e){if(this.hasHandler(e)){var t=Array.prototype.slice.call(arguments,1);this.events[e].forEach(function(e){e.apply(void 0,t)},this)}},t.EventEmitter.prototype.hasHandler=function(e){return e in this.events},t.tokenizer=function(e){if(!arguments.length||null===e||void 0===e)return[];if(Array.isArray(e)){var n=e.filter(function(e){return null===e||void 0===e?!1:!0});n=n.map(function(e){return t.utils.toString(e).toLowerCase()});var i=[];return n.forEach(function(e){var n=e.split(t.tokenizer.seperator);i=i.concat(n)},this),i}return e.toString().trim().toLowerCase().split(t.tokenizer.seperator)},t.tokenizer.defaultSeperator=/[\s\-]+/,t.tokenizer.seperator=t.tokenizer.defaultSeperator,t.tokenizer.setSeperator=function(e){null!==e&&void 0!==e&&"object"==typeof e&&(t.tokenizer.seperator=e)},t.tokenizer.resetSeperator=function(){t.tokenizer.seperator=t.tokenizer.defaultSeperator},t.tokenizer.getSeperator=function(){return t.tokenizer.seperator},t.Pipeline=function(){this._queue=[]},t.Pipeline.registeredFunctions={},t.Pipeline.registerFunction=function(e,n){n in t.Pipeline.registeredFunctions&&t.utils.warn("Overwriting existing registered function: "+n),e.label=n,t.Pipeline.registeredFunctions[n]=e},t.Pipeline.getRegisteredFunction=function(e){return e in t.Pipeline.registeredFunctions!=!0?null:t.Pipeline.registeredFunctions[e]},t.Pipeline.warnIfFunctionNotRegistered=function(e){var n=e.label&&e.label in this.registeredFunctions;n||t.utils.warn("Function is not registered with pipeline. This may cause problems when serialising the index.\n",e)},t.Pipeline.load=function(e){var n=new t.Pipeline;return e.forEach(function(e){var i=t.Pipeline.getRegisteredFunction(e);if(!i)throw new Error("Cannot load un-registered function: "+e);n.add(i)}),n},t.Pipeline.prototype.add=function(){var e=Array.prototype.slice.call(arguments);e.forEach(function(e){t.Pipeline.warnIfFunctionNotRegistered(e),this._queue.push(e)},this)},t.Pipeline.prototype.after=function(e,n){t.Pipeline.warnIfFunctionNotRegistered(n);var i=this._queue.indexOf(e);if(-1===i)throw new Error("Cannot find existingFn");this._queue.splice(i+1,0,n)},t.Pipeline.prototype.before=function(e,n){t.Pipeline.warnIfFunctionNotRegistered(n);var i=this._queue.indexOf(e);if(-1===i)throw new Error("Cannot find existingFn");this._queue.splice(i,0,n)},t.Pipeline.prototype.remove=function(e){var t=this._queue.indexOf(e);-1!==t&&this._queue.splice(t,1)},t.Pipeline.prototype.run=function(e){for(var t=[],n=e.length,i=this._queue.length,o=0;n>o;o++){for(var r=e[o],s=0;i>s&&(r=this._queue[s](r,o,e),void 0!==r&&null!==r);s++);void 0!==r&&null!==r&&t.push(r)}return t},t.Pipeline.prototype.reset=function(){this._queue=[]},t.Pipeline.prototype.get=function(){return this._queue},t.Pipeline.prototype.toJSON=function(){return this._queue.map(function(e){return t.Pipeline.warnIfFunctionNotRegistered(e),e.label})},t.Index=function(){this._fields=[],this._ref="id",this.pipeline=new t.Pipeline,this.documentStore=new t.DocumentStore,this.index={},this.eventEmitter=new t.EventEmitter,this._idfCache={},this.on("add","remove","update",function(){this._idfCache={}}.bind(this))},t.Index.prototype.on=function(){var e=Array.prototype.slice.call(arguments);return this.eventEmitter.addListener.apply(this.eventEmitter,e)},t.Index.prototype.off=function(e,t){return this.eventEmitter.removeListener(e,t)},t.Index.load=function(e){e.version!==t.version&&t.utils.warn("version mismatch: current "+t.version+" importing "+e.version);var n=new this;n._fields=e.fields,n._ref=e.ref,n.documentStore=t.DocumentStore.load(e.documentStore),n.pipeline=t.Pipeline.load(e.pipeline),n.index={};for(var i in e.index)n.index[i]=t.InvertedIndex.load(e.index[i]);return n},t.Index.prototype.addField=function(e){return this._fields.push(e),this.index[e]=new t.InvertedIndex,this},t.Index.prototype.setRef=function(e){return this._ref=e,this},t.Index.prototype.saveDocument=function(e){return this.documentStore=new t.DocumentStore(e),this},t.Index.prototype.addDoc=function(e,n){if(e){var n=void 0===n?!0:n,i=e[this._ref];this.documentStore.addDoc(i,e),this._fields.forEach(function(n){var o=this.pipeline.run(t.tokenizer(e[n]));this.documentStore.addFieldLength(i,n,o.length);var r={};o.forEach(function(e){e in r?r[e]+=1:r[e]=1},this);for(var s in r){var u=r[s];u=Math.sqrt(u),this.index[n].addToken(s,{ref:i,tf:u})}},this),n&&this.eventEmitter.emit("add",e,this)}},t.Index.prototype.removeDocByRef=function(e){if(e&&this.documentStore.isDocStored()!==!1&&this.documentStore.hasDoc(e)){var t=this.documentStore.getDoc(e);this.removeDoc(t,!1)}},t.Index.prototype.removeDoc=function(e,n){if(e){var n=void 0===n?!0:n,i=e[this._ref];this.documentStore.hasDoc(i)&&(this.documentStore.removeDoc(i),this._fields.forEach(function(n){var o=this.pipeline.run(t.tokenizer(e[n]));o.forEach(function(e){this.index[n].removeToken(e,i)},this)},this),n&&this.eventEmitter.emit("remove",e,this))}},t.Index.prototype.updateDoc=function(e,t){var t=void 0===t?!0:t;this.removeDocByRef(e[this._ref],!1),this.addDoc(e,!1),t&&this.eventEmitter.emit("update",e,this)},t.Index.prototype.idf=function(e,t){var n="@"+t+"/"+e;if(Object.prototype.hasOwnProperty.call(this._idfCache,n))return this._idfCache[n];var i=this.index[t].getDocFreq(e),o=1+Math.log(this.documentStore.length/(i+1));return this._idfCache[n]=o,o},t.Index.prototype.getFields=function(){return this._fields.slice()},t.Index.prototype.search=function(e,n){if(!e)return[];e="string"==typeof e?{any:e}:JSON.parse(JSON.stringify(e));var i=null;null!=n&&(i=JSON.stringify(n));for(var o=new t.Configuration(i,this.getFields()).get(),r={},s=Object.keys(e),u=0;u0&&t.push(e);for(var i in n)"docs"!==i&&"df"!==i&&this.expandToken(e+i,t,n[i]);return t},t.InvertedIndex.prototype.toJSON=function(){return{root:this.root}},t.Configuration=function(e,n){var e=e||"";if(void 0==n||null==n)throw new Error("fields should not be null");this.config={};var i;try{i=JSON.parse(e),this.buildUserConfig(i,n)}catch(o){t.utils.warn("user configuration parse failed, will use default configuration"),this.buildDefaultConfig(n)}},t.Configuration.prototype.buildDefaultConfig=function(e){this.reset(),e.forEach(function(e){this.config[e]={boost:1,bool:"OR",expand:!1}},this)},t.Configuration.prototype.buildUserConfig=function(e,n){var i="OR",o=!1;if(this.reset(),"bool"in e&&(i=e.bool||i),"expand"in e&&(o=e.expand||o),"fields"in e)for(var r in e.fields)if(n.indexOf(r)>-1){var s=e.fields[r],u=o;void 0!=s.expand&&(u=s.expand),this.config[r]={boost:s.boost||0===s.boost?s.boost:1,bool:s.bool||i,expand:u}}else t.utils.warn("field name in user configuration not found in index instance fields");else this.addAllFields2UserConfig(i,o,n)},t.Configuration.prototype.addAllFields2UserConfig=function(e,t,n){n.forEach(function(n){this.config[n]={boost:1,bool:e,expand:t}},this)},t.Configuration.prototype.get=function(){return this.config},t.Configuration.prototype.reset=function(){this.config={}},lunr.SortedSet=function(){this.length=0,this.elements=[]},lunr.SortedSet.load=function(e){var t=new this;return t.elements=e,t.length=e.length,t},lunr.SortedSet.prototype.add=function(){var e,t;for(e=0;e1;){if(r===e)return o;e>r&&(t=o),r>e&&(n=o),i=n-t,o=t+Math.floor(i/2),r=this.elements[o]}return r===e?o:-1},lunr.SortedSet.prototype.locationFor=function(e){for(var t=0,n=this.elements.length,i=n-t,o=t+Math.floor(i/2),r=this.elements[o];i>1;)e>r&&(t=o),r>e&&(n=o),i=n-t,o=t+Math.floor(i/2),r=this.elements[o];return r>e?o:e>r?o+1:void 0},lunr.SortedSet.prototype.intersect=function(e){for(var t=new lunr.SortedSet,n=0,i=0,o=this.length,r=e.length,s=this.elements,u=e.elements;;){if(n>o-1||i>r-1)break;s[n]!==u[i]?s[n]u[i]&&i++:(t.add(s[n]),n++,i++)}return t},lunr.SortedSet.prototype.clone=function(){var e=new lunr.SortedSet;return e.elements=this.toArray(),e.length=e.elements.length,e},lunr.SortedSet.prototype.union=function(e){var t,n,i;this.length>=e.length?(t=this,n=e):(t=e,n=this),i=t.clone();for(var o=0,r=n.toArray();oThis is the implementation of Fast-Forward indexes.

\n\n

Important: As this library is still in its early stages, the API is subject to change!

\n\n

Features

\n\n
    \n
  • Efficient look-up-based computation of semantic ranking scores
  • \n
  • Interpolation of lexical (retrieval) and semantic (re-ranking) scores
  • \n
  • Passage- and document-level ranking, including MaxP, FirstP, and AverageP
  • \n
  • Early stopping for limiting index look-ups
  • \n
  • Index compression via quantization and sequential coalescing
  • \n
\n\n

How to...

\n\n\n\n

Installation

\n\n

Install the package via pip:

\n\n
\n
pip install fast-forward-indexes\n
\n
\n\n

Alternatively, the package can be installed from source:

\n\n
\n
git clone https://github.com/mrjleo/fast-forward-indexes.git\ncd fast-forward-indexes\npython -m pip install .\n
\n
\n\n

After installing the package, simply import the library:

\n\n
\n
import fast_forward\n
\n
\n\n

Getting started

\n\n

Using a Fast-Forward index is as simple as providing a TREC run with sparse scores:

\n\n
\n
from pathlib import Path\n\nfrom fast_forward import Ranking\nfrom fast_forward.index import OnDiskIndex, Mode\nfrom fast_forward.encoder import TCTColBERTQueryEncoder\n\n# choose a pre-trained query encoder\nencoder = TCTColBERTQueryEncoder("castorini/tct_colbert-msmarco")\n\n# load an index on disk\nff_index = OnDiskIndex.load(Path("/path/to/index.h5"), encoder, mode=Mode.MAXP)\n\n# load a run (TREC format) and attach all required queries\nfirst_stage_ranking = (\n    Ranking.from_file(Path("/path/to/input/run.tsv"))\n    .attach_queries(\n        {\n            "q1": "query 1",\n            "q2": "query 2",\n            # ...\n            "qn": "query n",\n        }\n    )\n    .cut(5000)\n)\n\n# compute the corresponding semantic scores\nout = ff_index(first_stage_ranking)\n\n# interpolate scores and create a new TREC runfile\nfirst_stage_ranking.interpolate(out, 0.1).save(Path("/path/to/output/run.tsv"))\n
\n
\n\n

Rankings

\n\n

Rankings (or runs) are represented using the Ranking class. Each ranking contains query IDs, document/passage IDs, and corresponding scores. Rankings may be instantiated from TREC runfiles using Ranking.from_file:

\n\n
\n
r = Ranking.from_file(Path("/path/to/TREC/run.tsv"))\n
\n
\n\n

Alternatively, rankings can be created from nested dictionaries using Ranking.from_run:

\n\n
\n
run = {\n    "q1": {"d0": 1, "d1": 2, "d2": 3},\n    "q2": {"d0": 4, "d1": 5, "d2": 6},\n}\nr = Ranking.from_run(run)\n
\n
\n\n

Optionally, rankings can have queries attached using Ranking.attach_queries:

\n\n
\n
r = r.attach_queries(\n    {\n        "q1": "query 1",\n        "q2": "query 2",\n        # ...\n        "qn": "query n",\n    }\n)\n
\n
\n\n

Rankings implement addition and multiplication operators, for example:

\n\n
\n
ranking_3 = 0.1 * ranking_1 + ranking_2\n
\n
\n\n

Ranking.interpolate allows to interpolate the scores of two rankings (i.e., retrieval and re-ranking):

\n\n
\n
first_stage_ranking = Ranking.from_file(Path("/path/to/TREC/run.tsv"))\nsemantic_scores = my_index(first_stage_ranking)\ninterpolated_ranking = first_stage_ranking.interpolate(semantic_scores, 0.1)\n# equivalent to (but slightly more efficient than):\ninterpolated_ranking = first_stage_ranking * 0.1 + semantic_scores * 0.9\n
\n
\n\n

Additionally, Ranking.rr_scores recomputes a ranking's scores based on the reciprocal rank. This allows, for example, to perform reciprocal rank fusion (RRF) as follows:

\n\n
\n
rrf_ranking = first_stage_ranking.rr_scores() + semantic_scores.rr_scores()\n
\n
\n\n

Further information about rank fusion can be found here.

\n\n

Finally, a ranking can have a name set and be saved as a TREC runfile:

\n\n
\n
interpolated_ranking.name = "Fast-Forward, alpha=0.1"\ninterpolated_ranking.save(Path("/path/to/output/run.tsv"))\n
\n
\n"}, "fast_forward.Ranking": {"fullname": "fast_forward.Ranking", "modulename": "fast_forward", "qualname": "Ranking", "kind": "class", "doc": "

Represents rankings of documents/passages w.r.t. queries.

\n"}, "fast_forward.Ranking.__init__": {"fullname": "fast_forward.Ranking.__init__", "modulename": "fast_forward", "qualname": "Ranking.__init__", "kind": "function", "doc": "

Create a ranking from an existing data frame. Removes rows with NaN scores.

\n\n
Parameters
\n\n
    \n
  • df: Data frame containing IDs and scores.
  • \n
  • name: Method name.
  • \n
  • queries: Query IDs mapped to queries.
  • \n
  • dtype: How the scores should be represented in the data frame.
  • \n
  • copy: Whether to copy the data frame.
  • \n
  • is_sorted: Whether the data frame is already sorted (by score).
  • \n
\n\n
Raises
\n\n
    \n
  • ValueError: When the queries are incomplete.
  • \n
\n", "signature": "(\tdf: pandas.core.frame.DataFrame,\tname: str | None = None,\tqueries: Mapping[str, str] | None = None,\tdtype: numpy.dtype = dtype('float32'),\tcopy: bool = True,\tis_sorted: bool = False)"}, "fast_forward.Ranking.name": {"fullname": "fast_forward.Ranking.name", "modulename": "fast_forward", "qualname": "Ranking.name", "kind": "variable", "doc": "

\n"}, "fast_forward.Ranking.has_queries": {"fullname": "fast_forward.Ranking.has_queries", "modulename": "fast_forward", "qualname": "Ranking.has_queries", "kind": "variable", "doc": "

Whether the ranking has queries attached.

\n\n
Returns
\n\n
\n

Whether queries exist.

\n
\n", "annotation": ": bool"}, "fast_forward.Ranking.q_ids": {"fullname": "fast_forward.Ranking.q_ids", "modulename": "fast_forward", "qualname": "Ranking.q_ids", "kind": "variable", "doc": "

The set of (unique) query IDs in this ranking.

\n\n

Only queries with at least one scored document are considered.

\n\n
Returns
\n\n
\n

The query IDs.

\n
\n", "annotation": ": set[str]"}, "fast_forward.Ranking.attach_queries": {"fullname": "fast_forward.Ranking.attach_queries", "modulename": "fast_forward", "qualname": "Ranking.attach_queries", "kind": "function", "doc": "

Attach queries to the ranking.

\n\n
Parameters
\n\n
    \n
  • queries: Query IDs mapped to queries.
  • \n
\n\n
Raises
\n\n
    \n
  • ValueError: When the queries are incomplete.
  • \n
\n\n
Returns
\n\n
\n

The ranking with queries attached.

\n
\n", "signature": "(self, queries: Mapping[str, str]) -> fast_forward.ranking.Ranking:", "funcdef": "def"}, "fast_forward.Ranking.normalize": {"fullname": "fast_forward.Ranking.normalize", "modulename": "fast_forward", "qualname": "Ranking.normalize", "kind": "function", "doc": "

Normalize the scores (min-max) to be in [0, 1].

\n\n

If all scores are equal, they are set to 0.

\n\n
Returns
\n\n
\n

A ranking with normalized scores.

\n
\n", "signature": "(self) -> fast_forward.ranking.Ranking:", "funcdef": "def"}, "fast_forward.Ranking.cut": {"fullname": "fast_forward.Ranking.cut", "modulename": "fast_forward", "qualname": "Ranking.cut", "kind": "function", "doc": "

For each query, remove all but the top-k scoring documents/passages.

\n\n
Parameters
\n\n
    \n
  • cutoff: Number of best scores per query to keep (k).
  • \n
\n\n
Returns
\n\n
\n

The resulting ranking.

\n
\n", "signature": "(self, cutoff: int) -> fast_forward.ranking.Ranking:", "funcdef": "def"}, "fast_forward.Ranking.interpolate": {"fullname": "fast_forward.Ranking.interpolate", "modulename": "fast_forward", "qualname": "Ranking.interpolate", "kind": "function", "doc": "

Interpolate as score = self.score * alpha + other.score * (1 - alpha).

\n\n

Missing scores in either ranking are treated as zero.

\n\n
Parameters
\n\n
    \n
  • other: Ranking to interpolate with.
  • \n
  • alpha: Interpolation parameter.
  • \n
  • normalize: Perform min-max normalization.
  • \n
\n\n
Returns
\n\n
\n

The resulting ranking.

\n
\n", "signature": "(\tself,\tother: fast_forward.ranking.Ranking,\talpha: float,\tnormalize: bool = False) -> fast_forward.ranking.Ranking:", "funcdef": "def"}, "fast_forward.Ranking.rr_scores": {"fullname": "fast_forward.Ranking.rr_scores", "modulename": "fast_forward", "qualname": "Ranking.rr_scores", "kind": "function", "doc": "

Re-score documents/passages using reciprocal rank.

\n\n

A score is computed as 1 / (rank + k).

\n\n

Used by RRF.

\n\n
Parameters
\n\n
    \n
  • k: RR scoring parameter.
  • \n
\n\n
Returns
\n\n
\n

A ranking with RR scores.

\n
\n", "signature": "(self, k: int = 60) -> fast_forward.ranking.Ranking:", "funcdef": "def"}, "fast_forward.Ranking.save": {"fullname": "fast_forward.Ranking.save", "modulename": "fast_forward", "qualname": "Ranking.save", "kind": "function", "doc": "

Save the ranking in a TREC runfile.

\n\n
Parameters
\n\n
    \n
  • target: Output file.
  • \n
\n", "signature": "(self, target: pathlib.Path) -> None:", "funcdef": "def"}, "fast_forward.Ranking.from_run": {"fullname": "fast_forward.Ranking.from_run", "modulename": "fast_forward", "qualname": "Ranking.from_run", "kind": "function", "doc": "

Create a Ranking object from a TREC run.

\n\n
Parameters
\n\n
    \n
  • run: TREC run.
  • \n
  • name: Method name.
  • \n
  • queries: Query IDs mapped to queries.
  • \n
  • dtype: How the score should be represented in the data frame.
  • \n
\n\n
Returns
\n\n
\n

The resulting ranking.

\n
\n", "signature": "(\tcls,\trun: Mapping[str, Mapping[str, float]],\tname: str | None = None,\tqueries: Mapping[str, str] | None = None,\tdtype: numpy.dtype = dtype('float32')) -> fast_forward.ranking.Ranking:", "funcdef": "def"}, "fast_forward.Ranking.from_file": {"fullname": "fast_forward.Ranking.from_file", "modulename": "fast_forward", "qualname": "Ranking.from_file", "kind": "function", "doc": "

Create a Ranking object from a runfile in TREC format.

\n\n
Parameters
\n\n
    \n
  • f: TREC runfile to read.
  • \n
  • queries: Query IDs mapped to queries.
  • \n
  • dtype: How the score should be represented in the data frame.
  • \n
\n\n
Returns
\n\n
\n

The resulting ranking.

\n
\n", "signature": "(\tcls,\tf: pathlib.Path,\tqueries: Mapping[str, str] | None = None,\tdtype: numpy.dtype = dtype('float32')) -> fast_forward.ranking.Ranking:", "funcdef": "def"}, "fast_forward.encoder": {"fullname": "fast_forward.encoder", "modulename": "fast_forward.encoder", "kind": "module", "doc": "

Custom encoders

\n\n

Custom encoders can easily be implemented. The preferred way to do this is by subclassing fast_forward.encoder.base.Encoder and overriding the _encode method. This allows the new encoder to make use of batch encoding.

\n\n

Alternatively, one can use the LambdaEncoder class, which wraps a function that encodes a single piece of text. The following example shows how to do this with a Pyserini query encoder:

\n\n
\n
pyserini_encoder = pyserini.encode.AnceQueryEncoder("castorini/ance-msmarco-passage")\nance_encoder = LambdaEncoder(pyserini_encoder.encode)\n
\n
\n\n

Note that this method is usually less efficient, as the texts are encoded one by one rather than in batches.

\n"}, "fast_forward.encoder.Encoder": {"fullname": "fast_forward.encoder.Encoder", "modulename": "fast_forward.encoder", "qualname": "Encoder", "kind": "class", "doc": "

Base class for encoders.

\n", "bases": "abc.ABC"}, "fast_forward.encoder.LambdaEncoder": {"fullname": "fast_forward.encoder.LambdaEncoder", "modulename": "fast_forward.encoder", "qualname": "LambdaEncoder", "kind": "class", "doc": "

Encoder adapter class for arbitrary encoding functions.

\n", "bases": "fast_forward.encoder.base.Encoder"}, "fast_forward.encoder.LambdaEncoder.__init__": {"fullname": "fast_forward.encoder.LambdaEncoder.__init__", "modulename": "fast_forward.encoder", "qualname": "LambdaEncoder.__init__", "kind": "function", "doc": "

Create a lambda encoder.

\n\n
Parameters
\n\n
    \n
  • f: Function to encode a single piece of text.
  • \n
\n", "signature": "(f: Callable[[str], numpy.ndarray])"}, "fast_forward.encoder.TransformerEncoder": {"fullname": "fast_forward.encoder.TransformerEncoder", "modulename": "fast_forward.encoder", "qualname": "TransformerEncoder", "kind": "class", "doc": "

Uses a pre-trained transformer model for encoding. Returns the pooler output.

\n", "bases": "fast_forward.encoder.base.Encoder"}, "fast_forward.encoder.TransformerEncoder.__init__": {"fullname": "fast_forward.encoder.TransformerEncoder.__init__", "modulename": "fast_forward.encoder", "qualname": "TransformerEncoder.__init__", "kind": "function", "doc": "

Create a transformer encoder.

\n\n
Parameters
\n\n
    \n
  • model: Pre-trained transformer model (name or path).
  • \n
  • device: PyTorch device.
  • \n
  • **tokenizer_args: Additional tokenizer arguments.
  • \n
\n", "signature": "(\tmodel: str | pathlib.Path,\tdevice: str = 'cpu',\t**tokenizer_args: Any)"}, "fast_forward.encoder.TCTColBERTQueryEncoder": {"fullname": "fast_forward.encoder.TCTColBERTQueryEncoder", "modulename": "fast_forward.encoder", "qualname": "TCTColBERTQueryEncoder", "kind": "class", "doc": "

Query encoder for pre-trained TCT-ColBERT models.

\n\n

Adapted from Pyserini:\nhttps://github.com/castorini/pyserini/blob/310c828211bb3b9528cfd59695184c80825684a2/pyserini/encode/_tct_colbert.py#L72

\n", "bases": "fast_forward.encoder.transformer.TransformerEncoder"}, "fast_forward.encoder.TCTColBERTDocumentEncoder": {"fullname": "fast_forward.encoder.TCTColBERTDocumentEncoder", "modulename": "fast_forward.encoder", "qualname": "TCTColBERTDocumentEncoder", "kind": "class", "doc": "

Document encoder for pre-trained TCT-ColBERT models.

\n\n

Adapted from Pyserini:\nhttps://github.com/castorini/pyserini/blob/310c828211bb3b9528cfd59695184c80825684a2/pyserini/encode/_tct_colbert.py#L27

\n", "bases": "fast_forward.encoder.transformer.TransformerEncoder"}, "fast_forward.index": {"fullname": "fast_forward.index", "modulename": "fast_forward.index", "kind": "module", "doc": "

Indexes

\n\n

Indexes are the core of the Fast-Forward library. In the following, you'll find some snippets how to create and use indexes.

\n\n

Index types

\n\n

Currently, two types of indexes are available:

\n\n
    \n
  • InMemoryIndex: Everything is held in memory entirely.
  • \n
  • OnDiskIndex: Vectors are stored on disk and accessed on demand.
  • \n
\n\n

OnDiskIndexes can be loaded into memory using OnDiskIndex.to_memory.

\n\n

Creating an index

\n\n

The following snippet illustrates how to create an OnDiskIndex object (given a fast_forward.encoder.Encoder, my_query_encoder) and add some vector representations to it:

\n\n
\n
my_index = OnDiskIndex(Path("my_index.h5"), my_query_encoder)\nmy_index.add(\n    my_vectors,  # shape (3, 768)\n    doc_ids=["d1", "d1", "d2"],\n    psg_ids=["d1_p1", "d1_p2", "d2_p1"]\n)\n
\n
\n\n

Here, my_vectors is a Numpy array of shape (3, 768), 768 being the dimensionality of the vector representations. The first two vectors correspond to two passages of the document d1, the third vector corresponds to d2, which has only a single passage. It is also possible to provide either only document IDs or only passage IDs.

\n\n

The index can then be subsequently loaded back using OnDiskIndex.load.

\n\n

Using an index

\n\n

An index can be used to compute semantic re-ranking scores by calling them directly. It requires a fast_forward.Ranking (typically, this comes from a sparse retriever) with the corresponding queries:

\n\n
\n
ranking = Ranking.from_file(Path("/path/to/sparse/run.tsv"), queries)\nresult = my_index(ranking)\n
\n
\n\n

Here, queries is a simple dictionary mapping query IDs to actual queries to be encoded. The resulting ranking, result, has the semantic scores for the query-document (or query-passage) pairs. Afterwards, retrieval and re-ranking scores may be combined (see Rankings).

\n\n

If the input ranking has a large number of queries, one can use the batch_size parameter. The following example processes the ranking in batches of 16 queries each:

\n\n
\n
result = my_index(ranking, batch_size=16)\n
\n
\n\n

Ranking mode

\n\n

Each index has a ranking Mode. The active mode determines the way scores are computed. For example, consider the example index from earlier. Setting the mode to Mode.PASSAGE instructs the index to compute scores on the passage level (and expect passage IDs in the input ranking):

\n\n
\n
my_index.mode = Mode.PASSAGE\n
\n
\n\n

Similarly, the index can return document IDs, where the score of a document computes as

\n\n
    \n
  • the highest score of its passages (Mode.MAXP),
  • \n
  • the score of the its first passage (Mode.FIRSTP) or
  • \n
  • the average score of all its passages (Mode.AVEP).
  • \n
\n\n

Early stopping

\n\n

Early stopping is a technique to limit the number of index look-ups. This can be beneficial for OnDiskIndexes, especially when the disk is slow. For early stopping, a relatively small cut-off depth (e.g., 10) is required, and it is mostly helpful when a large number of candidates are to be re-ranked. More information can be found in the paper. Note that the implementation here differs slightly from the algorithm in the paper, as the early stopping criterion is only computed at depths that are specified via the early_stopping_depths parameter for performance reasons.

\n\n

The following snippet demonstrates early stopping with

\n\n
    \n
  • a cut-off depth of 5,
  • \n
  • interpolation parameter 0.2,
  • \n
  • depths 400 and 5000.
  • \n
\n\n
\n
result = my_index(\n    ranking,\n    early_stopping=5,\n    early_stopping_alpha=0.2,\n    early_stopping_depths=(400, 5000),\n)\n
\n
\n\n

Specifically, in the first step, the top-400 documents/passages for each query are scored. Afterwards, the top-5000 documents/passages are scored only for those queries that do not meet the early stopping criterion yet.

\n"}, "fast_forward.index.Index": {"fullname": "fast_forward.index.Index", "modulename": "fast_forward.index", "qualname": "Index", "kind": "class", "doc": "

Abstract base class for Fast-Forward indexes.

\n", "bases": "abc.ABC"}, "fast_forward.index.Index.__init__": {"fullname": "fast_forward.index.Index.__init__", "modulename": "fast_forward.index", "qualname": "Index.__init__", "kind": "function", "doc": "

Create an index.

\n\n
Parameters
\n\n
    \n
  • query_encoder: The query encoder to use.
  • \n
  • quantizer: The quantizer to use.
  • \n
  • mode: The ranking mode.
  • \n
  • encoder_batch_size: The encoder batch size.
  • \n
\n", "signature": "(\tquery_encoder: fast_forward.encoder.base.Encoder | None = None,\tquantizer: fast_forward.quantizer.base.Quantizer | None = None,\tmode: fast_forward.index.base.Mode = <Mode.MAXP: 2>,\tencoder_batch_size: int = 32)"}, "fast_forward.index.Index.mode": {"fullname": "fast_forward.index.Index.mode", "modulename": "fast_forward.index", "qualname": "Index.mode", "kind": "variable", "doc": "

Return the ranking mode.

\n\n
Returns
\n\n
\n

The ranking mode.

\n
\n", "annotation": ": fast_forward.index.base.Mode"}, "fast_forward.index.Index.encode_queries": {"fullname": "fast_forward.index.Index.encode_queries", "modulename": "fast_forward.index", "qualname": "Index.encode_queries", "kind": "function", "doc": "

Encode queries.

\n\n
Parameters
\n\n
    \n
  • queries: The queries to encode.
  • \n
\n\n
Raises
\n\n
    \n
  • RuntimeError: When no query encoder exists.
  • \n
\n\n
Returns
\n\n
\n

The query representations.

\n
\n", "signature": "(self, queries: Sequence[str]) -> numpy.ndarray:", "funcdef": "def"}, "fast_forward.index.Index.query_encoder": {"fullname": "fast_forward.index.Index.query_encoder", "modulename": "fast_forward.index", "qualname": "Index.query_encoder", "kind": "variable", "doc": "

Return the query encoder if it exists.

\n\n
Returns
\n\n
\n

The query encoder (if any).

\n
\n", "annotation": ": fast_forward.encoder.base.Encoder | None"}, "fast_forward.index.Index.quantizer": {"fullname": "fast_forward.index.Index.quantizer", "modulename": "fast_forward.index", "qualname": "Index.quantizer", "kind": "variable", "doc": "

Return the quantizer if it exists.

\n\n
Returns
\n\n
\n

The quantizer (if any).

\n
\n", "annotation": ": fast_forward.quantizer.base.Quantizer | None"}, "fast_forward.index.Index.dim": {"fullname": "fast_forward.index.Index.dim", "modulename": "fast_forward.index", "qualname": "Index.dim", "kind": "variable", "doc": "

Return the dimensionality of the vector index.

\n\n

If no vectors exist, return None.\nIf a quantizer is used, return the dimension of the codes.

\n\n
Returns
\n\n
\n

The dimensionality (if any).

\n
\n", "annotation": ": int | None"}, "fast_forward.index.Index.doc_ids": {"fullname": "fast_forward.index.Index.doc_ids", "modulename": "fast_forward.index", "qualname": "Index.doc_ids", "kind": "variable", "doc": "

Return all unique document IDs.

\n\n
Returns
\n\n
\n

The document IDs.

\n
\n", "annotation": ": set[str]"}, "fast_forward.index.Index.psg_ids": {"fullname": "fast_forward.index.Index.psg_ids", "modulename": "fast_forward.index", "qualname": "Index.psg_ids", "kind": "variable", "doc": "

Return all unique passage IDs.

\n\n
Returns
\n\n
\n

The passage IDs.

\n
\n", "annotation": ": set[str]"}, "fast_forward.index.Index.add": {"fullname": "fast_forward.index.Index.add", "modulename": "fast_forward.index", "qualname": "Index.add", "kind": "function", "doc": "

Add vector representations and corresponding IDs to the index.

\n\n

Only one of doc_ids and psg_ids may be None.\nIndividual IDs in the sequence may also be None, but each vector must have at\nleast one associated ID.\nDocument IDs may have duplicates, passage IDs must be unique.

\n\n
Parameters
\n\n
    \n
  • vectors: The representations, shape (num_vectors, dim).
  • \n
  • doc_ids: The corresponding document IDs (may be duplicate).
  • \n
  • psg_ids: The corresponding passage IDs (must be unique).
  • \n
\n\n
Raises
\n\n
    \n
  • ValueError: When the number of IDs does not match the number of vectors.
  • \n
  • ValueError: \nWhen the input vector and index dimensionalities do not match.
  • \n
  • ValueError: When a vector has neither a document nor a passage ID.
  • \n
  • RuntimeError: When items can't be added to the index for any reason.
  • \n
\n", "signature": "(\tself,\tvectors: numpy.ndarray,\tdoc_ids: Sequence[str | None] | None = None,\tpsg_ids: Sequence[str | None] | None = None) -> None:", "funcdef": "def"}, "fast_forward.index.Index.batch_iter": {"fullname": "fast_forward.index.Index.batch_iter", "modulename": "fast_forward.index", "qualname": "Index.batch_iter", "kind": "function", "doc": "

Iterate over all vectors, document IDs, and passage IDs in batches.

\n\n

IDs may be either strings or None.

\n\n
Parameters
\n\n
    \n
  • batch_size: Batch size.\n:yield: Batches of vectors, document IDs (if any), passage IDs (if any).
  • \n
\n", "signature": "(\tself,\tbatch_size: int) -> Iterator[tuple[numpy.ndarray, Sequence[str | None], Sequence[str | None]]]:", "funcdef": "def"}, "fast_forward.index.Mode": {"fullname": "fast_forward.index.Mode", "modulename": "fast_forward.index", "qualname": "Mode", "kind": "class", "doc": "

Enum used to set the ranking mode of an index.

\n", "bases": "enum.Enum"}, "fast_forward.index.Mode.PASSAGE": {"fullname": "fast_forward.index.Mode.PASSAGE", "modulename": "fast_forward.index", "qualname": "Mode.PASSAGE", "kind": "variable", "doc": "

\n", "default_value": "<Mode.PASSAGE: 1>"}, "fast_forward.index.Mode.MAXP": {"fullname": "fast_forward.index.Mode.MAXP", "modulename": "fast_forward.index", "qualname": "Mode.MAXP", "kind": "variable", "doc": "

\n", "default_value": "<Mode.MAXP: 2>"}, "fast_forward.index.Mode.FIRSTP": {"fullname": "fast_forward.index.Mode.FIRSTP", "modulename": "fast_forward.index", "qualname": "Mode.FIRSTP", "kind": "variable", "doc": "

\n", "default_value": "<Mode.FIRSTP: 3>"}, "fast_forward.index.Mode.AVEP": {"fullname": "fast_forward.index.Mode.AVEP", "modulename": "fast_forward.index", "qualname": "Mode.AVEP", "kind": "variable", "doc": "

\n", "default_value": "<Mode.AVEP: 4>"}, "fast_forward.index.OnDiskIndex": {"fullname": "fast_forward.index.OnDiskIndex", "modulename": "fast_forward.index", "qualname": "OnDiskIndex", "kind": "class", "doc": "

Fast-Forward index that is read on-demand from disk.

\n\n

Uses HDF5 via h5py under the hood. The max_indexing_size argument works around a\nh5py limitation.

\n", "bases": "fast_forward.index.base.Index"}, "fast_forward.index.OnDiskIndex.__init__": {"fullname": "fast_forward.index.OnDiskIndex.__init__", "modulename": "fast_forward.index", "qualname": "OnDiskIndex.__init__", "kind": "function", "doc": "

Create an index on disk.

\n\n
Parameters
\n\n
    \n
  • index_file: The index file to create (or overwrite).
  • \n
  • query_encoder: The query encoder.
  • \n
  • quantizer: The quantizer to use.
  • \n
  • mode: The ranking mode.
  • \n
  • encoder_batch_size: Batch size for the query encoder.
  • \n
  • init_size: Initial size to allocate (number of vectors).
  • \n
  • resize_min_val: Minimum number of vectors to increase index size by.
  • \n
  • hdf5_chunk_size: Override chunk size used by HDF5.
  • \n
  • max_id_length: \nMaximum length of document and passage IDs (number of characters).
  • \n
  • overwrite: Overwrite index file if it exists.
  • \n
  • max_indexing_size: \nMaximum number of vectors to retrieve from the HDF5 dataset at once.
  • \n
\n\n
Raises
\n\n
    \n
  • ValueError: When the file exists and overwrite=False.
  • \n
\n", "signature": "(\tindex_file: pathlib.Path,\tquery_encoder: fast_forward.encoder.base.Encoder | None = None,\tquantizer: fast_forward.quantizer.base.Quantizer | None = None,\tmode: fast_forward.index.base.Mode = <Mode.MAXP: 2>,\tencoder_batch_size: int = 32,\tinit_size: int = 16384,\tresize_min_val: int = 1024,\thdf5_chunk_size: int | None = None,\tmax_id_length: int = 8,\toverwrite: bool = False,\tmax_indexing_size: int = 1024)"}, "fast_forward.index.OnDiskIndex.to_memory": {"fullname": "fast_forward.index.OnDiskIndex.to_memory", "modulename": "fast_forward.index", "qualname": "OnDiskIndex.to_memory", "kind": "function", "doc": "

Load the index entirely into memory.

\n\n
Parameters
\n\n
    \n
  • batch_size: Use batches instead of adding all vectors at once.
  • \n
\n\n
Returns
\n\n
\n

The loaded index.

\n
\n", "signature": "(\tself,\tbatch_size: int | None = None) -> fast_forward.index.memory.InMemoryIndex:", "funcdef": "def"}, "fast_forward.index.OnDiskIndex.load": {"fullname": "fast_forward.index.OnDiskIndex.load", "modulename": "fast_forward.index", "qualname": "OnDiskIndex.load", "kind": "function", "doc": "

Open an existing index on disk.

\n\n
Parameters
\n\n
    \n
  • index_file: The index file to open.
  • \n
  • query_encoder: The query encoder.
  • \n
  • mode: The ranking mode.
  • \n
  • encoder_batch_size: Batch size for the query encoder.
  • \n
  • resize_min_val: Minimum value to increase index size by.
  • \n
  • max_indexing_size: \nMaximum number of vectors to retrieve from the HDF5 dataset at once.
  • \n
\n\n
Returns
\n\n
\n

The index.

\n
\n", "signature": "(\tcls,\tindex_file: pathlib.Path,\tquery_encoder: fast_forward.encoder.base.Encoder | None = None,\tmode: fast_forward.index.base.Mode = <Mode.MAXP: 2>,\tencoder_batch_size: int = 32,\tresize_min_val: int = 1024,\tmax_indexing_size: int = 1024) -> fast_forward.index.disk.OnDiskIndex:", "funcdef": "def"}, "fast_forward.index.InMemoryIndex": {"fullname": "fast_forward.index.InMemoryIndex", "modulename": "fast_forward.index", "qualname": "InMemoryIndex", "kind": "class", "doc": "

Fast-Forward index that is held entirely in memory.

\n", "bases": "fast_forward.index.base.Index"}, "fast_forward.index.InMemoryIndex.__init__": {"fullname": "fast_forward.index.InMemoryIndex.__init__", "modulename": "fast_forward.index", "qualname": "InMemoryIndex.__init__", "kind": "function", "doc": "

Create an index in memory.

\n\n
Parameters
\n\n
    \n
  • query_encoder: The query encoder to use.
  • \n
  • quantizer: The quantizer to use.
  • \n
  • mode: The ranking mode.
  • \n
  • encoder_batch_size: Batch size for the query encoder.
  • \n
  • init_size: Initial index size (number of vectors).
  • \n
  • alloc_size: Shard size (number of vectors) allocated when index is full.
  • \n
\n", "signature": "(\tquery_encoder: fast_forward.encoder.base.Encoder | None = None,\tquantizer: fast_forward.quantizer.base.Quantizer | None = None,\tmode: fast_forward.index.base.Mode = <Mode.MAXP: 2>,\tencoder_batch_size: int = 32,\tinit_size: int = 16384,\talloc_size: int = 16384)"}, "fast_forward.index.InMemoryIndex.consolidate": {"fullname": "fast_forward.index.InMemoryIndex.consolidate", "modulename": "fast_forward.index", "qualname": "InMemoryIndex.consolidate", "kind": "function", "doc": "

Combine all shards of the index in one contiguous section in the memory.

\n", "signature": "(self) -> None:", "funcdef": "def"}, "fast_forward.quantizer": {"fullname": "fast_forward.quantizer", "modulename": "fast_forward.quantizer", "kind": "module", "doc": "

Quantization

\n\n

Fast-Forward indexes support (product) quantization as a means of compressing an index. The Quantizer class defines the interface for quantizers to implement. Currently, the following quantizers are available:

\n\n\n\n

Quantizers must be trained before they are used with the corresponding Fast-Forward index. The typical workflow is as follows:

\n\n
\n
from pathlib import Path\n\nimport numpy as np\n\nfrom fast_forward.index import OnDiskIndex\nfrom fast_forward.quantizer import NanoPQ\n\n# in practice, a subset of the encoded corpus should be used as training vectors\ntraining_vectors = np.random.normal(size=(2**10, 768)).astype(np.float32)\n\nquantizer = NanoPQ(M=8, Ks=256)\nquantizer.fit(training_vectors)\n\nindex = OnDiskIndex(Path("my_index.h5"), quantizer=quantizer)\n
\n
\n"}, "fast_forward.quantizer.Quantizer": {"fullname": "fast_forward.quantizer.Quantizer", "modulename": "fast_forward.quantizer", "qualname": "Quantizer", "kind": "class", "doc": "

Base class for quantizers.

\n", "bases": "abc.ABC"}, "fast_forward.quantizer.Quantizer.set_attached": {"fullname": "fast_forward.quantizer.Quantizer.set_attached", "modulename": "fast_forward.quantizer", "qualname": "Quantizer.set_attached", "kind": "function", "doc": "

Set the quantizer as attached, preventing calls to Quantizer.fit.

\n\n
Raises
\n\n
    \n
  • RuntimeError: When the quantizer has not been fit.
  • \n
\n", "signature": "(self) -> None:", "funcdef": "def"}, "fast_forward.quantizer.Quantizer.fit": {"fullname": "fast_forward.quantizer.Quantizer.fit", "modulename": "fast_forward.quantizer", "qualname": "Quantizer.fit", "kind": "function", "doc": "

Fit (train) the quantizer.

\n\n

Quantizers can only be trained before being attached to an index in order to\navoid inconsistencies.

\n\n
Parameters
\n\n
    \n
  • vectors: The training vectors.
  • \n
  • **kwargs: Arguments specific to the quantizer.
  • \n
\n\n
Raises
\n\n
    \n
  • RuntimeError: When the quantizer is aready attached to an index.
  • \n
\n", "signature": "(self, vectors: numpy.ndarray, **kwargs: Any) -> None:", "funcdef": "def"}, "fast_forward.quantizer.Quantizer.dtype": {"fullname": "fast_forward.quantizer.Quantizer.dtype", "modulename": "fast_forward.quantizer", "qualname": "Quantizer.dtype", "kind": "variable", "doc": "

The data type of the codes produced by this quantizer.

\n\n
Returns
\n\n
\n

The data type of the codes.

\n
\n", "annotation": ": numpy.dtype"}, "fast_forward.quantizer.Quantizer.dims": {"fullname": "fast_forward.quantizer.Quantizer.dims", "modulename": "fast_forward.quantizer", "qualname": "Quantizer.dims", "kind": "variable", "doc": "

The dimensions before and after quantization.

\n\n

May return None values before the quantizer is trained.

\n\n
Returns
\n\n
\n

Dimension of the original vectors and dimension of the codes.

\n
\n", "annotation": ": tuple[int | None, int | None]"}, "fast_forward.quantizer.Quantizer.encode": {"fullname": "fast_forward.quantizer.Quantizer.encode", "modulename": "fast_forward.quantizer", "qualname": "Quantizer.encode", "kind": "function", "doc": "

Encode a batch of vectors.

\n\n
Parameters
\n\n
    \n
  • vectors: The vectors to be encoded.
  • \n
\n\n
Returns
\n\n
\n

The codes corresponding to the vectors.

\n
\n", "signature": "(self, vectors: numpy.ndarray) -> numpy.ndarray:", "funcdef": "def"}, "fast_forward.quantizer.Quantizer.decode": {"fullname": "fast_forward.quantizer.Quantizer.decode", "modulename": "fast_forward.quantizer", "qualname": "Quantizer.decode", "kind": "function", "doc": "

Decode a batch of codes to obtain approximate vector representations.

\n\n
Parameters
\n\n
    \n
  • codes: The codes to be decoded.
  • \n
\n\n
Raises
\n\n
    \n
  • RuntimeError: When the quantizer has not been fit.
  • \n
\n\n
Returns
\n\n
\n

The approximated vectors.

\n
\n", "signature": "(self, codes: numpy.ndarray) -> numpy.ndarray:", "funcdef": "def"}, "fast_forward.quantizer.Quantizer.serialize": {"fullname": "fast_forward.quantizer.Quantizer.serialize", "modulename": "fast_forward.quantizer", "qualname": "Quantizer.serialize", "kind": "function", "doc": "

Return a serialized representation of the quantizer.

\n\n

This representations is used to be stored in the index.

\n\n
Returns
\n\n
\n

The serialized quantizer.

\n
\n", "signature": "(\tself) -> tuple[Mapping[str, str | bool | float], Mapping[str, str | bool | float], Mapping[str, numpy.ndarray]]:", "funcdef": "def"}, "fast_forward.quantizer.Quantizer.deserialize": {"fullname": "fast_forward.quantizer.Quantizer.deserialize", "modulename": "fast_forward.quantizer", "qualname": "Quantizer.deserialize", "kind": "function", "doc": "

Reconstruct a serialized quantizer.

\n\n
Parameters
\n\n
    \n
  • meta: The quantizer metadata.
  • \n
  • attributes: The quantizer attributes.
  • \n
  • data: The quantizer data.
  • \n
\n\n
Returns
\n\n
\n

The loaded quantizer.

\n
\n", "signature": "(\tcls,\tmeta: Mapping[str, str | bool | float],\tattributes: Mapping[str, str | bool | float],\tdata: Mapping[str, numpy.ndarray]) -> fast_forward.quantizer.base.Quantizer:", "funcdef": "def"}, "fast_forward.quantizer.NanoPQ": {"fullname": "fast_forward.quantizer.NanoPQ", "modulename": "fast_forward.quantizer", "qualname": "NanoPQ", "kind": "class", "doc": "

Product quantizer that uses the nanopq library.

\n\n

More information is available\nhere.

\n", "bases": "fast_forward.quantizer.base.Quantizer"}, "fast_forward.quantizer.NanoPQ.__init__": {"fullname": "fast_forward.quantizer.NanoPQ.__init__", "modulename": "fast_forward.quantizer", "qualname": "NanoPQ.__init__", "kind": "function", "doc": "

Instantiate a nanopq product quantizer.

\n\n
Parameters
\n\n
    \n
  • M: The number of subspaces.
  • \n
  • Ks: The number of codewords per subspace.
  • \n
  • metric: The metric to use.
  • \n
  • verbose: Enable verbosity.
  • \n
\n", "signature": "(M: int, Ks: int, metric: str = 'dot', verbose: bool = False)"}, "fast_forward.quantizer.NanoOPQ": {"fullname": "fast_forward.quantizer.NanoOPQ", "modulename": "fast_forward.quantizer", "qualname": "NanoOPQ", "kind": "class", "doc": "

Optimized product quantizer that uses the nanopq library.

\n\n

More information is available\nhere.

\n", "bases": "fast_forward.quantizer.base.Quantizer"}, "fast_forward.quantizer.NanoOPQ.__init__": {"fullname": "fast_forward.quantizer.NanoOPQ.__init__", "modulename": "fast_forward.quantizer", "qualname": "NanoOPQ.__init__", "kind": "function", "doc": "

Instantiate a nanopq optimized product quantizer.

\n\n
Parameters
\n\n
    \n
  • M: The number of subspaces.
  • \n
  • Ks: The number of codewords per subspace.
  • \n
  • metric: The metric to use.
  • \n
  • verbose: Enable verbosity.
  • \n
\n", "signature": "(M: int, Ks: int, metric: str = 'dot', verbose: bool = False)"}, "fast_forward.util": {"fullname": "fast_forward.util", "modulename": "fast_forward.util", "kind": "module", "doc": "

Indexing

\n\n

The Indexer class is a utility for indexing collections or adding pre-computed vectors to an index.

\n\n

If the size of the collection is known in advance, it can be specified when the index is created in order to avoid subsequent resizing operations:

\n\n
\n
my_index = OnDiskIndex(Path("my_index.h5"), init_size=1000000)\n
\n
\n\n

In order to index a corpus, a document/passage encoder is required, for example:

\n\n
\n
doc_encoder = TCTColBERTDocumentEncoder(\n    "castorini/tct_colbert-msmarco",\n    device="cuda:0" if torch.cuda.is_available() else "cpu",\n)\n
\n
\n\n

The indexer can be created as follows:

\n\n
\n
indexer = Indexer(my_index, doc_encoder, encoder_batch_size=8)\n
\n
\n\n

Indexer.from_dicts consumes an iterator that yields dictionaries:

\n\n
\n
def docs_iter():\n    for doc in my_corpus:\n        yield {"doc_id": doc.get_doc_id(), "text": doc.get_text()}\n\nindexer.from_dicts(docs_iter())\n
\n
\n\n

Additionally, indexers can be used to automatically fit and attach a quantizer during indexing. In this example, a quantized version (target_index) of an existing index (source_index) is created:

\n\n
\n
from fast_forward.quantizer import NanoPQ\n\nIndexer(\n    target_index,\n    quantizer=NanoPQ(8, 256),\n    batch_size=2**16,\n    quantizer_fit_batches=2,\n).from_index(source_index)\n
\n
\n\n

Here, the first two batches (of size $2^{16}$) are buffered and used to fit the quantizer.

\n\n

Sequential coalescing

\n\n

The sequential coalescing algorithm is a compression technique for indexes with multiple representations per document. More information can be found in the paper. It is implemented as fast_forward.util.create_coalesced_index. Example usage:

\n\n
\n
my_index = OnDiskIndex.load(Path("/path/to/index.h5"))\ncoalesced_index = InMemoryIndex(mode=Mode.MAXP)\ncreate_coalesced_index(my_index, coalesced_index, 0.3)\n
\n
\n"}, "fast_forward.util.Indexer": {"fullname": "fast_forward.util.Indexer", "modulename": "fast_forward.util", "qualname": "Indexer", "kind": "class", "doc": "

Utility class for indexing collections.

\n"}, "fast_forward.util.Indexer.__init__": {"fullname": "fast_forward.util.Indexer.__init__", "modulename": "fast_forward.util", "qualname": "Indexer.__init__", "kind": "function", "doc": "

Create an indexer.

\n\n

Optionally, a quantizer can automatically be fit on the first batch(es) to be\nindexed. This requires the index to be empty.\nIf a quantizer is provided, the first batch(es) will be buffered and used to fit\nthe quantizer.

\n\n
Parameters
\n\n
    \n
  • index: The target index.
  • \n
  • encoder: Document/passage encoder.
  • \n
  • encoder_batch_size: Encoder batch size.
  • \n
  • batch_size: How many vectors to add to the index at once.
  • \n
  • quantizer: A quantizer to be fit and attached to the index.
  • \n
  • quantizer_fit_batches: How many batches to use to fit the quantizer.
  • \n
\n\n
Raises
\n\n
    \n
  • ValueError: When a quantizer is provided that has already been fit.
  • \n
  • ValueError: When a quantizer is provided and the index is not empty.
  • \n
\n", "signature": "(\tindex: fast_forward.index.base.Index,\tencoder: fast_forward.encoder.base.Encoder | None = None,\tencoder_batch_size: int = 128,\tbatch_size: int = 65536,\tquantizer: fast_forward.quantizer.base.Quantizer | None = None,\tquantizer_fit_batches: int = 1)"}, "fast_forward.util.Indexer.from_dicts": {"fullname": "fast_forward.util.Indexer.from_dicts", "modulename": "fast_forward.util", "qualname": "Indexer.from_dicts", "kind": "function", "doc": "

Index data from dictionaries.

\n\n
Parameters
\n\n
    \n
  • data: An iterable of the dictionaries.
  • \n
\n", "signature": "(self, data: Iterable[fast_forward.util.indexer.IndexingDict]) -> None:", "funcdef": "def"}, "fast_forward.util.Indexer.from_index": {"fullname": "fast_forward.util.Indexer.from_index", "modulename": "fast_forward.util", "qualname": "Indexer.from_index", "kind": "function", "doc": "

Transfer vectors and IDs from another index.

\n\n

If the source index uses quantized representations, the vectors are\nreconstructed first.

\n\n
Parameters
\n\n
    \n
  • index: The source index.
  • \n
\n", "signature": "(self, index: fast_forward.index.base.Index) -> None:", "funcdef": "def"}, "fast_forward.util.IndexingDict": {"fullname": "fast_forward.util.IndexingDict", "modulename": "fast_forward.util", "qualname": "IndexingDict", "kind": "class", "doc": "

Dictionary that represents a document/passage.

\n\n

Consumed by Indexer.from_dicts.

\n", "bases": "typing.TypedDict"}, "fast_forward.util.IndexingDict.text": {"fullname": "fast_forward.util.IndexingDict.text", "modulename": "fast_forward.util", "qualname": "IndexingDict.text", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "fast_forward.util.IndexingDict.doc_id": {"fullname": "fast_forward.util.IndexingDict.doc_id", "modulename": "fast_forward.util", "qualname": "IndexingDict.doc_id", "kind": "variable", "doc": "

\n", "annotation": ": str | None"}, "fast_forward.util.IndexingDict.psg_id": {"fullname": "fast_forward.util.IndexingDict.psg_id", "modulename": "fast_forward.util", "qualname": "IndexingDict.psg_id", "kind": "variable", "doc": "

\n", "annotation": ": str | None"}, "fast_forward.util.to_ir_measures": {"fullname": "fast_forward.util.to_ir_measures", "modulename": "fast_forward.util", "qualname": "to_ir_measures", "kind": "function", "doc": "

Return a ranking as a data frame suitable for the ir-measures library.

\n\n
Parameters
\n\n
    \n
  • ranking: The input ranking.
  • \n
\n\n
Returns
\n\n
\n

The data frame.

\n
\n", "signature": "(ranking: fast_forward.ranking.Ranking) -> pandas.core.frame.DataFrame:", "funcdef": "def"}, "fast_forward.util.cos_dist": {"fullname": "fast_forward.util.cos_dist", "modulename": "fast_forward.util", "qualname": "cos_dist", "kind": "function", "doc": "

Cosine distance of two vectors.

\n\n
Parameters
\n\n
    \n
  • a: First vector.
  • \n
  • b: Second vector.
  • \n
\n\n
Returns
\n\n
\n

Cosine distance.

\n
\n", "signature": "(a: numpy.ndarray, b: numpy.ndarray) -> float:", "funcdef": "def"}, "fast_forward.util.create_coalesced_index": {"fullname": "fast_forward.util.create_coalesced_index", "modulename": "fast_forward.util", "qualname": "create_coalesced_index", "kind": "function", "doc": "

Create a compressed index using sequential coalescing.

\n\n
Parameters
\n\n
    \n
  • source_index: Source index (containing multiple vectors for each document).
  • \n
  • target_index: Target index (must be empty).
  • \n
  • delta: The coalescing threshold.
  • \n
  • distance_function: The distance function.
  • \n
  • batch_size: Use batches instead of adding all vectors at the end.
  • \n
\n\n
Raises
\n\n
    \n
  • ValueError: When the target index is not empty.
  • \n
\n", "signature": "(\tsource_index: fast_forward.index.base.Index,\ttarget_index: fast_forward.index.base.Index,\tdelta: float,\tdistance_function: Callable[[numpy.ndarray, numpy.ndarray], float] = <function cos_dist>,\tbatch_size: int | None = None) -> None:", "funcdef": "def"}, "fast_forward.util.pyterrier": {"fullname": "fast_forward.util.pyterrier", "modulename": "fast_forward.util.pyterrier", "kind": "module", "doc": "

PyTerrier transformers

\n\n

Fast-Forward indexes can seamlessly be integrated into PyTerrier pipelines using the transformers provided in fast_forward.util.pyterrier. Specifically, a re-ranking pipeline might look like this, given that my_index is a Fast-Forward index of the MS MARCO passage corpus:

\n\n
\n
bm25 = pt.BatchRetrieve.from_dataset(\n    "msmarco_passage", variant="terrier_stemmed", wmodel="BM25"\n)\n\nff_pl = bm25 % 5000 >> FFScore(my_index) >> FFInterpolate(0.2)\n
\n
\n"}, "fast_forward.util.pyterrier.FFScore": {"fullname": "fast_forward.util.pyterrier.FFScore", "modulename": "fast_forward.util.pyterrier", "qualname": "FFScore", "kind": "class", "doc": "

PyTerrier transformer that computes scores using a Fast-Forward index.

\n", "bases": "pyterrier.transformer.Transformer"}, "fast_forward.util.pyterrier.FFScore.__init__": {"fullname": "fast_forward.util.pyterrier.FFScore.__init__", "modulename": "fast_forward.util.pyterrier", "qualname": "FFScore.__init__", "kind": "function", "doc": "

Create an FFScore transformer.

\n\n
Parameters
\n\n
    \n
  • index: The Fast-Forward index.
  • \n
\n", "signature": "(index: fast_forward.index.base.Index)"}, "fast_forward.util.pyterrier.FFScore.transform": {"fullname": "fast_forward.util.pyterrier.FFScore.transform", "modulename": "fast_forward.util.pyterrier", "qualname": "FFScore.transform", "kind": "function", "doc": "

Compute the scores for all query-document pairs in the data frame.

\n\n

The previous scores are moved to the \"score_0\" column.

\n\n
Parameters
\n\n
    \n
  • topics_or_res: The PyTerrier data frame.
  • \n
\n\n
Returns
\n\n
\n

A data frame with the computed scores.

\n
\n", "signature": "(\tself,\ttopics_or_res: pandas.core.frame.DataFrame) -> pandas.core.frame.DataFrame:", "funcdef": "def"}, "fast_forward.util.pyterrier.FFInterpolate": {"fullname": "fast_forward.util.pyterrier.FFInterpolate", "modulename": "fast_forward.util.pyterrier", "qualname": "FFInterpolate", "kind": "class", "doc": "

PyTerrier transformer that interpolates scores computed by FFScore.

\n", "bases": "pyterrier.transformer.Transformer"}, "fast_forward.util.pyterrier.FFInterpolate.__init__": {"fullname": "fast_forward.util.pyterrier.FFInterpolate.__init__", "modulename": "fast_forward.util.pyterrier", "qualname": "FFInterpolate.__init__", "kind": "function", "doc": "

Create an FFInterpolate transformer.

\n\n
Parameters
\n\n
    \n
  • alpha: The interpolation parameter.
  • \n
\n", "signature": "(alpha: float)"}, "fast_forward.util.pyterrier.FFInterpolate.alpha": {"fullname": "fast_forward.util.pyterrier.FFInterpolate.alpha", "modulename": "fast_forward.util.pyterrier", "qualname": "FFInterpolate.alpha", "kind": "variable", "doc": "

\n"}, "fast_forward.util.pyterrier.FFInterpolate.transform": {"fullname": "fast_forward.util.pyterrier.FFInterpolate.transform", "modulename": "fast_forward.util.pyterrier", "qualname": "FFInterpolate.transform", "kind": "function", "doc": "

Interpolate the scores as alpha * score_0 + (1 - alpha) * score.

\n\n
Parameters
\n\n
    \n
  • topics_or_res: The PyTerrier data frame.
  • \n
\n\n
Returns
\n\n
\n

A data frame with the interpolated scores.

\n
\n", "signature": "(\tself,\ttopics_or_res: pandas.core.frame.DataFrame) -> pandas.core.frame.DataFrame:", "funcdef": "def"}}, "docInfo": {"fast_forward": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 1479}, "fast_forward.Ranking": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 11}, "fast_forward.Ranking.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 162, "bases": 0, "doc": 116}, "fast_forward.Ranking.name": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "fast_forward.Ranking.has_queries": {"qualname": 3, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 22}, "fast_forward.Ranking.q_ids": {"qualname": 3, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 38}, "fast_forward.Ranking.attach_queries": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 47, "bases": 0, "doc": 59}, "fast_forward.Ranking.normalize": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 25, "bases": 0, "doc": 45}, "fast_forward.Ranking.cut": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 35, "bases": 0, "doc": 53}, "fast_forward.Ranking.interpolate": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 77, "bases": 0, "doc": 79}, "fast_forward.Ranking.rr_scores": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 42, "bases": 0, "doc": 64}, "fast_forward.Ranking.save": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 29, "bases": 0, "doc": 25}, "fast_forward.Ranking.from_run": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 154, "bases": 0, "doc": 74}, "fast_forward.Ranking.from_file": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 113, "bases": 0, "doc": 70}, "fast_forward.encoder": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 179}, "fast_forward.encoder.Encoder": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 2, "doc": 7}, "fast_forward.encoder.LambdaEncoder": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 5, "doc": 10}, "fast_forward.encoder.LambdaEncoder.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 28}, "fast_forward.encoder.TransformerEncoder": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 5, "doc": 15}, "fast_forward.encoder.TransformerEncoder.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 62, "bases": 0, "doc": 45}, "fast_forward.encoder.TCTColBERTQueryEncoder": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 5, "doc": 23}, "fast_forward.encoder.TCTColBERTDocumentEncoder": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 5, "doc": 23}, "fast_forward.index": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 1044}, "fast_forward.index.Index": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 2, "doc": 10}, "fast_forward.index.Index.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 157, "bases": 0, "doc": 56}, "fast_forward.index.Index.mode": {"qualname": 2, "fullname": 5, "annotation": 6, "default_value": 0, "signature": 0, "bases": 0, "doc": 20}, "fast_forward.index.Index.encode_queries": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 35, "bases": 0, "doc": 53}, "fast_forward.index.Index.query_encoder": {"qualname": 3, "fullname": 6, "annotation": 8, "default_value": 0, "signature": 0, "bases": 0, "doc": 25}, "fast_forward.index.Index.quantizer": {"qualname": 2, "fullname": 5, "annotation": 8, "default_value": 0, "signature": 0, "bases": 0, "doc": 23}, "fast_forward.index.Index.dim": {"qualname": 2, "fullname": 5, "annotation": 4, "default_value": 0, "signature": 0, "bases": 0, "doc": 46}, "fast_forward.index.Index.doc_ids": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 21}, "fast_forward.index.Index.psg_ids": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 21}, "fast_forward.index.Index.add": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 105, "bases": 0, "doc": 190}, "fast_forward.index.Index.batch_iter": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 74, "bases": 0, "doc": 54}, "fast_forward.index.Mode": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 2, "doc": 13}, "fast_forward.index.Mode.PASSAGE": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 7, "signature": 0, "bases": 0, "doc": 3}, "fast_forward.index.Mode.MAXP": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 7, "signature": 0, "bases": 0, "doc": 3}, "fast_forward.index.Mode.FIRSTP": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 7, "signature": 0, "bases": 0, "doc": 3}, "fast_forward.index.Mode.AVEP": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 7, "signature": 0, "bases": 0, "doc": 3}, "fast_forward.index.OnDiskIndex": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 5, "doc": 37}, "fast_forward.index.OnDiskIndex.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 297, "bases": 0, "doc": 189}, "fast_forward.index.OnDiskIndex.to_memory": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 56, "bases": 0, "doc": 45}, "fast_forward.index.OnDiskIndex.load": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 201, "bases": 0, "doc": 108}, "fast_forward.index.InMemoryIndex": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 5, "doc": 12}, "fast_forward.index.InMemoryIndex.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 195, "bases": 0, "doc": 90}, "fast_forward.index.InMemoryIndex.consolidate": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 14, "bases": 0, "doc": 16}, "fast_forward.quantizer": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 331}, "fast_forward.quantizer.Quantizer": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 2, "doc": 7}, "fast_forward.quantizer.Quantizer.set_attached": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 14, "bases": 0, "doc": 35}, "fast_forward.quantizer.Quantizer.fit": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 41, "bases": 0, "doc": 75}, "fast_forward.quantizer.Quantizer.dtype": {"qualname": 2, "fullname": 5, "annotation": 3, "default_value": 0, "signature": 0, "bases": 0, "doc": 29}, "fast_forward.quantizer.Quantizer.dims": {"qualname": 2, "fullname": 5, "annotation": 7, "default_value": 0, "signature": 0, "bases": 0, "doc": 43}, "fast_forward.quantizer.Quantizer.encode": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 34, "bases": 0, "doc": 42}, "fast_forward.quantizer.Quantizer.decode": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 34, "bases": 0, "doc": 64}, "fast_forward.quantizer.Quantizer.serialize": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 92, "bases": 0, "doc": 36}, "fast_forward.quantizer.Quantizer.deserialize": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 129, "bases": 0, "doc": 54}, "fast_forward.quantizer.NanoPQ": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 5, "doc": 20}, "fast_forward.quantizer.NanoPQ.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 62, "bases": 0, "doc": 55}, "fast_forward.quantizer.NanoOPQ": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 5, "doc": 21}, "fast_forward.quantizer.NanoOPQ.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 62, "bases": 0, "doc": 56}, "fast_forward.util": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 692}, "fast_forward.util.Indexer": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 8}, "fast_forward.util.Indexer.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 170, "bases": 0, "doc": 174}, "fast_forward.util.Indexer.from_dicts": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 46, "bases": 0, "doc": 25}, "fast_forward.util.Indexer.from_index": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 40, "bases": 0, "doc": 41}, "fast_forward.util.IndexingDict": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 2, "doc": 18}, "fast_forward.util.IndexingDict.text": {"qualname": 2, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "fast_forward.util.IndexingDict.doc_id": {"qualname": 3, "fullname": 6, "annotation": 4, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "fast_forward.util.IndexingDict.psg_id": {"qualname": 3, "fullname": 6, "annotation": 4, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "fast_forward.util.to_ir_measures": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 45, "bases": 0, "doc": 45}, "fast_forward.util.cos_dist": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 39, "bases": 0, "doc": 43}, "fast_forward.util.create_coalesced_index": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 160, "bases": 0, "doc": 100}, "fast_forward.util.pyterrier": {"qualname": 0, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 186}, "fast_forward.util.pyterrier.FFScore": {"qualname": 1, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 3, "doc": 13}, "fast_forward.util.pyterrier.FFScore.__init__": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 30, "bases": 0, "doc": 24}, "fast_forward.util.pyterrier.FFScore.transform": {"qualname": 2, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 58, "bases": 0, "doc": 64}, "fast_forward.util.pyterrier.FFInterpolate": {"qualname": 1, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 3, "doc": 13}, "fast_forward.util.pyterrier.FFInterpolate.__init__": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 14, "bases": 0, "doc": 23}, "fast_forward.util.pyterrier.FFInterpolate.alpha": {"qualname": 2, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "fast_forward.util.pyterrier.FFInterpolate.transform": {"qualname": 2, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 58, "bases": 0, "doc": 54}}, "length": 80, "save": true}, "index": {"qualname": {"root": {"docs": {"fast_forward.Ranking.__init__": {"tf": 1}, "fast_forward.encoder.LambdaEncoder.__init__": {"tf": 1}, "fast_forward.encoder.TransformerEncoder.__init__": {"tf": 1}, "fast_forward.index.Index.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1}, "fast_forward.quantizer.NanoPQ.__init__": {"tf": 1}, "fast_forward.quantizer.NanoOPQ.__init__": {"tf": 1}, "fast_forward.util.Indexer.__init__": {"tf": 1}, "fast_forward.util.pyterrier.FFScore.__init__": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.__init__": {"tf": 1}}, "df": 11, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_forward.Ranking": {"tf": 1}, "fast_forward.Ranking.__init__": {"tf": 1}, "fast_forward.Ranking.name": {"tf": 1}, "fast_forward.Ranking.has_queries": {"tf": 1}, "fast_forward.Ranking.q_ids": {"tf": 1}, "fast_forward.Ranking.attach_queries": {"tf": 1}, "fast_forward.Ranking.normalize": {"tf": 1}, "fast_forward.Ranking.cut": {"tf": 1}, "fast_forward.Ranking.interpolate": {"tf": 1}, "fast_forward.Ranking.rr_scores": {"tf": 1}, "fast_forward.Ranking.save": {"tf": 1}, "fast_forward.Ranking.from_run": {"tf": 1}, "fast_forward.Ranking.from_file": {"tf": 1}}, "df": 13}}}}}}, "r": {"docs": {"fast_forward.Ranking.rr_scores": {"tf": 1}}, "df": 1}, "u": {"docs": {}, "df": 0, "n": {"docs": {"fast_forward.Ranking.from_run": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.Ranking.__init__": {"tf": 1}, "fast_forward.encoder.LambdaEncoder.__init__": {"tf": 1}, "fast_forward.encoder.TransformerEncoder.__init__": {"tf": 1}, "fast_forward.index.Index.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1}, "fast_forward.quantizer.NanoPQ.__init__": {"tf": 1}, "fast_forward.quantizer.NanoOPQ.__init__": {"tf": 1}, "fast_forward.util.Indexer.__init__": {"tf": 1}, "fast_forward.util.pyterrier.FFScore.__init__": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.__init__": {"tf": 1}}, "df": 11}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.Ranking.interpolate": {"tf": 1}}, "df": 1}}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {"fast_forward.index.Index": {"tf": 1}, "fast_forward.index.Index.__init__": {"tf": 1}, "fast_forward.index.Index.mode": {"tf": 1}, "fast_forward.index.Index.encode_queries": {"tf": 1}, "fast_forward.index.Index.query_encoder": {"tf": 1}, "fast_forward.index.Index.quantizer": {"tf": 1}, "fast_forward.index.Index.dim": {"tf": 1}, "fast_forward.index.Index.doc_ids": {"tf": 1}, "fast_forward.index.Index.psg_ids": {"tf": 1}, "fast_forward.index.Index.add": {"tf": 1}, "fast_forward.index.Index.batch_iter": {"tf": 1}, "fast_forward.util.Indexer.from_index": {"tf": 1}, "fast_forward.util.create_coalesced_index": {"tf": 1}}, "df": 13, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.util.Indexer": {"tf": 1}, "fast_forward.util.Indexer.__init__": {"tf": 1}, "fast_forward.util.Indexer.from_dicts": {"tf": 1}, "fast_forward.util.Indexer.from_index": {"tf": 1}}, "df": 4}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.util.IndexingDict": {"tf": 1}, "fast_forward.util.IndexingDict.text": {"tf": 1}, "fast_forward.util.IndexingDict.doc_id": {"tf": 1}, "fast_forward.util.IndexingDict.psg_id": {"tf": 1}}, "df": 4}}}}}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {"fast_forward.index.InMemoryIndex": {"tf": 1}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1}, "fast_forward.index.InMemoryIndex.consolidate": {"tf": 1}}, "df": 3}}}}}}}}}}}}, "d": {"docs": {"fast_forward.util.IndexingDict.doc_id": {"tf": 1}, "fast_forward.util.IndexingDict.psg_id": {"tf": 1}}, "df": 2, "s": {"docs": {"fast_forward.Ranking.q_ids": {"tf": 1}, "fast_forward.index.Index.doc_ids": {"tf": 1}, "fast_forward.index.Index.psg_ids": {"tf": 1}}, "df": 3}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.index.Index.batch_iter": {"tf": 1}}, "df": 1}}}, "r": {"docs": {"fast_forward.util.to_ir_measures": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.Ranking.name": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "q": {"docs": {"fast_forward.quantizer.NanoPQ": {"tf": 1}, "fast_forward.quantizer.NanoPQ.__init__": {"tf": 1}}, "df": 2}}, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "q": {"docs": {"fast_forward.quantizer.NanoOPQ": {"tf": 1}, "fast_forward.quantizer.NanoOPQ.__init__": {"tf": 1}}, "df": 2}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.Ranking.normalize": {"tf": 1}}, "df": 1}}}}}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.Ranking.has_queries": {"tf": 1}}, "df": 1}}}, "q": {"docs": {"fast_forward.Ranking.q_ids": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.Ranking.has_queries": {"tf": 1}, "fast_forward.Ranking.attach_queries": {"tf": 1}, "fast_forward.index.Index.encode_queries": {"tf": 1}}, "df": 3}}}, "y": {"docs": {"fast_forward.index.Index.query_encoder": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.index.Index.quantizer": {"tf": 1}, "fast_forward.quantizer.Quantizer": {"tf": 1}, "fast_forward.quantizer.Quantizer.set_attached": {"tf": 1}, "fast_forward.quantizer.Quantizer.fit": {"tf": 1}, "fast_forward.quantizer.Quantizer.dtype": {"tf": 1}, "fast_forward.quantizer.Quantizer.dims": {"tf": 1}, "fast_forward.quantizer.Quantizer.encode": {"tf": 1}, "fast_forward.quantizer.Quantizer.decode": {"tf": 1}, "fast_forward.quantizer.Quantizer.serialize": {"tf": 1}, "fast_forward.quantizer.Quantizer.deserialize": {"tf": 1}}, "df": 10}}}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"fast_forward.Ranking.attach_queries": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.quantizer.Quantizer.set_attached": {"tf": 1}}, "df": 1}}}}}}}, "d": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.index.Index.add": {"tf": 1}}, "df": 1}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {"fast_forward.index.Mode.AVEP": {"tf": 1}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {"fast_forward.util.pyterrier.FFInterpolate.alpha": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.Ranking.cut": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.index.InMemoryIndex.consolidate": {"tf": 1}}, "df": 1}}}}}}}}}, "s": {"docs": {"fast_forward.util.cos_dist": {"tf": 1}}, "df": 1}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.util.create_coalesced_index": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.util.create_coalesced_index": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.Ranking.rr_scores": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.Ranking.save": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.quantizer.Quantizer.set_attached": {"tf": 1}}, "df": 1}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.quantizer.Quantizer.serialize": {"tf": 1}}, "df": 1}}}}}}}}}, "f": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"fast_forward.Ranking.from_run": {"tf": 1}, "fast_forward.Ranking.from_file": {"tf": 1}, "fast_forward.util.Indexer.from_dicts": {"tf": 1}, "fast_forward.util.Indexer.from_index": {"tf": 1}}, "df": 4}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.Ranking.from_file": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {"fast_forward.index.Mode.FIRSTP": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {"fast_forward.quantizer.Quantizer.fit": {"tf": 1}}, "df": 1}}, "f": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.util.pyterrier.FFScore": {"tf": 1}, "fast_forward.util.pyterrier.FFScore.__init__": {"tf": 1}, "fast_forward.util.pyterrier.FFScore.transform": {"tf": 1}}, "df": 3}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.util.pyterrier.FFInterpolate": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.__init__": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.alpha": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.transform": {"tf": 1}}, "df": 4}}}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.index.Index.encode_queries": {"tf": 1}, "fast_forward.quantizer.Quantizer.encode": {"tf": 1}}, "df": 2, "r": {"docs": {"fast_forward.encoder.Encoder": {"tf": 1}, "fast_forward.index.Index.query_encoder": {"tf": 1}}, "df": 2}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.encoder.LambdaEncoder": {"tf": 1}, "fast_forward.encoder.LambdaEncoder.__init__": {"tf": 1}}, "df": 2}}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.index.OnDiskIndex.load": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"fast_forward.util.pyterrier.FFScore.transform": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.transform": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.encoder.TransformerEncoder": {"tf": 1}, "fast_forward.encoder.TransformerEncoder.__init__": {"tf": 1}}, "df": 2}}}}}}}}}}}}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.encoder.TCTColBERTQueryEncoder": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.encoder.TCTColBERTDocumentEncoder": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}}}}, "o": {"docs": {"fast_forward.index.OnDiskIndex.to_memory": {"tf": 1}, "fast_forward.util.to_ir_measures": {"tf": 1}}, "df": 2}, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.util.IndexingDict.text": {"tf": 1}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.index.Index.mode": {"tf": 1}, "fast_forward.index.Mode": {"tf": 1}, "fast_forward.index.Mode.PASSAGE": {"tf": 1}, "fast_forward.index.Mode.MAXP": {"tf": 1}, "fast_forward.index.Mode.FIRSTP": {"tf": 1}, "fast_forward.index.Mode.AVEP": {"tf": 1}}, "df": 6}}}, "a": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "p": {"docs": {"fast_forward.index.Mode.MAXP": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"fast_forward.index.OnDiskIndex.to_memory": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.util.to_ir_measures": {"tf": 1}}, "df": 1}}}}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {"fast_forward.index.Index.dim": {"tf": 1}}, "df": 1, "s": {"docs": {"fast_forward.quantizer.Quantizer.dims": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.util.Indexer.from_dicts": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.util.cos_dist": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "c": {"docs": {"fast_forward.index.Index.doc_ids": {"tf": 1}, "fast_forward.util.IndexingDict.doc_id": {"tf": 1}}, "df": 2}}, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.quantizer.Quantizer.dtype": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.quantizer.Quantizer.decode": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.quantizer.Quantizer.deserialize": {"tf": 1}}, "df": 1}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "g": {"docs": {"fast_forward.index.Index.psg_ids": {"tf": 1}, "fast_forward.util.IndexingDict.psg_id": {"tf": 1}}, "df": 2}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.index.Mode.PASSAGE": {"tf": 1}}, "df": 1}}}}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"fast_forward.index.Index.batch_iter": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {"fast_forward.index.OnDiskIndex": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.to_memory": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}}, "df": 4}}}}}}}}}}}}}, "fullname": {"root": {"docs": {"fast_forward.Ranking.__init__": {"tf": 1}, "fast_forward.encoder.LambdaEncoder.__init__": {"tf": 1}, "fast_forward.encoder.TransformerEncoder.__init__": {"tf": 1}, "fast_forward.index.Index.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1}, "fast_forward.quantizer.NanoPQ.__init__": {"tf": 1}, "fast_forward.quantizer.NanoOPQ.__init__": {"tf": 1}, "fast_forward.util.Indexer.__init__": {"tf": 1}, "fast_forward.util.pyterrier.FFScore.__init__": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.__init__": {"tf": 1}}, "df": 11, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.Ranking": {"tf": 1}, "fast_forward.Ranking.__init__": {"tf": 1}, "fast_forward.Ranking.name": {"tf": 1}, "fast_forward.Ranking.has_queries": {"tf": 1}, "fast_forward.Ranking.q_ids": {"tf": 1}, "fast_forward.Ranking.attach_queries": {"tf": 1}, "fast_forward.Ranking.normalize": {"tf": 1}, "fast_forward.Ranking.cut": {"tf": 1}, "fast_forward.Ranking.interpolate": {"tf": 1}, "fast_forward.Ranking.rr_scores": {"tf": 1}, "fast_forward.Ranking.save": {"tf": 1}, "fast_forward.Ranking.from_run": {"tf": 1}, "fast_forward.Ranking.from_file": {"tf": 1}, "fast_forward.encoder": {"tf": 1}, "fast_forward.encoder.Encoder": {"tf": 1}, "fast_forward.encoder.LambdaEncoder": {"tf": 1}, "fast_forward.encoder.LambdaEncoder.__init__": {"tf": 1}, "fast_forward.encoder.TransformerEncoder": {"tf": 1}, "fast_forward.encoder.TransformerEncoder.__init__": {"tf": 1}, "fast_forward.encoder.TCTColBERTQueryEncoder": {"tf": 1}, "fast_forward.encoder.TCTColBERTDocumentEncoder": {"tf": 1}, "fast_forward.index": {"tf": 1}, "fast_forward.index.Index": {"tf": 1}, "fast_forward.index.Index.__init__": {"tf": 1}, "fast_forward.index.Index.mode": {"tf": 1}, "fast_forward.index.Index.encode_queries": {"tf": 1}, "fast_forward.index.Index.query_encoder": {"tf": 1}, "fast_forward.index.Index.quantizer": {"tf": 1}, "fast_forward.index.Index.dim": {"tf": 1}, "fast_forward.index.Index.doc_ids": {"tf": 1}, "fast_forward.index.Index.psg_ids": {"tf": 1}, "fast_forward.index.Index.add": {"tf": 1}, "fast_forward.index.Index.batch_iter": {"tf": 1}, "fast_forward.index.Mode": {"tf": 1}, "fast_forward.index.Mode.PASSAGE": {"tf": 1}, "fast_forward.index.Mode.MAXP": {"tf": 1}, "fast_forward.index.Mode.FIRSTP": {"tf": 1}, "fast_forward.index.Mode.AVEP": {"tf": 1}, "fast_forward.index.OnDiskIndex": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.to_memory": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}, "fast_forward.index.InMemoryIndex": {"tf": 1}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1}, "fast_forward.index.InMemoryIndex.consolidate": {"tf": 1}, "fast_forward.quantizer": {"tf": 1}, "fast_forward.quantizer.Quantizer": {"tf": 1}, "fast_forward.quantizer.Quantizer.set_attached": {"tf": 1}, "fast_forward.quantizer.Quantizer.fit": {"tf": 1}, "fast_forward.quantizer.Quantizer.dtype": {"tf": 1}, "fast_forward.quantizer.Quantizer.dims": {"tf": 1}, "fast_forward.quantizer.Quantizer.encode": {"tf": 1}, "fast_forward.quantizer.Quantizer.decode": {"tf": 1}, "fast_forward.quantizer.Quantizer.serialize": {"tf": 1}, "fast_forward.quantizer.Quantizer.deserialize": {"tf": 1}, "fast_forward.quantizer.NanoPQ": {"tf": 1}, "fast_forward.quantizer.NanoPQ.__init__": {"tf": 1}, "fast_forward.quantizer.NanoOPQ": {"tf": 1}, "fast_forward.quantizer.NanoOPQ.__init__": {"tf": 1}, "fast_forward.util": {"tf": 1}, "fast_forward.util.Indexer": {"tf": 1}, "fast_forward.util.Indexer.__init__": {"tf": 1}, "fast_forward.util.Indexer.from_dicts": {"tf": 1}, "fast_forward.util.Indexer.from_index": {"tf": 1}, "fast_forward.util.IndexingDict": {"tf": 1}, "fast_forward.util.IndexingDict.text": {"tf": 1}, "fast_forward.util.IndexingDict.doc_id": {"tf": 1}, "fast_forward.util.IndexingDict.psg_id": {"tf": 1}, "fast_forward.util.to_ir_measures": {"tf": 1}, "fast_forward.util.cos_dist": {"tf": 1}, "fast_forward.util.create_coalesced_index": {"tf": 1}, "fast_forward.util.pyterrier": {"tf": 1}, "fast_forward.util.pyterrier.FFScore": {"tf": 1}, "fast_forward.util.pyterrier.FFScore.__init__": {"tf": 1}, "fast_forward.util.pyterrier.FFScore.transform": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.__init__": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.alpha": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.transform": {"tf": 1}}, "df": 80}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.Ranking": {"tf": 1}, "fast_forward.Ranking.__init__": {"tf": 1}, "fast_forward.Ranking.name": {"tf": 1}, "fast_forward.Ranking.has_queries": {"tf": 1}, "fast_forward.Ranking.q_ids": {"tf": 1}, "fast_forward.Ranking.attach_queries": {"tf": 1}, "fast_forward.Ranking.normalize": {"tf": 1}, "fast_forward.Ranking.cut": {"tf": 1}, "fast_forward.Ranking.interpolate": {"tf": 1}, "fast_forward.Ranking.rr_scores": {"tf": 1}, "fast_forward.Ranking.save": {"tf": 1}, "fast_forward.Ranking.from_run": {"tf": 1}, "fast_forward.Ranking.from_file": {"tf": 1}, "fast_forward.encoder": {"tf": 1}, "fast_forward.encoder.Encoder": {"tf": 1}, "fast_forward.encoder.LambdaEncoder": {"tf": 1}, "fast_forward.encoder.LambdaEncoder.__init__": {"tf": 1}, "fast_forward.encoder.TransformerEncoder": {"tf": 1}, "fast_forward.encoder.TransformerEncoder.__init__": {"tf": 1}, "fast_forward.encoder.TCTColBERTQueryEncoder": {"tf": 1}, "fast_forward.encoder.TCTColBERTDocumentEncoder": {"tf": 1}, "fast_forward.index": {"tf": 1}, "fast_forward.index.Index": {"tf": 1}, "fast_forward.index.Index.__init__": {"tf": 1}, "fast_forward.index.Index.mode": {"tf": 1}, "fast_forward.index.Index.encode_queries": {"tf": 1}, "fast_forward.index.Index.query_encoder": {"tf": 1}, "fast_forward.index.Index.quantizer": {"tf": 1}, "fast_forward.index.Index.dim": {"tf": 1}, "fast_forward.index.Index.doc_ids": {"tf": 1}, "fast_forward.index.Index.psg_ids": {"tf": 1}, "fast_forward.index.Index.add": {"tf": 1}, "fast_forward.index.Index.batch_iter": {"tf": 1}, "fast_forward.index.Mode": {"tf": 1}, "fast_forward.index.Mode.PASSAGE": {"tf": 1}, "fast_forward.index.Mode.MAXP": {"tf": 1}, "fast_forward.index.Mode.FIRSTP": {"tf": 1}, "fast_forward.index.Mode.AVEP": {"tf": 1}, "fast_forward.index.OnDiskIndex": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.to_memory": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}, "fast_forward.index.InMemoryIndex": {"tf": 1}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1}, "fast_forward.index.InMemoryIndex.consolidate": {"tf": 1}, "fast_forward.quantizer": {"tf": 1}, "fast_forward.quantizer.Quantizer": {"tf": 1}, "fast_forward.quantizer.Quantizer.set_attached": {"tf": 1}, "fast_forward.quantizer.Quantizer.fit": {"tf": 1}, "fast_forward.quantizer.Quantizer.dtype": {"tf": 1}, "fast_forward.quantizer.Quantizer.dims": {"tf": 1}, "fast_forward.quantizer.Quantizer.encode": {"tf": 1}, "fast_forward.quantizer.Quantizer.decode": {"tf": 1}, "fast_forward.quantizer.Quantizer.serialize": {"tf": 1}, "fast_forward.quantizer.Quantizer.deserialize": {"tf": 1}, "fast_forward.quantizer.NanoPQ": {"tf": 1}, "fast_forward.quantizer.NanoPQ.__init__": {"tf": 1}, "fast_forward.quantizer.NanoOPQ": {"tf": 1}, "fast_forward.quantizer.NanoOPQ.__init__": {"tf": 1}, "fast_forward.util": {"tf": 1}, "fast_forward.util.Indexer": {"tf": 1}, "fast_forward.util.Indexer.__init__": {"tf": 1}, "fast_forward.util.Indexer.from_dicts": {"tf": 1}, "fast_forward.util.Indexer.from_index": {"tf": 1}, "fast_forward.util.IndexingDict": {"tf": 1}, "fast_forward.util.IndexingDict.text": {"tf": 1}, "fast_forward.util.IndexingDict.doc_id": {"tf": 1}, "fast_forward.util.IndexingDict.psg_id": {"tf": 1}, "fast_forward.util.to_ir_measures": {"tf": 1}, "fast_forward.util.cos_dist": {"tf": 1}, "fast_forward.util.create_coalesced_index": {"tf": 1}, "fast_forward.util.pyterrier": {"tf": 1}, "fast_forward.util.pyterrier.FFScore": {"tf": 1}, "fast_forward.util.pyterrier.FFScore.__init__": {"tf": 1}, "fast_forward.util.pyterrier.FFScore.transform": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.__init__": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.alpha": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.transform": {"tf": 1}}, "df": 80}}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"fast_forward.Ranking.from_run": {"tf": 1}, "fast_forward.Ranking.from_file": {"tf": 1}, "fast_forward.util.Indexer.from_dicts": {"tf": 1}, "fast_forward.util.Indexer.from_index": {"tf": 1}}, "df": 4}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.Ranking.from_file": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {"fast_forward.index.Mode.FIRSTP": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {"fast_forward.quantizer.Quantizer.fit": {"tf": 1}}, "df": 1}}, "f": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.util.pyterrier.FFScore": {"tf": 1}, "fast_forward.util.pyterrier.FFScore.__init__": {"tf": 1}, "fast_forward.util.pyterrier.FFScore.transform": {"tf": 1}}, "df": 3}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.util.pyterrier.FFInterpolate": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.__init__": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.alpha": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.transform": {"tf": 1}}, "df": 4}}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_forward.Ranking": {"tf": 1}, "fast_forward.Ranking.__init__": {"tf": 1}, "fast_forward.Ranking.name": {"tf": 1}, "fast_forward.Ranking.has_queries": {"tf": 1}, "fast_forward.Ranking.q_ids": {"tf": 1}, "fast_forward.Ranking.attach_queries": {"tf": 1}, "fast_forward.Ranking.normalize": {"tf": 1}, "fast_forward.Ranking.cut": {"tf": 1}, "fast_forward.Ranking.interpolate": {"tf": 1}, "fast_forward.Ranking.rr_scores": {"tf": 1}, "fast_forward.Ranking.save": {"tf": 1}, "fast_forward.Ranking.from_run": {"tf": 1}, "fast_forward.Ranking.from_file": {"tf": 1}}, "df": 13}}}}}}, "r": {"docs": {"fast_forward.Ranking.rr_scores": {"tf": 1}}, "df": 1}, "u": {"docs": {}, "df": 0, "n": {"docs": {"fast_forward.Ranking.from_run": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.Ranking.__init__": {"tf": 1}, "fast_forward.encoder.LambdaEncoder.__init__": {"tf": 1}, "fast_forward.encoder.TransformerEncoder.__init__": {"tf": 1}, "fast_forward.index.Index.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1}, "fast_forward.quantizer.NanoPQ.__init__": {"tf": 1}, "fast_forward.quantizer.NanoOPQ.__init__": {"tf": 1}, "fast_forward.util.Indexer.__init__": {"tf": 1}, "fast_forward.util.pyterrier.FFScore.__init__": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.__init__": {"tf": 1}}, "df": 11}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.Ranking.interpolate": {"tf": 1}}, "df": 1}}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {"fast_forward.index": {"tf": 1}, "fast_forward.index.Index": {"tf": 1.4142135623730951}, "fast_forward.index.Index.__init__": {"tf": 1.4142135623730951}, "fast_forward.index.Index.mode": {"tf": 1.4142135623730951}, "fast_forward.index.Index.encode_queries": {"tf": 1.4142135623730951}, "fast_forward.index.Index.query_encoder": {"tf": 1.4142135623730951}, "fast_forward.index.Index.quantizer": {"tf": 1.4142135623730951}, "fast_forward.index.Index.dim": {"tf": 1.4142135623730951}, "fast_forward.index.Index.doc_ids": {"tf": 1.4142135623730951}, "fast_forward.index.Index.psg_ids": {"tf": 1.4142135623730951}, "fast_forward.index.Index.add": {"tf": 1.4142135623730951}, "fast_forward.index.Index.batch_iter": {"tf": 1.4142135623730951}, "fast_forward.index.Mode": {"tf": 1}, "fast_forward.index.Mode.PASSAGE": {"tf": 1}, "fast_forward.index.Mode.MAXP": {"tf": 1}, "fast_forward.index.Mode.FIRSTP": {"tf": 1}, "fast_forward.index.Mode.AVEP": {"tf": 1}, "fast_forward.index.OnDiskIndex": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.to_memory": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}, "fast_forward.index.InMemoryIndex": {"tf": 1}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1}, "fast_forward.index.InMemoryIndex.consolidate": {"tf": 1}, "fast_forward.util.Indexer.from_index": {"tf": 1}, "fast_forward.util.create_coalesced_index": {"tf": 1}}, "df": 26, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.util.Indexer": {"tf": 1}, "fast_forward.util.Indexer.__init__": {"tf": 1}, "fast_forward.util.Indexer.from_dicts": {"tf": 1}, "fast_forward.util.Indexer.from_index": {"tf": 1}}, "df": 4}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.util.IndexingDict": {"tf": 1}, "fast_forward.util.IndexingDict.text": {"tf": 1}, "fast_forward.util.IndexingDict.doc_id": {"tf": 1}, "fast_forward.util.IndexingDict.psg_id": {"tf": 1}}, "df": 4}}}}}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {"fast_forward.index.InMemoryIndex": {"tf": 1}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1}, "fast_forward.index.InMemoryIndex.consolidate": {"tf": 1}}, "df": 3}}}}}}}}}}}}, "d": {"docs": {"fast_forward.util.IndexingDict.doc_id": {"tf": 1}, "fast_forward.util.IndexingDict.psg_id": {"tf": 1}}, "df": 2, "s": {"docs": {"fast_forward.Ranking.q_ids": {"tf": 1}, "fast_forward.index.Index.doc_ids": {"tf": 1}, "fast_forward.index.Index.psg_ids": {"tf": 1}}, "df": 3}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.index.Index.batch_iter": {"tf": 1}}, "df": 1}}}, "r": {"docs": {"fast_forward.util.to_ir_measures": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.Ranking.name": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "q": {"docs": {"fast_forward.quantizer.NanoPQ": {"tf": 1}, "fast_forward.quantizer.NanoPQ.__init__": {"tf": 1}}, "df": 2}}, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "q": {"docs": {"fast_forward.quantizer.NanoOPQ": {"tf": 1}, "fast_forward.quantizer.NanoOPQ.__init__": {"tf": 1}}, "df": 2}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.Ranking.normalize": {"tf": 1}}, "df": 1}}}}}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.Ranking.has_queries": {"tf": 1}}, "df": 1}}}, "q": {"docs": {"fast_forward.Ranking.q_ids": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.Ranking.has_queries": {"tf": 1}, "fast_forward.Ranking.attach_queries": {"tf": 1}, "fast_forward.index.Index.encode_queries": {"tf": 1}}, "df": 3}}}, "y": {"docs": {"fast_forward.index.Index.query_encoder": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.index.Index.quantizer": {"tf": 1}, "fast_forward.quantizer": {"tf": 1}, "fast_forward.quantizer.Quantizer": {"tf": 1.4142135623730951}, "fast_forward.quantizer.Quantizer.set_attached": {"tf": 1.4142135623730951}, "fast_forward.quantizer.Quantizer.fit": {"tf": 1.4142135623730951}, "fast_forward.quantizer.Quantizer.dtype": {"tf": 1.4142135623730951}, "fast_forward.quantizer.Quantizer.dims": {"tf": 1.4142135623730951}, "fast_forward.quantizer.Quantizer.encode": {"tf": 1.4142135623730951}, "fast_forward.quantizer.Quantizer.decode": {"tf": 1.4142135623730951}, "fast_forward.quantizer.Quantizer.serialize": {"tf": 1.4142135623730951}, "fast_forward.quantizer.Quantizer.deserialize": {"tf": 1.4142135623730951}, "fast_forward.quantizer.NanoPQ": {"tf": 1}, "fast_forward.quantizer.NanoPQ.__init__": {"tf": 1}, "fast_forward.quantizer.NanoOPQ": {"tf": 1}, "fast_forward.quantizer.NanoOPQ.__init__": {"tf": 1}}, "df": 15}}}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"fast_forward.Ranking.attach_queries": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.quantizer.Quantizer.set_attached": {"tf": 1}}, "df": 1}}}}}}}, "d": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.index.Index.add": {"tf": 1}}, "df": 1}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {"fast_forward.index.Mode.AVEP": {"tf": 1}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {"fast_forward.util.pyterrier.FFInterpolate.alpha": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.Ranking.cut": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.index.InMemoryIndex.consolidate": {"tf": 1}}, "df": 1}}}}}}}}}, "s": {"docs": {"fast_forward.util.cos_dist": {"tf": 1}}, "df": 1}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.util.create_coalesced_index": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.util.create_coalesced_index": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.Ranking.rr_scores": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.Ranking.save": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.quantizer.Quantizer.set_attached": {"tf": 1}}, "df": 1}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.quantizer.Quantizer.serialize": {"tf": 1}}, "df": 1}}}}}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.index.Index.encode_queries": {"tf": 1}, "fast_forward.quantizer.Quantizer.encode": {"tf": 1}}, "df": 2, "r": {"docs": {"fast_forward.encoder": {"tf": 1}, "fast_forward.encoder.Encoder": {"tf": 1.4142135623730951}, "fast_forward.encoder.LambdaEncoder": {"tf": 1}, "fast_forward.encoder.LambdaEncoder.__init__": {"tf": 1}, "fast_forward.encoder.TransformerEncoder": {"tf": 1}, "fast_forward.encoder.TransformerEncoder.__init__": {"tf": 1}, "fast_forward.encoder.TCTColBERTQueryEncoder": {"tf": 1}, "fast_forward.encoder.TCTColBERTDocumentEncoder": {"tf": 1}, "fast_forward.index.Index.query_encoder": {"tf": 1}}, "df": 9}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.encoder.LambdaEncoder": {"tf": 1}, "fast_forward.encoder.LambdaEncoder.__init__": {"tf": 1}}, "df": 2}}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.index.OnDiskIndex.load": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"fast_forward.util.pyterrier.FFScore.transform": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.transform": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.encoder.TransformerEncoder": {"tf": 1}, "fast_forward.encoder.TransformerEncoder.__init__": {"tf": 1}}, "df": 2}}}}}}}}}}}}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.encoder.TCTColBERTQueryEncoder": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.encoder.TCTColBERTDocumentEncoder": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}}}}, "o": {"docs": {"fast_forward.index.OnDiskIndex.to_memory": {"tf": 1}, "fast_forward.util.to_ir_measures": {"tf": 1}}, "df": 2}, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.util.IndexingDict.text": {"tf": 1}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.index.Index.mode": {"tf": 1}, "fast_forward.index.Mode": {"tf": 1}, "fast_forward.index.Mode.PASSAGE": {"tf": 1}, "fast_forward.index.Mode.MAXP": {"tf": 1}, "fast_forward.index.Mode.FIRSTP": {"tf": 1}, "fast_forward.index.Mode.AVEP": {"tf": 1}}, "df": 6}}}, "a": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "p": {"docs": {"fast_forward.index.Mode.MAXP": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"fast_forward.index.OnDiskIndex.to_memory": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.util.to_ir_measures": {"tf": 1}}, "df": 1}}}}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {"fast_forward.index.Index.dim": {"tf": 1}}, "df": 1, "s": {"docs": {"fast_forward.quantizer.Quantizer.dims": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.util.Indexer.from_dicts": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.util.cos_dist": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "c": {"docs": {"fast_forward.index.Index.doc_ids": {"tf": 1}, "fast_forward.util.IndexingDict.doc_id": {"tf": 1}}, "df": 2}}, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.quantizer.Quantizer.dtype": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.quantizer.Quantizer.decode": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.quantizer.Quantizer.deserialize": {"tf": 1}}, "df": 1}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "g": {"docs": {"fast_forward.index.Index.psg_ids": {"tf": 1}, "fast_forward.util.IndexingDict.psg_id": {"tf": 1}}, "df": 2}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.index.Mode.PASSAGE": {"tf": 1}}, "df": 1}}}}}}, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.util.pyterrier": {"tf": 1}, "fast_forward.util.pyterrier.FFScore": {"tf": 1}, "fast_forward.util.pyterrier.FFScore.__init__": {"tf": 1}, "fast_forward.util.pyterrier.FFScore.transform": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.__init__": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.alpha": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.transform": {"tf": 1}}, "df": 8}}}}}}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"fast_forward.index.Index.batch_iter": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {"fast_forward.index.OnDiskIndex": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.to_memory": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}}, "df": 4}}}}}}}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"fast_forward.util": {"tf": 1}, "fast_forward.util.Indexer": {"tf": 1}, "fast_forward.util.Indexer.__init__": {"tf": 1}, "fast_forward.util.Indexer.from_dicts": {"tf": 1}, "fast_forward.util.Indexer.from_index": {"tf": 1}, "fast_forward.util.IndexingDict": {"tf": 1}, "fast_forward.util.IndexingDict.text": {"tf": 1}, "fast_forward.util.IndexingDict.doc_id": {"tf": 1}, "fast_forward.util.IndexingDict.psg_id": {"tf": 1}, "fast_forward.util.to_ir_measures": {"tf": 1}, "fast_forward.util.cos_dist": {"tf": 1}, "fast_forward.util.create_coalesced_index": {"tf": 1}, "fast_forward.util.pyterrier": {"tf": 1}, "fast_forward.util.pyterrier.FFScore": {"tf": 1}, "fast_forward.util.pyterrier.FFScore.__init__": {"tf": 1}, "fast_forward.util.pyterrier.FFScore.transform": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.__init__": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.alpha": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.transform": {"tf": 1}}, "df": 20}}}}}}, "annotation": {"root": {"docs": {"fast_forward.Ranking.has_queries": {"tf": 1}, "fast_forward.Ranking.q_ids": {"tf": 1}, "fast_forward.index.Index.mode": {"tf": 1}, "fast_forward.index.Index.query_encoder": {"tf": 1.4142135623730951}, "fast_forward.index.Index.quantizer": {"tf": 1.4142135623730951}, "fast_forward.index.Index.dim": {"tf": 1.4142135623730951}, "fast_forward.index.Index.doc_ids": {"tf": 1}, "fast_forward.index.Index.psg_ids": {"tf": 1}, "fast_forward.quantizer.Quantizer.dtype": {"tf": 1}, "fast_forward.quantizer.Quantizer.dims": {"tf": 1.7320508075688772}, "fast_forward.util.IndexingDict.text": {"tf": 1}, "fast_forward.util.IndexingDict.doc_id": {"tf": 1.4142135623730951}, "fast_forward.util.IndexingDict.psg_id": {"tf": 1.4142135623730951}}, "df": 13, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"fast_forward.Ranking.has_queries": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.index.Index.mode": {"tf": 1}, "fast_forward.index.Index.query_encoder": {"tf": 1}, "fast_forward.index.Index.quantizer": {"tf": 1}}, "df": 3}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.Ranking.q_ids": {"tf": 1}, "fast_forward.index.Index.doc_ids": {"tf": 1}, "fast_forward.index.Index.psg_ids": {"tf": 1}}, "df": 3}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.util.IndexingDict.text": {"tf": 1}, "fast_forward.util.IndexingDict.doc_id": {"tf": 1}, "fast_forward.util.IndexingDict.psg_id": {"tf": 1}}, "df": 3}}}, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.index.Index.mode": {"tf": 1}, "fast_forward.index.Index.query_encoder": {"tf": 1}, "fast_forward.index.Index.quantizer": {"tf": 1}}, "df": 3}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.index.Index.mode": {"tf": 1}, "fast_forward.index.Index.query_encoder": {"tf": 1}, "fast_forward.index.Index.quantizer": {"tf": 1}}, "df": 3}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {"fast_forward.index.Index.mode": {"tf": 1}}, "df": 1}}}, "t": {"docs": {"fast_forward.index.Index.dim": {"tf": 1}, "fast_forward.quantizer.Quantizer.dims": {"tf": 1}}, "df": 2}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.index.Index.mode": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.index.Index.query_encoder": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.index.Index.query_encoder": {"tf": 1}, "fast_forward.index.Index.quantizer": {"tf": 1}, "fast_forward.index.Index.dim": {"tf": 1}, "fast_forward.quantizer.Quantizer.dims": {"tf": 1.4142135623730951}, "fast_forward.util.IndexingDict.doc_id": {"tf": 1}, "fast_forward.util.IndexingDict.psg_id": {"tf": 1}}, "df": 6}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"fast_forward.quantizer.Quantizer.dtype": {"tf": 1}}, "df": 1}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.index.Index.quantizer": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}, "d": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.quantizer.Quantizer.dtype": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.quantizer.Quantizer.dims": {"tf": 1}}, "df": 1}}}}}}}}}}}, "default_value": {"root": {"1": {"docs": {"fast_forward.index.Mode.PASSAGE": {"tf": 1}}, "df": 1}, "2": {"docs": {"fast_forward.index.Mode.MAXP": {"tf": 1}}, "df": 1}, "3": {"docs": {"fast_forward.index.Mode.FIRSTP": {"tf": 1}}, "df": 1}, "4": {"docs": {"fast_forward.index.Mode.AVEP": {"tf": 1}}, "df": 1}, "docs": {"fast_forward.index.Mode.PASSAGE": {"tf": 1.4142135623730951}, "fast_forward.index.Mode.MAXP": {"tf": 1.4142135623730951}, "fast_forward.index.Mode.FIRSTP": {"tf": 1.4142135623730951}, "fast_forward.index.Mode.AVEP": {"tf": 1.4142135623730951}}, "df": 4, "l": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.index.Mode.PASSAGE": {"tf": 1}, "fast_forward.index.Mode.MAXP": {"tf": 1}, "fast_forward.index.Mode.FIRSTP": {"tf": 1}, "fast_forward.index.Mode.AVEP": {"tf": 1}}, "df": 4}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.index.Mode.PASSAGE": {"tf": 1}, "fast_forward.index.Mode.MAXP": {"tf": 1}, "fast_forward.index.Mode.FIRSTP": {"tf": 1}, "fast_forward.index.Mode.AVEP": {"tf": 1}}, "df": 4}}}, "a": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "p": {"docs": {"fast_forward.index.Mode.MAXP": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.index.Mode.PASSAGE": {"tf": 1}}, "df": 1}}}}}}}, "g": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.index.Mode.PASSAGE": {"tf": 1}, "fast_forward.index.Mode.MAXP": {"tf": 1}, "fast_forward.index.Mode.FIRSTP": {"tf": 1}, "fast_forward.index.Mode.AVEP": {"tf": 1}}, "df": 4}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {"fast_forward.index.Mode.FIRSTP": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {"fast_forward.index.Mode.AVEP": {"tf": 1}}, "df": 1}}}}}}, "signature": {"root": {"1": {"0": {"2": {"4": {"docs": {"fast_forward.index.OnDiskIndex.__init__": {"tf": 1.4142135623730951}, "fast_forward.index.OnDiskIndex.load": {"tf": 1.4142135623730951}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"8": {"docs": {"fast_forward.util.Indexer.__init__": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "6": {"3": {"8": {"4": {"docs": {"fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1.4142135623730951}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"fast_forward.util.Indexer.__init__": {"tf": 1}}, "df": 1}, "2": {"docs": {"fast_forward.index.Index.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1}}, "df": 4}, "3": {"2": {"docs": {"fast_forward.index.Index.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1}}, "df": 4}, "9": {"docs": {"fast_forward.Ranking.__init__": {"tf": 1.4142135623730951}, "fast_forward.Ranking.from_run": {"tf": 1.4142135623730951}, "fast_forward.Ranking.from_file": {"tf": 1.4142135623730951}, "fast_forward.encoder.TransformerEncoder.__init__": {"tf": 1.4142135623730951}, "fast_forward.quantizer.NanoPQ.__init__": {"tf": 1.4142135623730951}, "fast_forward.quantizer.NanoOPQ.__init__": {"tf": 1.4142135623730951}}, "df": 6}, "docs": {}, "df": 0}, "6": {"0": {"docs": {"fast_forward.Ranking.rr_scores": {"tf": 1}}, "df": 1}, "5": {"5": {"3": {"6": {"docs": {"fast_forward.util.Indexer.__init__": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"docs": {"fast_forward.index.OnDiskIndex.__init__": {"tf": 1}}, "df": 1}, "docs": {"fast_forward.Ranking.__init__": {"tf": 11.532562594670797}, "fast_forward.Ranking.attach_queries": {"tf": 6.164414002968976}, "fast_forward.Ranking.normalize": {"tf": 4.47213595499958}, "fast_forward.Ranking.cut": {"tf": 5.291502622129181}, "fast_forward.Ranking.interpolate": {"tf": 7.874007874011811}, "fast_forward.Ranking.rr_scores": {"tf": 5.830951894845301}, "fast_forward.Ranking.save": {"tf": 4.898979485566356}, "fast_forward.Ranking.from_run": {"tf": 11.224972160321824}, "fast_forward.Ranking.from_file": {"tf": 9.591663046625438}, "fast_forward.encoder.LambdaEncoder.__init__": {"tf": 5.0990195135927845}, "fast_forward.encoder.TransformerEncoder.__init__": {"tf": 7.0710678118654755}, "fast_forward.index.Index.__init__": {"tf": 11.135528725660043}, "fast_forward.index.Index.encode_queries": {"tf": 5.385164807134504}, "fast_forward.index.Index.add": {"tf": 9.273618495495704}, "fast_forward.index.Index.batch_iter": {"tf": 7.745966692414834}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 15.231546211727817}, "fast_forward.index.OnDiskIndex.to_memory": {"tf": 6.708203932499369}, "fast_forward.index.OnDiskIndex.load": {"tf": 12.489995996796797}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 12.409673645990857}, "fast_forward.index.InMemoryIndex.consolidate": {"tf": 3.4641016151377544}, "fast_forward.quantizer.Quantizer.set_attached": {"tf": 3.4641016151377544}, "fast_forward.quantizer.Quantizer.fit": {"tf": 5.830951894845301}, "fast_forward.quantizer.Quantizer.encode": {"tf": 5.291502622129181}, "fast_forward.quantizer.Quantizer.decode": {"tf": 5.291502622129181}, "fast_forward.quantizer.Quantizer.serialize": {"tf": 8.717797887081348}, "fast_forward.quantizer.Quantizer.deserialize": {"tf": 10.295630140987}, "fast_forward.quantizer.NanoPQ.__init__": {"tf": 7.0710678118654755}, "fast_forward.quantizer.NanoOPQ.__init__": {"tf": 7.0710678118654755}, "fast_forward.util.Indexer.__init__": {"tf": 11.575836902790225}, "fast_forward.util.Indexer.from_dicts": {"tf": 6.082762530298219}, "fast_forward.util.Indexer.from_index": {"tf": 5.656854249492381}, "fast_forward.util.to_ir_measures": {"tf": 6}, "fast_forward.util.cos_dist": {"tf": 5.656854249492381}, "fast_forward.util.create_coalesced_index": {"tf": 11.180339887498949}, "fast_forward.util.pyterrier.FFScore.__init__": {"tf": 4.898979485566356}, "fast_forward.util.pyterrier.FFScore.transform": {"tf": 6.782329983125268}, "fast_forward.util.pyterrier.FFInterpolate.__init__": {"tf": 3.4641016151377544}, "fast_forward.util.pyterrier.FFInterpolate.transform": {"tf": 6.782329983125268}}, "df": 38, "d": {"docs": {}, "df": 0, "f": {"docs": {"fast_forward.Ranking.__init__": {"tf": 1}}, "df": 1}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"fast_forward.quantizer.Quantizer.deserialize": {"tf": 1}, "fast_forward.util.Indexer.from_dicts": {"tf": 1}}, "df": 2, "f": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.Ranking.__init__": {"tf": 1}, "fast_forward.util.to_ir_measures": {"tf": 1}, "fast_forward.util.pyterrier.FFScore.transform": {"tf": 1.4142135623730951}, "fast_forward.util.pyterrier.FFInterpolate.transform": {"tf": 1.4142135623730951}}, "df": 4}}}}}}}}, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.Ranking.__init__": {"tf": 1.7320508075688772}, "fast_forward.Ranking.from_run": {"tf": 1.7320508075688772}, "fast_forward.Ranking.from_file": {"tf": 1.7320508075688772}}, "df": 3}}}}, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.encoder.TransformerEncoder.__init__": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"fast_forward.util.create_coalesced_index": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "c": {"docs": {"fast_forward.index.Index.add": {"tf": 1}}, "df": 1}, "t": {"docs": {"fast_forward.quantizer.NanoPQ.__init__": {"tf": 1}, "fast_forward.quantizer.NanoOPQ.__init__": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {"fast_forward.index.OnDiskIndex.load": {"tf": 1}}, "df": 1}, "t": {"docs": {"fast_forward.util.create_coalesced_index": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.util.create_coalesced_index": {"tf": 1}}, "df": 1}}}}}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.Ranking.__init__": {"tf": 1}, "fast_forward.util.to_ir_measures": {"tf": 1}, "fast_forward.util.pyterrier.FFScore.transform": {"tf": 1.4142135623730951}, "fast_forward.util.pyterrier.FFInterpolate.transform": {"tf": 1.4142135623730951}}, "df": 4}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"fast_forward.Ranking.save": {"tf": 1}, "fast_forward.Ranking.from_file": {"tf": 1}, "fast_forward.encoder.TransformerEncoder.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}}, "df": 5, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {"fast_forward.Ranking.save": {"tf": 1}, "fast_forward.Ranking.from_file": {"tf": 1}, "fast_forward.encoder.TransformerEncoder.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}}, "df": 5}}}}}}, "s": {"docs": {}, "df": 0, "g": {"docs": {"fast_forward.index.Index.add": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.Ranking.__init__": {"tf": 1}, "fast_forward.util.to_ir_measures": {"tf": 1}, "fast_forward.util.pyterrier.FFScore.transform": {"tf": 1.4142135623730951}, "fast_forward.util.pyterrier.FFInterpolate.transform": {"tf": 1.4142135623730951}}, "df": 4}}, "p": {"docs": {}, "df": 0, "y": {"docs": {"fast_forward.Ranking.__init__": {"tf": 1}}, "df": 1}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.quantizer.Quantizer.decode": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"fast_forward.util.create_coalesced_index": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {"fast_forward.Ranking.cut": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.Ranking.from_run": {"tf": 1}, "fast_forward.Ranking.from_file": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}, "fast_forward.quantizer.Quantizer.deserialize": {"tf": 1}}, "df": 4}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.encoder.LambdaEncoder.__init__": {"tf": 1}, "fast_forward.util.create_coalesced_index": {"tf": 1}}, "df": 2}}}}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {"fast_forward.encoder.TransformerEncoder.__init__": {"tf": 1}}, "df": 1}}, "h": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {"fast_forward.index.OnDiskIndex.__init__": {"tf": 1}}, "df": 1}}}}}, "f": {"docs": {"fast_forward.Ranking.from_file": {"tf": 1}, "fast_forward.encoder.LambdaEncoder.__init__": {"tf": 1}}, "df": 2, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.Ranking.__init__": {"tf": 1}, "fast_forward.util.to_ir_measures": {"tf": 1}, "fast_forward.util.pyterrier.FFScore.transform": {"tf": 1.4142135623730951}, "fast_forward.util.pyterrier.FFInterpolate.transform": {"tf": 1.4142135623730951}}, "df": 4}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"3": {"2": {"docs": {"fast_forward.Ranking.__init__": {"tf": 1}, "fast_forward.Ranking.from_run": {"tf": 1}, "fast_forward.Ranking.from_file": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {"fast_forward.Ranking.interpolate": {"tf": 1}, "fast_forward.Ranking.from_run": {"tf": 1}, "fast_forward.quantizer.Quantizer.serialize": {"tf": 1.4142135623730951}, "fast_forward.quantizer.Quantizer.deserialize": {"tf": 1.4142135623730951}, "fast_forward.util.cos_dist": {"tf": 1}, "fast_forward.util.create_coalesced_index": {"tf": 1.4142135623730951}, "fast_forward.util.pyterrier.FFInterpolate.__init__": {"tf": 1}}, "df": 7}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.Ranking.__init__": {"tf": 1}, "fast_forward.Ranking.interpolate": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.quantizer.NanoPQ.__init__": {"tf": 1}, "fast_forward.quantizer.NanoOPQ.__init__": {"tf": 1}}, "df": 5}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.Ranking.attach_queries": {"tf": 1}, "fast_forward.Ranking.normalize": {"tf": 1}, "fast_forward.Ranking.cut": {"tf": 1}, "fast_forward.Ranking.interpolate": {"tf": 1.4142135623730951}, "fast_forward.Ranking.rr_scores": {"tf": 1}, "fast_forward.Ranking.from_run": {"tf": 1}, "fast_forward.Ranking.from_file": {"tf": 1}, "fast_forward.index.Index.__init__": {"tf": 1.7320508075688772}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1.7320508075688772}, "fast_forward.index.OnDiskIndex.to_memory": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1.7320508075688772}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1.7320508075688772}, "fast_forward.quantizer.Quantizer.deserialize": {"tf": 1}, "fast_forward.util.Indexer.__init__": {"tf": 1.7320508075688772}, "fast_forward.util.Indexer.from_dicts": {"tf": 1}, "fast_forward.util.Indexer.from_index": {"tf": 1}, "fast_forward.util.to_ir_measures": {"tf": 1}, "fast_forward.util.create_coalesced_index": {"tf": 1.4142135623730951}, "fast_forward.util.pyterrier.FFScore.__init__": {"tf": 1}}, "df": 19}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.Ranking.attach_queries": {"tf": 1}, "fast_forward.Ranking.normalize": {"tf": 1}, "fast_forward.Ranking.cut": {"tf": 1}, "fast_forward.Ranking.interpolate": {"tf": 1.4142135623730951}, "fast_forward.Ranking.rr_scores": {"tf": 1}, "fast_forward.Ranking.from_run": {"tf": 1}, "fast_forward.Ranking.from_file": {"tf": 1}, "fast_forward.index.Index.__init__": {"tf": 1.7320508075688772}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1.7320508075688772}, "fast_forward.index.OnDiskIndex.to_memory": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1.7320508075688772}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1.7320508075688772}, "fast_forward.quantizer.Quantizer.deserialize": {"tf": 1}, "fast_forward.util.Indexer.__init__": {"tf": 1.7320508075688772}, "fast_forward.util.Indexer.from_dicts": {"tf": 1}, "fast_forward.util.Indexer.from_index": {"tf": 1}, "fast_forward.util.to_ir_measures": {"tf": 1}, "fast_forward.util.create_coalesced_index": {"tf": 1.4142135623730951}, "fast_forward.util.pyterrier.FFScore.__init__": {"tf": 1}}, "df": 19}}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}}, "df": 2}}, "t": {"docs": {"fast_forward.util.Indexer.__init__": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_forward.util.create_coalesced_index": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.Ranking.__init__": {"tf": 1}, "fast_forward.Ranking.from_run": {"tf": 1}}, "df": 2}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.Ranking.__init__": {"tf": 2}, "fast_forward.Ranking.save": {"tf": 1}, "fast_forward.Ranking.from_run": {"tf": 2}, "fast_forward.Ranking.from_file": {"tf": 1.4142135623730951}, "fast_forward.index.Index.__init__": {"tf": 2}, "fast_forward.index.Index.add": {"tf": 2.6457513110645907}, "fast_forward.index.Index.batch_iter": {"tf": 1.4142135623730951}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 2.449489742783178}, "fast_forward.index.OnDiskIndex.to_memory": {"tf": 1.4142135623730951}, "fast_forward.index.OnDiskIndex.load": {"tf": 1.4142135623730951}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 2}, "fast_forward.index.InMemoryIndex.consolidate": {"tf": 1}, "fast_forward.quantizer.Quantizer.set_attached": {"tf": 1}, "fast_forward.quantizer.Quantizer.fit": {"tf": 1}, "fast_forward.util.Indexer.__init__": {"tf": 2}, "fast_forward.util.Indexer.from_dicts": {"tf": 1}, "fast_forward.util.Indexer.from_index": {"tf": 1}, "fast_forward.util.create_coalesced_index": {"tf": 1.7320508075688772}}, "df": 18}}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.Ranking.interpolate": {"tf": 1}}, "df": 1}}}}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"fast_forward.Ranking.__init__": {"tf": 1}, "fast_forward.Ranking.from_run": {"tf": 1}, "fast_forward.Ranking.from_file": {"tf": 1}, "fast_forward.encoder.LambdaEncoder.__init__": {"tf": 1}, "fast_forward.index.Index.encode_queries": {"tf": 1}, "fast_forward.index.Index.add": {"tf": 1}, "fast_forward.index.Index.batch_iter": {"tf": 1}, "fast_forward.quantizer.Quantizer.fit": {"tf": 1}, "fast_forward.quantizer.Quantizer.encode": {"tf": 1.4142135623730951}, "fast_forward.quantizer.Quantizer.decode": {"tf": 1.4142135623730951}, "fast_forward.quantizer.Quantizer.serialize": {"tf": 1}, "fast_forward.quantizer.Quantizer.deserialize": {"tf": 1}, "fast_forward.util.cos_dist": {"tf": 1.4142135623730951}, "fast_forward.util.create_coalesced_index": {"tf": 1.4142135623730951}}, "df": 14}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"fast_forward.encoder.LambdaEncoder.__init__": {"tf": 1}, "fast_forward.index.Index.encode_queries": {"tf": 1}, "fast_forward.index.Index.add": {"tf": 1}, "fast_forward.index.Index.batch_iter": {"tf": 1}, "fast_forward.quantizer.Quantizer.fit": {"tf": 1}, "fast_forward.quantizer.Quantizer.encode": {"tf": 1.4142135623730951}, "fast_forward.quantizer.Quantizer.decode": {"tf": 1.4142135623730951}, "fast_forward.quantizer.Quantizer.serialize": {"tf": 1}, "fast_forward.quantizer.Quantizer.deserialize": {"tf": 1}, "fast_forward.util.cos_dist": {"tf": 1.4142135623730951}, "fast_forward.util.create_coalesced_index": {"tf": 1.4142135623730951}}, "df": 11}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.Ranking.__init__": {"tf": 1.7320508075688772}, "fast_forward.Ranking.attach_queries": {"tf": 1.4142135623730951}, "fast_forward.Ranking.from_run": {"tf": 2.23606797749979}, "fast_forward.Ranking.from_file": {"tf": 1.4142135623730951}, "fast_forward.encoder.LambdaEncoder.__init__": {"tf": 1}, "fast_forward.encoder.TransformerEncoder.__init__": {"tf": 1.4142135623730951}, "fast_forward.index.Index.encode_queries": {"tf": 1}, "fast_forward.index.Index.add": {"tf": 1.4142135623730951}, "fast_forward.index.Index.batch_iter": {"tf": 1.4142135623730951}, "fast_forward.quantizer.Quantizer.serialize": {"tf": 2.23606797749979}, "fast_forward.quantizer.Quantizer.deserialize": {"tf": 2.23606797749979}, "fast_forward.quantizer.NanoPQ.__init__": {"tf": 1}, "fast_forward.quantizer.NanoOPQ.__init__": {"tf": 1}}, "df": 13}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.Ranking.__init__": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.util.create_coalesced_index": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "f": {"docs": {"fast_forward.Ranking.attach_queries": {"tf": 1}, "fast_forward.Ranking.normalize": {"tf": 1}, "fast_forward.Ranking.cut": {"tf": 1}, "fast_forward.Ranking.interpolate": {"tf": 1}, "fast_forward.Ranking.rr_scores": {"tf": 1}, "fast_forward.Ranking.save": {"tf": 1}, "fast_forward.index.Index.encode_queries": {"tf": 1}, "fast_forward.index.Index.add": {"tf": 1}, "fast_forward.index.Index.batch_iter": {"tf": 1}, "fast_forward.index.OnDiskIndex.to_memory": {"tf": 1}, "fast_forward.index.InMemoryIndex.consolidate": {"tf": 1}, "fast_forward.quantizer.Quantizer.set_attached": {"tf": 1}, "fast_forward.quantizer.Quantizer.fit": {"tf": 1}, "fast_forward.quantizer.Quantizer.encode": {"tf": 1}, "fast_forward.quantizer.Quantizer.decode": {"tf": 1}, "fast_forward.quantizer.Quantizer.serialize": {"tf": 1}, "fast_forward.util.Indexer.from_dicts": {"tf": 1}, "fast_forward.util.Indexer.from_index": {"tf": 1}, "fast_forward.util.pyterrier.FFScore.transform": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.transform": {"tf": 1}}, "df": 20}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.index.Index.encode_queries": {"tf": 1}, "fast_forward.index.Index.add": {"tf": 1.4142135623730951}, "fast_forward.index.Index.batch_iter": {"tf": 1.4142135623730951}}, "df": 3}}}}}}}, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.index.Index.__init__": {"tf": 1}, "fast_forward.index.Index.batch_iter": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 2}, "fast_forward.index.OnDiskIndex.to_memory": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1.4142135623730951}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1.7320508075688772}, "fast_forward.util.Indexer.__init__": {"tf": 1.4142135623730951}, "fast_forward.util.create_coalesced_index": {"tf": 1}}, "df": 8}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.Ranking.__init__": {"tf": 1}, "fast_forward.Ranking.attach_queries": {"tf": 1}, "fast_forward.Ranking.from_run": {"tf": 1}, "fast_forward.Ranking.from_file": {"tf": 1}, "fast_forward.index.Index.encode_queries": {"tf": 1}}, "df": 5}}}, "y": {"docs": {"fast_forward.index.Index.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1}}, "df": 4}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.index.Index.__init__": {"tf": 1.7320508075688772}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1.7320508075688772}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1.7320508075688772}, "fast_forward.quantizer.Quantizer.deserialize": {"tf": 1.4142135623730951}, "fast_forward.util.Indexer.__init__": {"tf": 2}}, "df": 5}}}}}}}}}, "m": {"docs": {"fast_forward.quantizer.NanoPQ.__init__": {"tf": 1}, "fast_forward.quantizer.NanoOPQ.__init__": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_forward.Ranking.__init__": {"tf": 1}, "fast_forward.Ranking.attach_queries": {"tf": 1}, "fast_forward.Ranking.from_run": {"tf": 1.7320508075688772}, "fast_forward.Ranking.from_file": {"tf": 1}, "fast_forward.quantizer.Quantizer.serialize": {"tf": 1.7320508075688772}, "fast_forward.quantizer.Quantizer.deserialize": {"tf": 1.7320508075688772}}, "df": 6}}}}}, "x": {"docs": {"fast_forward.index.OnDiskIndex.__init__": {"tf": 1.4142135623730951}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}}, "df": 2, "p": {"docs": {"fast_forward.index.Index.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1}}, "df": 4}}}, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.index.Index.__init__": {"tf": 1.7320508075688772}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1.7320508075688772}, "fast_forward.index.OnDiskIndex.load": {"tf": 1.7320508075688772}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1.7320508075688772}}, "df": 4, "l": {"docs": {"fast_forward.encoder.TransformerEncoder.__init__": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}}, "df": 2}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"fast_forward.index.OnDiskIndex.to_memory": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {"fast_forward.quantizer.Quantizer.deserialize": {"tf": 1}}, "df": 1}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"fast_forward.quantizer.NanoPQ.__init__": {"tf": 1}, "fast_forward.quantizer.NanoOPQ.__init__": {"tf": 1}}, "df": 2}}}}}}, "b": {"docs": {"fast_forward.util.cos_dist": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"fast_forward.Ranking.__init__": {"tf": 1.4142135623730951}, "fast_forward.Ranking.interpolate": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.quantizer.Quantizer.serialize": {"tf": 1.4142135623730951}, "fast_forward.quantizer.Quantizer.deserialize": {"tf": 1.4142135623730951}, "fast_forward.quantizer.NanoPQ.__init__": {"tf": 1}, "fast_forward.quantizer.NanoOPQ.__init__": {"tf": 1}}, "df": 7}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.index.Index.__init__": {"tf": 1.7320508075688772}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1.7320508075688772}, "fast_forward.index.OnDiskIndex.load": {"tf": 1.4142135623730951}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1.7320508075688772}, "fast_forward.quantizer.Quantizer.deserialize": {"tf": 1}, "fast_forward.util.Indexer.__init__": {"tf": 1.7320508075688772}, "fast_forward.util.Indexer.from_index": {"tf": 1}, "fast_forward.util.create_coalesced_index": {"tf": 1.4142135623730951}, "fast_forward.util.pyterrier.FFScore.__init__": {"tf": 1}}, "df": 9}}, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"fast_forward.index.Index.__init__": {"tf": 1}, "fast_forward.index.Index.batch_iter": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.to_memory": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1}, "fast_forward.util.Indexer.__init__": {"tf": 1.4142135623730951}, "fast_forward.util.create_coalesced_index": {"tf": 1}}, "df": 8, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.util.Indexer.__init__": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.Ranking.__init__": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.Ranking.save": {"tf": 1}, "fast_forward.util.create_coalesced_index": {"tf": 1}}, "df": 2}}}}}, "o": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.encoder.TransformerEncoder.__init__": {"tf": 1}}, "df": 1}}}}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.util.pyterrier.FFScore.transform": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.transform": {"tf": 1}}, "df": 2}}}}}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.index.Index.batch_iter": {"tf": 1}, "fast_forward.quantizer.Quantizer.serialize": {"tf": 1}}, "df": 2}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.Ranking.__init__": {"tf": 1}}, "df": 1}, "n": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.Ranking.cut": {"tf": 1}, "fast_forward.Ranking.rr_scores": {"tf": 1}, "fast_forward.index.Index.__init__": {"tf": 1}, "fast_forward.index.Index.batch_iter": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 2.449489742783178}, "fast_forward.index.OnDiskIndex.to_memory": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1.7320508075688772}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1.7320508075688772}, "fast_forward.quantizer.NanoPQ.__init__": {"tf": 1.4142135623730951}, "fast_forward.quantizer.NanoOPQ.__init__": {"tf": 1.4142135623730951}, "fast_forward.util.Indexer.__init__": {"tf": 1.7320508075688772}, "fast_forward.util.create_coalesced_index": {"tf": 1}}, "df": 12}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {"fast_forward.index.Index.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1.4142135623730951}, "fast_forward.index.OnDiskIndex.to_memory": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1.7320508075688772}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1}, "fast_forward.util.Indexer.__init__": {"tf": 1.7320508075688772}, "fast_forward.util.Indexer.from_index": {"tf": 1.7320508075688772}, "fast_forward.util.create_coalesced_index": {"tf": 2.449489742783178}, "fast_forward.util.pyterrier.FFScore.__init__": {"tf": 1.7320508075688772}}, "df": 9, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}}, "df": 2, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.util.Indexer.from_dicts": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.util.Indexer.from_dicts": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1}}, "df": 2}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {"fast_forward.index.OnDiskIndex.to_memory": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "d": {"docs": {"fast_forward.index.OnDiskIndex.__init__": {"tf": 1}}, "df": 1, "s": {"docs": {"fast_forward.index.Index.add": {"tf": 1.4142135623730951}}, "df": 1}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.index.Index.batch_iter": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.util.Indexer.from_dicts": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_forward.Ranking.attach_queries": {"tf": 1.4142135623730951}, "fast_forward.Ranking.normalize": {"tf": 1.4142135623730951}, "fast_forward.Ranking.cut": {"tf": 1.4142135623730951}, "fast_forward.Ranking.interpolate": {"tf": 2}, "fast_forward.Ranking.rr_scores": {"tf": 1.4142135623730951}, "fast_forward.Ranking.from_run": {"tf": 1.4142135623730951}, "fast_forward.Ranking.from_file": {"tf": 1.4142135623730951}, "fast_forward.util.to_ir_measures": {"tf": 1.7320508075688772}}, "df": 8}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {"fast_forward.Ranking.from_run": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.util.pyterrier.FFScore.transform": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.transform": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}}, "df": 2}}}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.Ranking.interpolate": {"tf": 1}}, "df": 1}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.index.OnDiskIndex.__init__": {"tf": 1}}, "df": 1}}}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {"fast_forward.index.OnDiskIndex.load": {"tf": 1}}, "df": 1}}}}}}}}}}, "r": {"docs": {"fast_forward.util.pyterrier.FFScore.transform": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.transform": {"tf": 1}}, "df": 2}}, "a": {"docs": {"fast_forward.util.cos_dist": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {"fast_forward.Ranking.interpolate": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.__init__": {"tf": 1}}, "df": 2}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {"fast_forward.index.InMemoryIndex.__init__": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.encoder.TransformerEncoder.__init__": {"tf": 1}}, "df": 1}}}, "n": {"docs": {}, "df": 0, "y": {"docs": {"fast_forward.encoder.TransformerEncoder.__init__": {"tf": 1}, "fast_forward.quantizer.Quantizer.fit": {"tf": 1}}, "df": 2}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.quantizer.Quantizer.deserialize": {"tf": 1}}, "df": 1}}}}}}}}}}, "k": {"docs": {"fast_forward.Ranking.rr_scores": {"tf": 1}}, "df": 1, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.quantizer.Quantizer.fit": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {"fast_forward.quantizer.NanoPQ.__init__": {"tf": 1}, "fast_forward.quantizer.NanoOPQ.__init__": {"tf": 1}}, "df": 2}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.index.Index.__init__": {"tf": 2}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 2}, "fast_forward.index.OnDiskIndex.load": {"tf": 2}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 2}, "fast_forward.util.Indexer.__init__": {"tf": 2}}, "df": 5}}}}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.index.Index.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1}, "fast_forward.util.create_coalesced_index": {"tf": 1}}, "df": 5}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"fast_forward.index.OnDiskIndex.__init__": {"tf": 1}}, "df": 1}}}}}}, "g": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.index.Index.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1}, "fast_forward.util.create_coalesced_index": {"tf": 1}}, "df": 5}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.index.Index.add": {"tf": 1}, "fast_forward.quantizer.Quantizer.fit": {"tf": 1}, "fast_forward.quantizer.Quantizer.encode": {"tf": 1}}, "df": 3}}}}}, "r": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.quantizer.NanoPQ.__init__": {"tf": 1}, "fast_forward.quantizer.NanoOPQ.__init__": {"tf": 1}}, "df": 2}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}}, "df": 2}}}, "h": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "f": {"5": {"docs": {"fast_forward.index.OnDiskIndex.__init__": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"fast_forward.util.Indexer.from_dicts": {"tf": 1}}, "df": 1}}}}}}, "bases": {"root": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "c": {"docs": {"fast_forward.encoder.Encoder": {"tf": 1.4142135623730951}, "fast_forward.index.Index": {"tf": 1.4142135623730951}, "fast_forward.quantizer.Quantizer": {"tf": 1.4142135623730951}}, "df": 3}}}, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.encoder.LambdaEncoder": {"tf": 1}, "fast_forward.encoder.TransformerEncoder": {"tf": 1}, "fast_forward.encoder.TCTColBERTQueryEncoder": {"tf": 1}, "fast_forward.encoder.TCTColBERTDocumentEncoder": {"tf": 1}, "fast_forward.index.OnDiskIndex": {"tf": 1}, "fast_forward.index.InMemoryIndex": {"tf": 1}, "fast_forward.quantizer.NanoPQ": {"tf": 1}, "fast_forward.quantizer.NanoOPQ": {"tf": 1}}, "df": 8}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.encoder.LambdaEncoder": {"tf": 1}, "fast_forward.encoder.TransformerEncoder": {"tf": 1}, "fast_forward.encoder.TCTColBERTQueryEncoder": {"tf": 1}, "fast_forward.encoder.TCTColBERTDocumentEncoder": {"tf": 1}, "fast_forward.index.OnDiskIndex": {"tf": 1}, "fast_forward.index.InMemoryIndex": {"tf": 1}, "fast_forward.quantizer.NanoPQ": {"tf": 1}, "fast_forward.quantizer.NanoOPQ": {"tf": 1}}, "df": 8}}}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.encoder.LambdaEncoder": {"tf": 1.4142135623730951}, "fast_forward.encoder.TransformerEncoder": {"tf": 1.4142135623730951}, "fast_forward.encoder.TCTColBERTQueryEncoder": {"tf": 1}, "fast_forward.encoder.TCTColBERTDocumentEncoder": {"tf": 1}}, "df": 4}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {"fast_forward.index.Mode": {"tf": 1.4142135623730951}}, "df": 1}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.encoder.LambdaEncoder": {"tf": 1}, "fast_forward.encoder.TransformerEncoder": {"tf": 1}, "fast_forward.index.OnDiskIndex": {"tf": 1}, "fast_forward.index.InMemoryIndex": {"tf": 1}, "fast_forward.quantizer.NanoPQ": {"tf": 1}, "fast_forward.quantizer.NanoOPQ": {"tf": 1}}, "df": 6}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.encoder.TCTColBERTQueryEncoder": {"tf": 1}, "fast_forward.encoder.TCTColBERTDocumentEncoder": {"tf": 1}, "fast_forward.util.pyterrier.FFScore": {"tf": 1.4142135623730951}, "fast_forward.util.pyterrier.FFInterpolate": {"tf": 1.4142135623730951}}, "df": 4, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.encoder.TCTColBERTQueryEncoder": {"tf": 1}, "fast_forward.encoder.TCTColBERTDocumentEncoder": {"tf": 1}}, "df": 2}}}}}}}}}}}}}}}}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_forward.util.IndexingDict": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.util.IndexingDict": {"tf": 1}}, "df": 1}}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {"fast_forward.index.OnDiskIndex": {"tf": 1.4142135623730951}, "fast_forward.index.InMemoryIndex": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.quantizer.NanoPQ": {"tf": 1.4142135623730951}, "fast_forward.quantizer.NanoOPQ": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}}, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.util.pyterrier.FFScore": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate": {"tf": 1}}, "df": 2}}}}}}}}}}}, "doc": {"root": {"0": {"docs": {"fast_forward": {"tf": 2.449489742783178}, "fast_forward.Ranking.normalize": {"tf": 1.4142135623730951}, "fast_forward.index": {"tf": 1.4142135623730951}, "fast_forward.util": {"tf": 1}, "fast_forward.util.pyterrier": {"tf": 1}, "fast_forward.util.pyterrier.FFScore.transform": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.transform": {"tf": 1}}, "df": 7}, "1": {"0": {"0": {"0": {"0": {"0": {"0": {"docs": {"fast_forward.util": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"fast_forward.index": {"tf": 1}, "fast_forward.quantizer": {"tf": 1}}, "df": 2}, "6": {"docs": {"fast_forward.index": {"tf": 1.4142135623730951}, "fast_forward.util": {"tf": 1}}, "df": 2}, "docs": {"fast_forward": {"tf": 3}, "fast_forward.Ranking.normalize": {"tf": 1}, "fast_forward.Ranking.interpolate": {"tf": 1}, "fast_forward.Ranking.rr_scores": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.transform": {"tf": 1}}, "df": 5}, "2": {"5": {"6": {"docs": {"fast_forward.quantizer": {"tf": 1}, "fast_forward.util": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {"fast_forward": {"tf": 2}, "fast_forward.index": {"tf": 1.4142135623730951}, "fast_forward.quantizer": {"tf": 1}, "fast_forward.util": {"tf": 1.4142135623730951}, "fast_forward.util.pyterrier": {"tf": 1}}, "df": 5, "^": {"docs": {}, "df": 0, "{": {"1": {"6": {"docs": {"fast_forward.util": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "3": {"docs": {"fast_forward": {"tf": 1.4142135623730951}, "fast_forward.index": {"tf": 1.4142135623730951}, "fast_forward.util": {"tf": 1}}, "df": 3}, "4": {"0": {"0": {"docs": {"fast_forward.index": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"fast_forward": {"tf": 1}}, "df": 1}, "5": {"0": {"0": {"0": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.index": {"tf": 1.7320508075688772}, "fast_forward.util.pyterrier": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"fast_forward": {"tf": 1}, "fast_forward.index": {"tf": 1.4142135623730951}}, "df": 2}, "6": {"docs": {"fast_forward": {"tf": 1}}, "df": 1}, "7": {"6": {"8": {"docs": {"fast_forward.index": {"tf": 1.7320508075688772}, "fast_forward.quantizer": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"docs": {"fast_forward.quantizer": {"tf": 1}, "fast_forward.util": {"tf": 1.4142135623730951}}, "df": 2}, "9": {"docs": {"fast_forward": {"tf": 1}}, "df": 1}, "docs": {"fast_forward": {"tf": 30.116440692751194}, "fast_forward.Ranking": {"tf": 1.7320508075688772}, "fast_forward.Ranking.__init__": {"tf": 7.0710678118654755}, "fast_forward.Ranking.name": {"tf": 1.7320508075688772}, "fast_forward.Ranking.has_queries": {"tf": 3.4641016151377544}, "fast_forward.Ranking.q_ids": {"tf": 3.872983346207417}, "fast_forward.Ranking.attach_queries": {"tf": 5.830951894845301}, "fast_forward.Ranking.normalize": {"tf": 4.358898943540674}, "fast_forward.Ranking.cut": {"tf": 5.196152422706632}, "fast_forward.Ranking.interpolate": {"tf": 6.48074069840786}, "fast_forward.Ranking.rr_scores": {"tf": 6}, "fast_forward.Ranking.save": {"tf": 3.7416573867739413}, "fast_forward.Ranking.from_run": {"tf": 6.164414002968976}, "fast_forward.Ranking.from_file": {"tf": 5.744562646538029}, "fast_forward.encoder": {"tf": 8.602325267042627}, "fast_forward.encoder.Encoder": {"tf": 1.7320508075688772}, "fast_forward.encoder.LambdaEncoder": {"tf": 1.7320508075688772}, "fast_forward.encoder.LambdaEncoder.__init__": {"tf": 3.7416573867739413}, "fast_forward.encoder.TransformerEncoder": {"tf": 1.7320508075688772}, "fast_forward.encoder.TransformerEncoder.__init__": {"tf": 4.898979485566356}, "fast_forward.encoder.TCTColBERTQueryEncoder": {"tf": 2.6457513110645907}, "fast_forward.encoder.TCTColBERTDocumentEncoder": {"tf": 2.6457513110645907}, "fast_forward.index": {"tf": 21.142374511865974}, "fast_forward.index.Index": {"tf": 1.7320508075688772}, "fast_forward.index.Index.__init__": {"tf": 5.385164807134504}, "fast_forward.index.Index.mode": {"tf": 3.4641016151377544}, "fast_forward.index.Index.encode_queries": {"tf": 5.830951894845301}, "fast_forward.index.Index.query_encoder": {"tf": 3.4641016151377544}, "fast_forward.index.Index.quantizer": {"tf": 3.4641016151377544}, "fast_forward.index.Index.dim": {"tf": 4.123105625617661}, "fast_forward.index.Index.doc_ids": {"tf": 3.4641016151377544}, "fast_forward.index.Index.psg_ids": {"tf": 3.4641016151377544}, "fast_forward.index.Index.add": {"tf": 8.06225774829855}, "fast_forward.index.Index.batch_iter": {"tf": 4.358898943540674}, "fast_forward.index.Mode": {"tf": 1.7320508075688772}, "fast_forward.index.Mode.PASSAGE": {"tf": 1.7320508075688772}, "fast_forward.index.Mode.MAXP": {"tf": 1.7320508075688772}, "fast_forward.index.Mode.FIRSTP": {"tf": 1.7320508075688772}, "fast_forward.index.Mode.AVEP": {"tf": 1.7320508075688772}, "fast_forward.index.OnDiskIndex": {"tf": 3.1622776601683795}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 8.774964387392123}, "fast_forward.index.OnDiskIndex.to_memory": {"tf": 4.795831523312719}, "fast_forward.index.OnDiskIndex.load": {"tf": 6.928203230275509}, "fast_forward.index.InMemoryIndex": {"tf": 1.7320508075688772}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 6.244997998398398}, "fast_forward.index.InMemoryIndex.consolidate": {"tf": 1.7320508075688772}, "fast_forward.quantizer": {"tf": 14.071247279470288}, "fast_forward.quantizer.Quantizer": {"tf": 1.7320508075688772}, "fast_forward.quantizer.Quantizer.set_attached": {"tf": 4}, "fast_forward.quantizer.Quantizer.fit": {"tf": 5.744562646538029}, "fast_forward.quantizer.Quantizer.dtype": {"tf": 3.4641016151377544}, "fast_forward.quantizer.Quantizer.dims": {"tf": 4.123105625617661}, "fast_forward.quantizer.Quantizer.encode": {"tf": 4.795831523312719}, "fast_forward.quantizer.Quantizer.decode": {"tf": 5.830951894845301}, "fast_forward.quantizer.Quantizer.serialize": {"tf": 3.872983346207417}, "fast_forward.quantizer.Quantizer.deserialize": {"tf": 5.744562646538029}, "fast_forward.quantizer.NanoPQ": {"tf": 2.8284271247461903}, "fast_forward.quantizer.NanoPQ.__init__": {"tf": 5.385164807134504}, "fast_forward.quantizer.NanoOPQ": {"tf": 2.8284271247461903}, "fast_forward.quantizer.NanoOPQ.__init__": {"tf": 5.385164807134504}, "fast_forward.util": {"tf": 20.396078054371138}, "fast_forward.util.Indexer": {"tf": 1.7320508075688772}, "fast_forward.util.Indexer.__init__": {"tf": 7.615773105863909}, "fast_forward.util.Indexer.from_dicts": {"tf": 3.7416573867739413}, "fast_forward.util.Indexer.from_index": {"tf": 4.123105625617661}, "fast_forward.util.IndexingDict": {"tf": 2.8284271247461903}, "fast_forward.util.IndexingDict.text": {"tf": 1.7320508075688772}, "fast_forward.util.IndexingDict.doc_id": {"tf": 1.7320508075688772}, "fast_forward.util.IndexingDict.psg_id": {"tf": 1.7320508075688772}, "fast_forward.util.to_ir_measures": {"tf": 4.795831523312719}, "fast_forward.util.cos_dist": {"tf": 5.291502622129181}, "fast_forward.util.create_coalesced_index": {"tf": 6.708203932499369}, "fast_forward.util.pyterrier": {"tf": 10.44030650891055}, "fast_forward.util.pyterrier.FFScore": {"tf": 1.7320508075688772}, "fast_forward.util.pyterrier.FFScore.__init__": {"tf": 3.7416573867739413}, "fast_forward.util.pyterrier.FFScore.transform": {"tf": 5.0990195135927845}, "fast_forward.util.pyterrier.FFInterpolate": {"tf": 2.23606797749979}, "fast_forward.util.pyterrier.FFInterpolate.__init__": {"tf": 3.7416573867739413}, "fast_forward.util.pyterrier.FFInterpolate.alpha": {"tf": 1.7320508075688772}, "fast_forward.util.pyterrier.FFInterpolate.transform": {"tf": 5.291502622129181}}, "df": 80, "t": {"docs": {"fast_forward.Ranking": {"tf": 1}, "fast_forward.index.Index.add": {"tf": 1}}, "df": 2, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward": {"tf": 1.7320508075688772}, "fast_forward.Ranking.q_ids": {"tf": 1}, "fast_forward.encoder": {"tf": 2}, "fast_forward.index": {"tf": 1.4142135623730951}, "fast_forward.quantizer.Quantizer.dtype": {"tf": 1}, "fast_forward.quantizer.Quantizer.serialize": {"tf": 1}, "fast_forward.util": {"tf": 1}, "fast_forward.util.Indexer.__init__": {"tf": 1}, "fast_forward.util.pyterrier": {"tf": 1}}, "df": 9}, "r": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"fast_forward": {"tf": 3.1622776601683795}, "fast_forward.Ranking.__init__": {"tf": 2.23606797749979}, "fast_forward.Ranking.has_queries": {"tf": 1}, "fast_forward.Ranking.q_ids": {"tf": 1.4142135623730951}, "fast_forward.Ranking.attach_queries": {"tf": 1.7320508075688772}, "fast_forward.Ranking.normalize": {"tf": 1}, "fast_forward.Ranking.cut": {"tf": 1.4142135623730951}, "fast_forward.Ranking.interpolate": {"tf": 1}, "fast_forward.Ranking.save": {"tf": 1}, "fast_forward.Ranking.from_run": {"tf": 1.7320508075688772}, "fast_forward.Ranking.from_file": {"tf": 1.7320508075688772}, "fast_forward.encoder": {"tf": 2.449489742783178}, "fast_forward.encoder.TransformerEncoder": {"tf": 1}, "fast_forward.index": {"tf": 6.6332495807108}, "fast_forward.index.Index.__init__": {"tf": 2}, "fast_forward.index.Index.mode": {"tf": 1.4142135623730951}, "fast_forward.index.Index.encode_queries": {"tf": 1.4142135623730951}, "fast_forward.index.Index.query_encoder": {"tf": 1.4142135623730951}, "fast_forward.index.Index.quantizer": {"tf": 1.4142135623730951}, "fast_forward.index.Index.dim": {"tf": 2.23606797749979}, "fast_forward.index.Index.doc_ids": {"tf": 1}, "fast_forward.index.Index.psg_ids": {"tf": 1}, "fast_forward.index.Index.add": {"tf": 3}, "fast_forward.index.Mode": {"tf": 1}, "fast_forward.index.OnDiskIndex": {"tf": 1.4142135623730951}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 2.6457513110645907}, "fast_forward.index.OnDiskIndex.to_memory": {"tf": 1.4142135623730951}, "fast_forward.index.OnDiskIndex.load": {"tf": 2.449489742783178}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 2}, "fast_forward.index.InMemoryIndex.consolidate": {"tf": 1.4142135623730951}, "fast_forward.quantizer": {"tf": 2.8284271247461903}, "fast_forward.quantizer.Quantizer.set_attached": {"tf": 1.4142135623730951}, "fast_forward.quantizer.Quantizer.fit": {"tf": 2}, "fast_forward.quantizer.Quantizer.dtype": {"tf": 2}, "fast_forward.quantizer.Quantizer.dims": {"tf": 2}, "fast_forward.quantizer.Quantizer.encode": {"tf": 1.7320508075688772}, "fast_forward.quantizer.Quantizer.decode": {"tf": 1.7320508075688772}, "fast_forward.quantizer.Quantizer.serialize": {"tf": 1.7320508075688772}, "fast_forward.quantizer.Quantizer.deserialize": {"tf": 2}, "fast_forward.quantizer.NanoPQ": {"tf": 1}, "fast_forward.quantizer.NanoPQ.__init__": {"tf": 1.7320508075688772}, "fast_forward.quantizer.NanoOPQ": {"tf": 1}, "fast_forward.quantizer.NanoOPQ.__init__": {"tf": 1.7320508075688772}, "fast_forward.util": {"tf": 3}, "fast_forward.util.Indexer.__init__": {"tf": 3}, "fast_forward.util.Indexer.from_dicts": {"tf": 1}, "fast_forward.util.Indexer.from_index": {"tf": 1.7320508075688772}, "fast_forward.util.to_ir_measures": {"tf": 1.7320508075688772}, "fast_forward.util.create_coalesced_index": {"tf": 2}, "fast_forward.util.pyterrier": {"tf": 1.4142135623730951}, "fast_forward.util.pyterrier.FFScore.__init__": {"tf": 1}, "fast_forward.util.pyterrier.FFScore.transform": {"tf": 2.449489742783178}, "fast_forward.util.pyterrier.FFInterpolate.__init__": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.transform": {"tf": 1.7320508075688772}}, "df": 54, "y": {"docs": {"fast_forward.Ranking.normalize": {"tf": 1}, "fast_forward.quantizer": {"tf": 1}}, "df": 2}, "n": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}, "m": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "n": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.encoder": {"tf": 1}}, "df": 2}, "t": {"docs": {"fast_forward.encoder": {"tf": 1.4142135623730951}, "fast_forward.index": {"tf": 1.7320508075688772}, "fast_forward.index.OnDiskIndex": {"tf": 1}, "fast_forward.index.InMemoryIndex": {"tf": 1}, "fast_forward.quantizer.NanoPQ": {"tf": 1}, "fast_forward.quantizer.NanoOPQ": {"tf": 1}, "fast_forward.util": {"tf": 1}, "fast_forward.util.Indexer.__init__": {"tf": 1}, "fast_forward.util.IndexingDict": {"tf": 1}, "fast_forward.util.pyterrier": {"tf": 1}, "fast_forward.util.pyterrier.FFScore": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate": {"tf": 1}}, "df": 12}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.util.create_coalesced_index": {"tf": 1}}, "df": 1}}}}}}}}, "o": {"docs": {"fast_forward": {"tf": 2.449489742783178}, "fast_forward.Ranking.__init__": {"tf": 1.4142135623730951}, "fast_forward.Ranking.attach_queries": {"tf": 1.4142135623730951}, "fast_forward.Ranking.normalize": {"tf": 1.4142135623730951}, "fast_forward.Ranking.cut": {"tf": 1}, "fast_forward.Ranking.interpolate": {"tf": 1}, "fast_forward.Ranking.from_run": {"tf": 1}, "fast_forward.Ranking.from_file": {"tf": 1.4142135623730951}, "fast_forward.encoder": {"tf": 1.7320508075688772}, "fast_forward.encoder.LambdaEncoder.__init__": {"tf": 1}, "fast_forward.index": {"tf": 3.7416573867739413}, "fast_forward.index.Index.__init__": {"tf": 1.4142135623730951}, "fast_forward.index.Index.encode_queries": {"tf": 1}, "fast_forward.index.Index.add": {"tf": 1.4142135623730951}, "fast_forward.index.Mode": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 2.23606797749979}, "fast_forward.index.OnDiskIndex.load": {"tf": 1.7320508075688772}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1.4142135623730951}, "fast_forward.quantizer": {"tf": 1}, "fast_forward.quantizer.Quantizer.set_attached": {"tf": 1}, "fast_forward.quantizer.Quantizer.fit": {"tf": 2}, "fast_forward.quantizer.Quantizer.encode": {"tf": 1.4142135623730951}, "fast_forward.quantizer.Quantizer.decode": {"tf": 1.4142135623730951}, "fast_forward.quantizer.Quantizer.serialize": {"tf": 1}, "fast_forward.quantizer.NanoPQ.__init__": {"tf": 1}, "fast_forward.quantizer.NanoOPQ.__init__": {"tf": 1}, "fast_forward.util": {"tf": 2.23606797749979}, "fast_forward.util.Indexer.__init__": {"tf": 3}, "fast_forward.util.pyterrier.FFScore.transform": {"tf": 1}}, "df": 29, "p": {"docs": {"fast_forward.Ranking.cut": {"tf": 1}, "fast_forward.index": {"tf": 1.4142135623730951}}, "df": 2, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.util.pyterrier.FFScore.transform": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.transform": {"tf": 1}}, "df": 2}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.encoder.TransformerEncoder.__init__": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"fast_forward.util": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {"fast_forward": {"tf": 2.23606797749979}, "fast_forward.Ranking.save": {"tf": 1}, "fast_forward.Ranking.from_run": {"tf": 1.4142135623730951}, "fast_forward.Ranking.from_file": {"tf": 1.4142135623730951}}, "df": 4}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.Ranking.interpolate": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"fast_forward.quantizer.Quantizer.fit": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.encoder.TransformerEncoder": {"tf": 1}, "fast_forward.encoder.TransformerEncoder.__init__": {"tf": 1}, "fast_forward.encoder.TCTColBERTQueryEncoder": {"tf": 1}, "fast_forward.encoder.TCTColBERTDocumentEncoder": {"tf": 1}, "fast_forward.quantizer": {"tf": 1}, "fast_forward.quantizer.Quantizer.fit": {"tf": 1}, "fast_forward.quantizer.Quantizer.dims": {"tf": 1}}, "df": 8}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_forward.quantizer": {"tf": 1.7320508075688772}, "fast_forward.quantizer.Quantizer.fit": {"tf": 1}}, "df": 2}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.encoder.TransformerEncoder": {"tf": 1}, "fast_forward.encoder.TransformerEncoder.__init__": {"tf": 1.4142135623730951}, "fast_forward.util.pyterrier.FFScore": {"tf": 1}, "fast_forward.util.pyterrier.FFScore.__init__": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.__init__": {"tf": 1}}, "df": 6, "s": {"docs": {"fast_forward.util.pyterrier": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.util.Indexer.from_index": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.encoder.TCTColBERTQueryEncoder": {"tf": 1.4142135623730951}, "fast_forward.encoder.TCTColBERTDocumentEncoder": {"tf": 1.4142135623730951}}, "df": 2, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.util": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}}}}, "s": {"docs": {}, "df": 0, "v": {"docs": {"fast_forward": {"tf": 2.23606797749979}, "fast_forward.index": {"tf": 1}}, "df": 2}}, "w": {"docs": {}, "df": 0, "o": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.index": {"tf": 1.7320508075688772}, "fast_forward.util": {"tf": 1}, "fast_forward.util.cos_dist": {"tf": 1}}, "df": 4}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.Ranking.save": {"tf": 1}, "fast_forward.util": {"tf": 1.4142135623730951}, "fast_forward.util.Indexer.__init__": {"tf": 1}, "fast_forward.util.create_coalesced_index": {"tf": 1.7320508075688772}}, "df": 4}}}}}, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.encoder": {"tf": 1}, "fast_forward.encoder.LambdaEncoder.__init__": {"tf": 1}, "fast_forward.util": {"tf": 1.4142135623730951}}, "df": 3, "s": {"docs": {"fast_forward.encoder": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.index": {"tf": 1}, "fast_forward.util": {"tf": 1}}, "df": 2}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.util.pyterrier": {"tf": 1}}, "df": 1}}}}}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.quantizer.Quantizer.dtype": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"fast_forward.index": {"tf": 1.4142135623730951}}, "df": 1}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"fast_forward.quantizer": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}}}}}}}}, "i": {"docs": {"fast_forward": {"tf": 1}}, "df": 1, "s": {"docs": {"fast_forward": {"tf": 2}, "fast_forward.Ranking.__init__": {"tf": 1.4142135623730951}, "fast_forward.Ranking.rr_scores": {"tf": 1}, "fast_forward.encoder": {"tf": 1.4142135623730951}, "fast_forward.index": {"tf": 3}, "fast_forward.index.Index.dim": {"tf": 1}, "fast_forward.index.OnDiskIndex": {"tf": 1}, "fast_forward.index.InMemoryIndex": {"tf": 1}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1}, "fast_forward.quantizer": {"tf": 1}, "fast_forward.quantizer.Quantizer.fit": {"tf": 1}, "fast_forward.quantizer.Quantizer.dims": {"tf": 1}, "fast_forward.quantizer.Quantizer.serialize": {"tf": 1}, "fast_forward.quantizer.NanoPQ": {"tf": 1}, "fast_forward.quantizer.NanoOPQ": {"tf": 1}, "fast_forward.util": {"tf": 2.8284271247461903}, "fast_forward.util.Indexer.__init__": {"tf": 2}, "fast_forward.util.create_coalesced_index": {"tf": 1}, "fast_forward.util.pyterrier": {"tf": 1}}, "df": 19}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.quantizer": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.index": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.encoder": {"tf": 1}, "fast_forward.util": {"tf": 1}}, "df": 2}}}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward": {"tf": 2.449489742783178}, "fast_forward.quantizer": {"tf": 2}, "fast_forward.util": {"tf": 1}}, "df": 3, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward": {"tf": 1}}, "df": 1}}}}}}}}, "n": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.Ranking.__init__": {"tf": 1}, "fast_forward.Ranking.q_ids": {"tf": 1}, "fast_forward.Ranking.normalize": {"tf": 1}, "fast_forward.Ranking.interpolate": {"tf": 1}, "fast_forward.Ranking.save": {"tf": 1}, "fast_forward.Ranking.from_run": {"tf": 1}, "fast_forward.Ranking.from_file": {"tf": 1.4142135623730951}, "fast_forward.encoder": {"tf": 1}, "fast_forward.index": {"tf": 2.6457513110645907}, "fast_forward.index.Index.add": {"tf": 1}, "fast_forward.index.Index.batch_iter": {"tf": 1}, "fast_forward.index.InMemoryIndex": {"tf": 1}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1}, "fast_forward.index.InMemoryIndex.consolidate": {"tf": 1.4142135623730951}, "fast_forward.quantizer": {"tf": 1}, "fast_forward.quantizer.Quantizer.fit": {"tf": 1}, "fast_forward.quantizer.Quantizer.serialize": {"tf": 1}, "fast_forward.util": {"tf": 2.449489742783178}, "fast_forward.util.pyterrier": {"tf": 1}, "fast_forward.util.pyterrier.FFScore.transform": {"tf": 1}}, "df": 21, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {"fast_forward": {"tf": 3.1622776601683795}, "fast_forward.index": {"tf": 4.123105625617661}, "fast_forward.index.Index.__init__": {"tf": 1}, "fast_forward.index.Index.dim": {"tf": 1}, "fast_forward.index.Index.add": {"tf": 1.7320508075688772}, "fast_forward.index.Mode": {"tf": 1}, "fast_forward.index.OnDiskIndex": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 2.23606797749979}, "fast_forward.index.OnDiskIndex.to_memory": {"tf": 1.4142135623730951}, "fast_forward.index.OnDiskIndex.load": {"tf": 2.23606797749979}, "fast_forward.index.InMemoryIndex": {"tf": 1}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1.7320508075688772}, "fast_forward.index.InMemoryIndex.consolidate": {"tf": 1}, "fast_forward.quantizer": {"tf": 2.23606797749979}, "fast_forward.quantizer.Quantizer.fit": {"tf": 1.4142135623730951}, "fast_forward.quantizer.Quantizer.serialize": {"tf": 1}, "fast_forward.util": {"tf": 4.242640687119285}, "fast_forward.util.Indexer.__init__": {"tf": 2.449489742783178}, "fast_forward.util.Indexer.from_dicts": {"tf": 1}, "fast_forward.util.Indexer.from_index": {"tf": 2}, "fast_forward.util.create_coalesced_index": {"tf": 2.449489742783178}, "fast_forward.util.pyterrier": {"tf": 1.7320508075688772}, "fast_forward.util.pyterrier.FFScore": {"tf": 1}, "fast_forward.util.pyterrier.FFScore.__init__": {"tf": 1.4142135623730951}}, "df": 24, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward": {"tf": 2.449489742783178}, "fast_forward.index": {"tf": 2}, "fast_forward.index.Index": {"tf": 1}, "fast_forward.quantizer": {"tf": 1}, "fast_forward.util": {"tf": 1}, "fast_forward.util.pyterrier": {"tf": 1}}, "df": 6}, "r": {"docs": {"fast_forward.util": {"tf": 2.6457513110645907}, "fast_forward.util.Indexer.__init__": {"tf": 1}, "fast_forward.util.IndexingDict": {"tf": 1}}, "df": 3, "s": {"docs": {"fast_forward.util": {"tf": 1}}, "df": 1}}, "d": {"docs": {"fast_forward.util.Indexer.__init__": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_forward.index.OnDiskIndex": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}, "fast_forward.util": {"tf": 1.7320508075688772}, "fast_forward.util.Indexer": {"tf": 1}}, "df": 5}}}}}, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"fast_forward.index.Index.add": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.Ranking.interpolate": {"tf": 1}, "fast_forward.index": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.__init__": {"tf": 1}}, "df": 4}}}, "e": {"docs": {"fast_forward": {"tf": 2.23606797749979}, "fast_forward.Ranking.interpolate": {"tf": 1.4142135623730951}, "fast_forward.util.pyterrier.FFInterpolate.transform": {"tf": 1}}, "df": 3, "d": {"docs": {"fast_forward": {"tf": 2}, "fast_forward.util.pyterrier.FFInterpolate.transform": {"tf": 1}}, "df": 2}, "s": {"docs": {"fast_forward.util.pyterrier.FFInterpolate": {"tf": 1}}, "df": 1}}}}}}}, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.quantizer": {"tf": 1}}, "df": 1}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.util.pyterrier": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {"fast_forward.index": {"tf": 1}, "fast_forward.index.OnDiskIndex.to_memory": {"tf": 1}, "fast_forward.util.pyterrier": {"tf": 1}}, "df": 3}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_forward": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.Ranking.__init__": {"tf": 1}, "fast_forward.Ranking.attach_queries": {"tf": 1}}, "df": 2}}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.quantizer.Quantizer.fit": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}}, "df": 2}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"fast_forward": {"tf": 1.7320508075688772}}, "df": 1, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_forward": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_forward": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.quantizer.NanoPQ.__init__": {"tf": 1}, "fast_forward.quantizer.NanoOPQ.__init__": {"tf": 1}}, "df": 2, "d": {"docs": {"fast_forward": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.index.OnDiskIndex.to_memory": {"tf": 1}, "fast_forward.util.create_coalesced_index": {"tf": 1}}, "df": 2}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.index": {"tf": 1}, "fast_forward.quantizer.NanoPQ": {"tf": 1}, "fast_forward.quantizer.NanoOPQ": {"tf": 1}, "fast_forward.util": {"tf": 1}}, "df": 5}}}}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {"fast_forward.index": {"tf": 1}, "fast_forward.util": {"tf": 1}}, "df": 2}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.index": {"tf": 1.4142135623730951}, "fast_forward.index.Index.add": {"tf": 1}, "fast_forward.util.to_ir_measures": {"tf": 1}}, "df": 3}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1}, "fast_forward.util": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1}}, "df": 2}}}}}}, "t": {"docs": {"fast_forward.index": {"tf": 2}, "fast_forward.index.Index.query_encoder": {"tf": 1}, "fast_forward.index.Index.quantizer": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.util": {"tf": 1.4142135623730951}}, "df": 5, "s": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.index": {"tf": 1.7320508075688772}}, "df": 2}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.index.Index.add": {"tf": 1}}, "df": 1}}, "r": {"docs": {"fast_forward.util": {"tf": 1.4142135623730951}}, "df": 1, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.index.Index.batch_iter": {"tf": 1}}, "df": 1}, "o": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.util": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.util.Indexer.from_dicts": {"tf": 1}}, "df": 1}}}}}}}, "d": {"docs": {"fast_forward.index.Index.add": {"tf": 1.4142135623730951}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.util": {"tf": 1.4142135623730951}}, "df": 3, "s": {"docs": {"fast_forward": {"tf": 1.4142135623730951}, "fast_forward.Ranking.__init__": {"tf": 1.4142135623730951}, "fast_forward.Ranking.q_ids": {"tf": 1.4142135623730951}, "fast_forward.Ranking.attach_queries": {"tf": 1}, "fast_forward.Ranking.from_run": {"tf": 1}, "fast_forward.Ranking.from_file": {"tf": 1}, "fast_forward.index": {"tf": 2.6457513110645907}, "fast_forward.index.Index.doc_ids": {"tf": 1.4142135623730951}, "fast_forward.index.Index.psg_ids": {"tf": 1.4142135623730951}, "fast_forward.index.Index.add": {"tf": 3.3166247903554}, "fast_forward.index.Index.batch_iter": {"tf": 2.23606797749979}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.util.Indexer.from_index": {"tf": 1}}, "df": 13}}, "f": {"docs": {"fast_forward.Ranking.normalize": {"tf": 1}, "fast_forward.index": {"tf": 1}, "fast_forward.index.Index.query_encoder": {"tf": 1.4142135623730951}, "fast_forward.index.Index.quantizer": {"tf": 1.4142135623730951}, "fast_forward.index.Index.dim": {"tf": 1.7320508075688772}, "fast_forward.index.Index.batch_iter": {"tf": 1.4142135623730951}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.util": {"tf": 1.4142135623730951}, "fast_forward.util.Indexer.__init__": {"tf": 1}, "fast_forward.util.Indexer.from_index": {"tf": 1}}, "df": 10}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}}}}}}}}}, "r": {"docs": {"fast_forward.util.to_ir_measures": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "f": {"docs": {"fast_forward": {"tf": 2}, "fast_forward.Ranking": {"tf": 1}, "fast_forward.Ranking.q_ids": {"tf": 1}, "fast_forward.Ranking.cut": {"tf": 1}, "fast_forward.encoder": {"tf": 1.4142135623730951}, "fast_forward.encoder.LambdaEncoder.__init__": {"tf": 1}, "fast_forward.index": {"tf": 3.7416573867739413}, "fast_forward.index.Index.dim": {"tf": 1.4142135623730951}, "fast_forward.index.Index.add": {"tf": 1.7320508075688772}, "fast_forward.index.Index.batch_iter": {"tf": 1}, "fast_forward.index.Mode": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 2.23606797749979}, "fast_forward.index.OnDiskIndex.to_memory": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1.4142135623730951}, "fast_forward.index.InMemoryIndex.consolidate": {"tf": 1}, "fast_forward.quantizer": {"tf": 1.4142135623730951}, "fast_forward.quantizer.Quantizer.dtype": {"tf": 1.4142135623730951}, "fast_forward.quantizer.Quantizer.dims": {"tf": 1.4142135623730951}, "fast_forward.quantizer.Quantizer.encode": {"tf": 1}, "fast_forward.quantizer.Quantizer.decode": {"tf": 1}, "fast_forward.quantizer.Quantizer.serialize": {"tf": 1}, "fast_forward.quantizer.NanoPQ.__init__": {"tf": 1.4142135623730951}, "fast_forward.quantizer.NanoOPQ.__init__": {"tf": 1.4142135623730951}, "fast_forward.util": {"tf": 1.7320508075688772}, "fast_forward.util.Indexer.from_dicts": {"tf": 1}, "fast_forward.util.cos_dist": {"tf": 1}, "fast_forward.util.create_coalesced_index": {"tf": 1}, "fast_forward.util.pyterrier": {"tf": 1}}, "df": 29, "f": {"docs": {"fast_forward.index": {"tf": 1.4142135623730951}}, "df": 1}}, "n": {"docs": {"fast_forward": {"tf": 1.4142135623730951}, "fast_forward.index": {"tf": 1.7320508075688772}, "fast_forward.index.OnDiskIndex": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}, "fast_forward.quantizer": {"tf": 1.4142135623730951}, "fast_forward.util.Indexer.__init__": {"tf": 1}}, "df": 7, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {"fast_forward": {"tf": 1.4142135623730951}, "fast_forward.index": {"tf": 2.23606797749979}, "fast_forward.quantizer": {"tf": 1.4142135623730951}, "fast_forward.util": {"tf": 1.4142135623730951}}, "df": 4, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.index": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "y": {"docs": {"fast_forward.Ranking.q_ids": {"tf": 1}, "fast_forward.index": {"tf": 2.23606797749979}, "fast_forward.index.Index.add": {"tf": 1}, "fast_forward.quantizer.Quantizer.fit": {"tf": 1}}, "df": 4}}, "e": {"docs": {"fast_forward.Ranking.q_ids": {"tf": 1}, "fast_forward.encoder": {"tf": 1.7320508075688772}, "fast_forward.index": {"tf": 1}, "fast_forward.index.Index.add": {"tf": 1.4142135623730951}, "fast_forward.index.InMemoryIndex.consolidate": {"tf": 1}}, "df": 5}, "c": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.to_memory": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}, "fast_forward.util.Indexer.__init__": {"tf": 1}}, "df": 4}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward": {"tf": 1.4142135623730951}}, "df": 1, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.Ranking.save": {"tf": 1}, "fast_forward.encoder.TransformerEncoder": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.encoder.TransformerEncoder.__init__": {"tf": 1}, "fast_forward.index": {"tf": 1.7320508075688772}, "fast_forward.index.Index.batch_iter": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.util": {"tf": 1}, "fast_forward.util.pyterrier.FFScore.transform": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.transform": {"tf": 1}}, "df": 8, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.quantizer.Quantizer.fit": {"tf": 1}, "fast_forward.util": {"tf": 1.4142135623730951}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"fast_forward.quantizer.Quantizer.dims": {"tf": 1}}, "df": 1}}}}}}}, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.util.Indexer.__init__": {"tf": 1}}, "df": 2}}}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.quantizer": {"tf": 1}, "fast_forward.quantizer.NanoOPQ": {"tf": 1}, "fast_forward.quantizer.NanoOPQ.__init__": {"tf": 1}}, "df": 3}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.util": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {"fast_forward.index.OnDiskIndex.load": {"tf": 1.4142135623730951}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.Ranking.interpolate": {"tf": 1.4142135623730951}}, "df": 1}}}}, "b": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.Ranking.from_run": {"tf": 1}, "fast_forward.Ranking.from_file": {"tf": 1}, "fast_forward.index": {"tf": 1}}, "df": 3}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"fast_forward.quantizer.Quantizer.decode": {"tf": 1}}, "df": 1}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.index.Index.batch_iter": {"tf": 1}}, "df": 1, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_forward.encoder": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"fast_forward.index.OnDiskIndex.__init__": {"tf": 1}}, "df": 1}}}}, "w": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.index.OnDiskIndex.__init__": {"tf": 2}}, "df": 1}}}}}}}}}, "f": {"docs": {"fast_forward.Ranking.from_file": {"tf": 1}, "fast_forward.encoder.LambdaEncoder.__init__": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward": {"tf": 3.3166247903554}, "fast_forward.encoder": {"tf": 1}, "fast_forward.index": {"tf": 1.7320508075688772}, "fast_forward.index.Index": {"tf": 1}, "fast_forward.index.OnDiskIndex": {"tf": 1}, "fast_forward.index.InMemoryIndex": {"tf": 1}, "fast_forward.quantizer": {"tf": 2}, "fast_forward.util": {"tf": 1.4142135623730951}, "fast_forward.util.pyterrier": {"tf": 1.7320508075688772}, "fast_forward.util.pyterrier.FFScore": {"tf": 1}, "fast_forward.util.pyterrier.FFScore.__init__": {"tf": 1}}, "df": 11}}, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.index.OnDiskIndex.__init__": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward": {"tf": 1.7320508075688772}, "fast_forward.Ranking.cut": {"tf": 1}, "fast_forward.encoder.Encoder": {"tf": 1}, "fast_forward.encoder.LambdaEncoder": {"tf": 1}, "fast_forward.encoder.TransformerEncoder": {"tf": 1}, "fast_forward.encoder.TCTColBERTQueryEncoder": {"tf": 1}, "fast_forward.encoder.TCTColBERTDocumentEncoder": {"tf": 1}, "fast_forward.index": {"tf": 2.6457513110645907}, "fast_forward.index.Index": {"tf": 1}, "fast_forward.index.Index.add": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1}, "fast_forward.quantizer": {"tf": 1}, "fast_forward.quantizer.Quantizer": {"tf": 1}, "fast_forward.util": {"tf": 2}, "fast_forward.util.Indexer": {"tf": 1}, "fast_forward.util.to_ir_measures": {"tf": 1}, "fast_forward.util.create_coalesced_index": {"tf": 1}, "fast_forward.util.pyterrier.FFScore.transform": {"tf": 1}}, "df": 20, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward": {"tf": 3.4641016151377544}, "fast_forward.encoder": {"tf": 1}, "fast_forward.index": {"tf": 1.7320508075688772}, "fast_forward.index.Index": {"tf": 1}, "fast_forward.index.OnDiskIndex": {"tf": 1}, "fast_forward.index.InMemoryIndex": {"tf": 1}, "fast_forward.quantizer": {"tf": 2}, "fast_forward.util": {"tf": 1.4142135623730951}, "fast_forward.util.pyterrier": {"tf": 1.7320508075688772}, "fast_forward.util.pyterrier.FFScore": {"tf": 1}, "fast_forward.util.pyterrier.FFScore.__init__": {"tf": 1}}, "df": 11}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.Ranking.from_file": {"tf": 1}}, "df": 2}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.quantizer": {"tf": 1}, "fast_forward.util": {"tf": 1}}, "df": 3}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_forward.encoder": {"tf": 1}, "fast_forward.index": {"tf": 2}, "fast_forward.quantizer": {"tf": 1}}, "df": 3}}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.index": {"tf": 1}, "fast_forward.util": {"tf": 1}}, "df": 3}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward": {"tf": 2.8284271247461903}, "fast_forward.index": {"tf": 1.7320508075688772}, "fast_forward.util": {"tf": 1}, "fast_forward.util.Indexer.__init__": {"tf": 1.4142135623730951}, "fast_forward.util.Indexer.from_index": {"tf": 1}, "fast_forward.util.cos_dist": {"tf": 1}}, "df": 6, "p": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.index": {"tf": 1}}, "df": 2}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward": {"tf": 2}, "fast_forward.Ranking.save": {"tf": 1}, "fast_forward.index": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 2}, "fast_forward.index.OnDiskIndex.load": {"tf": 1.4142135623730951}}, "df": 5}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"fast_forward": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}, "t": {"docs": {"fast_forward.quantizer": {"tf": 1}, "fast_forward.quantizer.Quantizer.set_attached": {"tf": 1.4142135623730951}, "fast_forward.quantizer.Quantizer.fit": {"tf": 1}, "fast_forward.quantizer.Quantizer.decode": {"tf": 1}, "fast_forward.util": {"tf": 1.7320508075688772}, "fast_forward.util.Indexer.__init__": {"tf": 2.449489742783178}}, "df": 6}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"fast_forward": {"tf": 3.605551275463989}, "fast_forward.Ranking.__init__": {"tf": 1}, "fast_forward.Ranking.from_run": {"tf": 1}, "fast_forward.Ranking.from_file": {"tf": 1}, "fast_forward.encoder.TCTColBERTQueryEncoder": {"tf": 1}, "fast_forward.encoder.TCTColBERTDocumentEncoder": {"tf": 1}, "fast_forward.index": {"tf": 2}, "fast_forward.index.OnDiskIndex": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}, "fast_forward.quantizer": {"tf": 1.7320508075688772}, "fast_forward.util": {"tf": 2}, "fast_forward.util.Indexer.from_dicts": {"tf": 1}, "fast_forward.util.Indexer.from_index": {"tf": 1}, "fast_forward.util.IndexingDict": {"tf": 1}, "fast_forward.util.pyterrier": {"tf": 1}}, "df": 16}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.Ranking.__init__": {"tf": 2.23606797749979}, "fast_forward.Ranking.from_run": {"tf": 1}, "fast_forward.Ranking.from_file": {"tf": 1}, "fast_forward.util.to_ir_measures": {"tf": 1.4142135623730951}, "fast_forward.util.pyterrier.FFScore.transform": {"tf": 1.7320508075688772}, "fast_forward.util.pyterrier.FFInterpolate.transform": {"tf": 1.4142135623730951}}, "df": 6}}}}, "f": {"docs": {"fast_forward": {"tf": 1.4142135623730951}, "fast_forward.util.pyterrier": {"tf": 1}}, "df": 2, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.util.pyterrier": {"tf": 1}, "fast_forward.util.pyterrier.FFScore.__init__": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate": {"tf": 1}}, "df": 3}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.util.pyterrier": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.__init__": {"tf": 1}}, "df": 2}}}}}}}}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_forward": {"tf": 1.4142135623730951}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_forward.encoder": {"tf": 1}, "fast_forward.encoder.LambdaEncoder.__init__": {"tf": 1}, "fast_forward.util.create_coalesced_index": {"tf": 1.4142135623730951}}, "df": 3, "s": {"docs": {"fast_forward.encoder.LambdaEncoder": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"fast_forward.index.InMemoryIndex.__init__": {"tf": 1}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"3": {"2": {"docs": {"fast_forward.quantizer": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}}}, "a": {"docs": {"fast_forward": {"tf": 3.1622776601683795}, "fast_forward.Ranking.__init__": {"tf": 1}, "fast_forward.Ranking.normalize": {"tf": 1}, "fast_forward.Ranking.rr_scores": {"tf": 1.4142135623730951}, "fast_forward.Ranking.save": {"tf": 1}, "fast_forward.Ranking.from_run": {"tf": 1.4142135623730951}, "fast_forward.Ranking.from_file": {"tf": 1.4142135623730951}, "fast_forward.encoder": {"tf": 1.7320508075688772}, "fast_forward.encoder.LambdaEncoder.__init__": {"tf": 1.4142135623730951}, "fast_forward.encoder.TransformerEncoder": {"tf": 1}, "fast_forward.encoder.TransformerEncoder.__init__": {"tf": 1}, "fast_forward.index": {"tf": 3.605551275463989}, "fast_forward.index.Index.dim": {"tf": 1}, "fast_forward.index.Index.add": {"tf": 1.7320508075688772}, "fast_forward.index.OnDiskIndex": {"tf": 1}, "fast_forward.quantizer": {"tf": 1.4142135623730951}, "fast_forward.quantizer.Quantizer.encode": {"tf": 1}, "fast_forward.quantizer.Quantizer.decode": {"tf": 1}, "fast_forward.quantizer.Quantizer.serialize": {"tf": 1}, "fast_forward.quantizer.Quantizer.deserialize": {"tf": 1}, "fast_forward.quantizer.NanoPQ.__init__": {"tf": 1}, "fast_forward.quantizer.NanoOPQ.__init__": {"tf": 1}, "fast_forward.util": {"tf": 2.449489742783178}, "fast_forward.util.Indexer.__init__": {"tf": 2.23606797749979}, "fast_forward.util.IndexingDict": {"tf": 1}, "fast_forward.util.to_ir_measures": {"tf": 1.4142135623730951}, "fast_forward.util.cos_dist": {"tf": 1}, "fast_forward.util.create_coalesced_index": {"tf": 1}, "fast_forward.util.pyterrier": {"tf": 1.4142135623730951}, "fast_forward.util.pyterrier.FFScore": {"tf": 1}, "fast_forward.util.pyterrier.FFScore.transform": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.transform": {"tf": 1}}, "df": 32, "s": {"docs": {"fast_forward": {"tf": 2.23606797749979}, "fast_forward.Ranking.interpolate": {"tf": 1.4142135623730951}, "fast_forward.Ranking.rr_scores": {"tf": 1}, "fast_forward.encoder": {"tf": 1}, "fast_forward.index": {"tf": 1.4142135623730951}, "fast_forward.quantizer": {"tf": 2}, "fast_forward.quantizer.Quantizer.set_attached": {"tf": 1}, "fast_forward.util": {"tf": 1.4142135623730951}, "fast_forward.util.to_ir_measures": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.transform": {"tf": 1}}, "df": 10, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.index.Index.add": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.quantizer": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {"fast_forward": {"tf": 1}}, "df": 1}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.quantizer.Quantizer.decode": {"tf": 1}}, "df": 1, "d": {"docs": {"fast_forward.quantizer.Quantizer.decode": {"tf": 1}}, "df": 1}}}}}}}}}}}, "n": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.Ranking.__init__": {"tf": 1}, "fast_forward.index": {"tf": 2}, "fast_forward.index.Index.__init__": {"tf": 1}, "fast_forward.index.Mode": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1}, "fast_forward.quantizer": {"tf": 1}, "fast_forward.quantizer.Quantizer.fit": {"tf": 1.4142135623730951}, "fast_forward.util": {"tf": 1.7320508075688772}, "fast_forward.util.Indexer.__init__": {"tf": 1}, "fast_forward.util.Indexer.from_dicts": {"tf": 1}, "fast_forward.util.pyterrier.FFScore.__init__": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.__init__": {"tf": 1}}, "df": 15, "d": {"docs": {"fast_forward": {"tf": 3.4641016151377544}, "fast_forward.Ranking.__init__": {"tf": 1}, "fast_forward.encoder": {"tf": 1}, "fast_forward.index": {"tf": 2.6457513110645907}, "fast_forward.index.Index.add": {"tf": 1.7320508075688772}, "fast_forward.index.Index.batch_iter": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1.4142135623730951}, "fast_forward.quantizer.Quantizer.dims": {"tf": 1.4142135623730951}, "fast_forward.util": {"tf": 1.4142135623730951}, "fast_forward.util.Indexer.__init__": {"tf": 1.7320508075688772}, "fast_forward.util.Indexer.from_index": {"tf": 1}}, "df": 11}, "c": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.encoder": {"tf": 1}}, "df": 1, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.encoder": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "y": {"docs": {"fast_forward.index.Index.query_encoder": {"tf": 1}, "fast_forward.index.Index.quantizer": {"tf": 1}, "fast_forward.index.Index.dim": {"tf": 1}, "fast_forward.index.Index.add": {"tf": 1}, "fast_forward.index.Index.batch_iter": {"tf": 1.4142135623730951}}, "df": 5}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.util.Indexer.from_index": {"tf": 1}}, "df": 1}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1, "p": {"docs": {"fast_forward": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.index": {"tf": 1}, "fast_forward.quantizer": {"tf": 1}, "fast_forward.quantizer.NanoPQ": {"tf": 1}, "fast_forward.quantizer.NanoOPQ": {"tf": 1}, "fast_forward.util": {"tf": 1}}, "df": 5}}}}}}}, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.quantizer.Quantizer.fit": {"tf": 1}, "fast_forward.util": {"tf": 1}}, "df": 2}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"fast_forward": {"tf": 1.4142135623730951}, "fast_forward.encoder": {"tf": 1}}, "df": 2}}}}}}}}}}}, "l": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.Ranking.normalize": {"tf": 1}, "fast_forward.Ranking.cut": {"tf": 1}, "fast_forward.index": {"tf": 1}, "fast_forward.index.Index.doc_ids": {"tf": 1}, "fast_forward.index.Index.psg_ids": {"tf": 1}, "fast_forward.index.Index.batch_iter": {"tf": 1}, "fast_forward.index.OnDiskIndex.to_memory": {"tf": 1}, "fast_forward.index.InMemoryIndex.consolidate": {"tf": 1}, "fast_forward.util.create_coalesced_index": {"tf": 1}, "fast_forward.util.pyterrier.FFScore.transform": {"tf": 1}}, "df": 11, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward": {"tf": 1.4142135623730951}, "fast_forward.encoder": {"tf": 1}}, "df": 2}}, "c": {"docs": {"fast_forward.index.InMemoryIndex.__init__": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.index.OnDiskIndex.__init__": {"tf": 1}}, "df": 1, "d": {"docs": {"fast_forward.index.InMemoryIndex.__init__": {"tf": 1}}, "df": 1}}}}}}}, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.Ranking.interpolate": {"tf": 1.7320508075688772}, "fast_forward.index": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.__init__": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.transform": {"tf": 1.4142135623730951}}, "df": 5}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "y": {"docs": {"fast_forward.Ranking.__init__": {"tf": 1}, "fast_forward.util.Indexer.__init__": {"tf": 1}}, "df": 2}}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {"fast_forward.index": {"tf": 1}, "fast_forward.index.Index.add": {"tf": 1}}, "df": 2}}, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"docs": {"fast_forward.index": {"tf": 1}, "fast_forward.util": {"tf": 1}}, "df": 2}}}}}}}}, "f": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.quantizer.Quantizer.dims": {"tf": 1}}, "df": 2, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.index": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}, "t": {"docs": {"fast_forward.Ranking.q_ids": {"tf": 1}, "fast_forward.index": {"tf": 1}, "fast_forward.index.Index.add": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.to_memory": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}, "fast_forward.util.Indexer.__init__": {"tf": 1}, "fast_forward.util.create_coalesced_index": {"tf": 1}}, "df": 8, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"fast_forward": {"tf": 2}, "fast_forward.Ranking.attach_queries": {"tf": 1}, "fast_forward.util": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.Ranking.has_queries": {"tf": 1}, "fast_forward.Ranking.attach_queries": {"tf": 1}, "fast_forward.quantizer.Quantizer.set_attached": {"tf": 1}, "fast_forward.quantizer.Quantizer.fit": {"tf": 1.4142135623730951}, "fast_forward.util.Indexer.__init__": {"tf": 1}}, "df": 6}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.quantizer.Quantizer.deserialize": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.Ranking.__init__": {"tf": 1}, "fast_forward.Ranking.q_ids": {"tf": 1}, "fast_forward.Ranking.attach_queries": {"tf": 1}, "fast_forward.Ranking.normalize": {"tf": 1.4142135623730951}, "fast_forward.Ranking.interpolate": {"tf": 1}, "fast_forward.encoder": {"tf": 1}, "fast_forward.index": {"tf": 2.8284271247461903}, "fast_forward.quantizer": {"tf": 1.4142135623730951}, "fast_forward.util": {"tf": 1}, "fast_forward.util.Indexer.from_index": {"tf": 1}, "fast_forward.util.pyterrier.FFScore.transform": {"tf": 1}}, "df": 12, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "y": {"docs": {"fast_forward.quantizer.Quantizer.fit": {"tf": 1}}, "df": 1}}}}, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"fast_forward.encoder.LambdaEncoder": {"tf": 1}}, "df": 1}}}}}}}, "g": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.encoder.TransformerEncoder.__init__": {"tf": 1}}, "df": 1}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.index.OnDiskIndex": {"tf": 1}}, "df": 1, "s": {"docs": {"fast_forward.encoder.TransformerEncoder.__init__": {"tf": 1}, "fast_forward.quantizer.Quantizer.fit": {"tf": 1}}, "df": 2}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.index.OnDiskIndex": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.index": {"tf": 1.4142135623730951}, "fast_forward.index.Index.add": {"tf": 1}, "fast_forward.util.Indexer.__init__": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_forward": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "l": {"docs": {"fast_forward.encoder.TransformerEncoder.__init__": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.util": {"tf": 1}}, "df": 2}}}}}}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_forward.index.OnDiskIndex.to_memory": {"tf": 1}, "fast_forward.util": {"tf": 1}, "fast_forward.util.create_coalesced_index": {"tf": 1}}, "df": 3}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.index.Index.add": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.encoder.LambdaEncoder": {"tf": 1}}, "df": 1}, "d": {"docs": {"fast_forward.encoder.TCTColBERTQueryEncoder": {"tf": 1}, "fast_forward.encoder.TCTColBERTDocumentEncoder": {"tf": 1}}, "df": 2}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.util": {"tf": 1}}, "df": 1}}}}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.index.Index": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"fast_forward.util": {"tf": 1}, "fast_forward.util.Indexer.__init__": {"tf": 1}}, "df": 2}}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"fast_forward": {"tf": 1.4142135623730951}, "fast_forward.index": {"tf": 1}, "fast_forward.quantizer": {"tf": 1.4142135623730951}, "fast_forward.quantizer.NanoPQ": {"tf": 1}, "fast_forward.quantizer.NanoOPQ": {"tf": 1}, "fast_forward.util.to_ir_measures": {"tf": 1}}, "df": 6}}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_forward": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_forward.index.OnDiskIndex": {"tf": 1}}, "df": 1}}}}}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.util.pyterrier": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "k": {"docs": {"fast_forward": {"tf": 1.4142135623730951}, "fast_forward.index": {"tf": 1}, "fast_forward.util.pyterrier": {"tf": 1}}, "df": 3}}, "a": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward": {"tf": 1.7320508075688772}, "fast_forward.index": {"tf": 1}, "fast_forward.index.OnDiskIndex.to_memory": {"tf": 1}, "fast_forward.util": {"tf": 1}}, "df": 4, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.index": {"tf": 1.4142135623730951}, "fast_forward.index.OnDiskIndex.to_memory": {"tf": 1}, "fast_forward.quantizer.Quantizer.deserialize": {"tf": 1}}, "df": 3}}}}}, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"fast_forward": {"tf": 1}}, "df": 1}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.index": {"tf": 1}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.Ranking.q_ids": {"tf": 1}, "fast_forward.index.Index.add": {"tf": 1}}, "df": 2}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.encoder": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"fast_forward.index.OnDiskIndex.__init__": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {"fast_forward.encoder.LambdaEncoder.__init__": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.encoder": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.index": {"tf": 1.4142135623730951}}, "df": 1}}}}, "l": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}, "s": {"docs": {"fast_forward": {"tf": 1}}, "df": 1, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"fast_forward": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward": {"tf": 2.8284271247461903}}, "df": 1, "s": {"docs": {"fast_forward": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.index": {"tf": 3.1622776601683795}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.index": {"tf": 1}, "fast_forward.quantizer.Quantizer.serialize": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "p": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.util.pyterrier": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.index.Index.batch_iter": {"tf": 1}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_forward.encoder": {"tf": 1}}, "df": 1}}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.util": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {"fast_forward.quantizer": {"tf": 1}}, "df": 1}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.quantizer.NanoPQ.__init__": {"tf": 1}, "fast_forward.quantizer.NanoOPQ.__init__": {"tf": 1}}, "df": 2, "s": {"docs": {"fast_forward.quantizer.NanoPQ.__init__": {"tf": 1}, "fast_forward.quantizer.NanoOPQ.__init__": {"tf": 1}}, "df": 2}}}}}}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.quantizer": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.util.to_ir_measures": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"fast_forward": {"tf": 2.6457513110645907}, "fast_forward.index": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.util": {"tf": 1.4142135623730951}, "fast_forward.util.create_coalesced_index": {"tf": 1}}, "df": 3}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.index.Index.add": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.Ranking.q_ids": {"tf": 1}, "fast_forward.Ranking.normalize": {"tf": 1}, "fast_forward.index.Mode": {"tf": 1}, "fast_forward.quantizer.Quantizer.set_attached": {"tf": 1}}, "df": 5, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "f": {"docs": {"fast_forward.Ranking.interpolate": {"tf": 1}}, "df": 1}}, "e": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_forward.index.InMemoryIndex.consolidate": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.util.cos_dist": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.quantizer.Quantizer.serialize": {"tf": 1.4142135623730951}, "fast_forward.quantizer.Quantizer.deserialize": {"tf": 1}}, "df": 2}}}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"fast_forward.util.pyterrier": {"tf": 1}}, "df": 1}}}}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.Ranking.__init__": {"tf": 1}, "fast_forward.Ranking.interpolate": {"tf": 1.7320508075688772}, "fast_forward.Ranking.rr_scores": {"tf": 1.4142135623730951}, "fast_forward.Ranking.from_run": {"tf": 1}, "fast_forward.Ranking.from_file": {"tf": 1}, "fast_forward.index": {"tf": 2}, "fast_forward.util.pyterrier.FFScore.transform": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.transform": {"tf": 1.4142135623730951}}, "df": 8, "s": {"docs": {"fast_forward": {"tf": 3.872983346207417}, "fast_forward.Ranking.__init__": {"tf": 1.7320508075688772}, "fast_forward.Ranking.normalize": {"tf": 1.7320508075688772}, "fast_forward.Ranking.cut": {"tf": 1}, "fast_forward.Ranking.interpolate": {"tf": 1}, "fast_forward.Ranking.rr_scores": {"tf": 1}, "fast_forward.index": {"tf": 2.23606797749979}, "fast_forward.util.pyterrier.FFScore": {"tf": 1}, "fast_forward.util.pyterrier.FFScore.transform": {"tf": 1.7320508075688772}, "fast_forward.util.pyterrier.FFInterpolate": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.transform": {"tf": 1.4142135623730951}}, "df": 11}, "d": {"docs": {"fast_forward.Ranking.q_ids": {"tf": 1}, "fast_forward.index": {"tf": 1.4142135623730951}}, "df": 2}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_forward.Ranking.cut": {"tf": 1}, "fast_forward.Ranking.rr_scores": {"tf": 1}}, "df": 2}}}}}}, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.index": {"tf": 1.4142135623730951}, "fast_forward.index.Index.__init__": {"tf": 1.4142135623730951}, "fast_forward.index.Index.batch_iter": {"tf": 1.4142135623730951}, "fast_forward.index.OnDiskIndex": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 2.8284271247461903}, "fast_forward.index.OnDiskIndex.to_memory": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 2}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 2.449489742783178}, "fast_forward.quantizer": {"tf": 1}, "fast_forward.util": {"tf": 2.23606797749979}, "fast_forward.util.Indexer.__init__": {"tf": 1.7320508075688772}, "fast_forward.util.create_coalesced_index": {"tf": 1}}, "df": 13}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"fast_forward": {"tf": 1}}, "df": 1}, "e": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.index": {"tf": 1}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.encoder": {"tf": 1}, "fast_forward.encoder.LambdaEncoder.__init__": {"tf": 1}, "fast_forward.index": {"tf": 1}}, "df": 3}}}}}, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward": {"tf": 1.7320508075688772}, "fast_forward.Ranking.save": {"tf": 1}}, "df": 2, "d": {"docs": {"fast_forward": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.util": {"tf": 1.4142135623730951}, "fast_forward.util.Indexer.from_index": {"tf": 1.4142135623730951}, "fast_forward.util.create_coalesced_index": {"tf": 1.4142135623730951}}, "df": 4}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.Ranking.__init__": {"tf": 1.4142135623730951}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.index": {"tf": 1.4142135623730951}}, "df": 1}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.index": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.index": {"tf": 1}, "fast_forward.util": {"tf": 1}}, "df": 2}}, "c": {"docs": {"fast_forward.quantizer.Quantizer.fit": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"fast_forward.index": {"tf": 1}, "fast_forward.util.pyterrier": {"tf": 1}}, "df": 2}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.index": {"tf": 1}}, "df": 2}}}}}}, "o": {"docs": {}, "df": 0, "w": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.Ranking.__init__": {"tf": 1}, "fast_forward.Ranking.from_run": {"tf": 1}, "fast_forward.Ranking.from_file": {"tf": 1}, "fast_forward.quantizer": {"tf": 1}}, "df": 4}}}, "w": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.encoder": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.index": {"tf": 1.4142135623730951}, "fast_forward.index.Index.add": {"tf": 1}}, "df": 2}}, "r": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.index.InMemoryIndex.__init__": {"tf": 1}}, "df": 1, "s": {"docs": {"fast_forward.index.InMemoryIndex.consolidate": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.index": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.index": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"fast_forward": {"tf": 1.4142135623730951}, "fast_forward.index": {"tf": 3.1622776601683795}}, "df": 2}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.Ranking.cut": {"tf": 1}, "fast_forward.index": {"tf": 1.7320508075688772}, "fast_forward.index.Index.add": {"tf": 1}, "fast_forward.util.create_coalesced_index": {"tf": 1}}, "df": 5}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"fast_forward.encoder": {"tf": 1}}, "df": 1}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward": {"tf": 1.4142135623730951}, "fast_forward.encoder": {"tf": 1}}, "df": 2}}}}}}}}, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.encoder": {"tf": 1.7320508075688772}, "fast_forward.encoder.LambdaEncoder.__init__": {"tf": 1}, "fast_forward.index.Index.encode_queries": {"tf": 1.4142135623730951}, "fast_forward.quantizer.Quantizer.encode": {"tf": 1}}, "df": 4, "r": {"docs": {"fast_forward": {"tf": 2}, "fast_forward.encoder": {"tf": 2.6457513110645907}, "fast_forward.encoder.LambdaEncoder": {"tf": 1}, "fast_forward.encoder.LambdaEncoder.__init__": {"tf": 1}, "fast_forward.encoder.TransformerEncoder.__init__": {"tf": 1}, "fast_forward.encoder.TCTColBERTQueryEncoder": {"tf": 1}, "fast_forward.encoder.TCTColBERTDocumentEncoder": {"tf": 1}, "fast_forward.index": {"tf": 2}, "fast_forward.index.Index.__init__": {"tf": 2}, "fast_forward.index.Index.encode_queries": {"tf": 1}, "fast_forward.index.Index.query_encoder": {"tf": 1.4142135623730951}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 2}, "fast_forward.index.OnDiskIndex.load": {"tf": 2}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 2}, "fast_forward.util": {"tf": 2}, "fast_forward.util.Indexer.__init__": {"tf": 2}}, "df": 16, "s": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.encoder": {"tf": 1.4142135623730951}, "fast_forward.encoder.Encoder": {"tf": 1}}, "df": 3}}, "s": {"docs": {"fast_forward.encoder": {"tf": 1}}, "df": 1}, "d": {"docs": {"fast_forward.encoder": {"tf": 1}, "fast_forward.index": {"tf": 1}, "fast_forward.quantizer": {"tf": 1}, "fast_forward.quantizer.Quantizer.encode": {"tf": 1}}, "df": 4}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_forward.encoder": {"tf": 1}, "fast_forward.encoder.LambdaEncoder": {"tf": 1}, "fast_forward.encoder.TransformerEncoder": {"tf": 1}}, "df": 3}}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"fast_forward.index": {"tf": 1}, "fast_forward.index.OnDiskIndex.to_memory": {"tf": 1}, "fast_forward.index.InMemoryIndex": {"tf": 1}}, "df": 3}}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {"fast_forward.index.Mode": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.quantizer.NanoPQ.__init__": {"tf": 1}, "fast_forward.quantizer.NanoOPQ.__init__": {"tf": 1}}, "df": 2}}}}, "d": {"docs": {"fast_forward.util.create_coalesced_index": {"tf": 1}}, "df": 1}}, "x": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward": {"tf": 1.4142135623730951}, "fast_forward.encoder": {"tf": 1}, "fast_forward.index": {"tf": 1.7320508075688772}, "fast_forward.util": {"tf": 1.7320508075688772}}, "df": 4}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.Ranking.has_queries": {"tf": 1}, "fast_forward.index.Index.dim": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_forward.Ranking.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}, "fast_forward.util": {"tf": 1}}, "df": 3}}}, "s": {"docs": {"fast_forward.index.Index.encode_queries": {"tf": 1}, "fast_forward.index.Index.query_encoder": {"tf": 1}, "fast_forward.index.Index.quantizer": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1.4142135623730951}}, "df": 4}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"fast_forward.Ranking.normalize": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.Ranking.interpolate": {"tf": 1}, "fast_forward.index": {"tf": 1}, "fast_forward.index.Index.batch_iter": {"tf": 1}}, "df": 3}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}}}}}}}}, "s": {"docs": {"fast_forward.util.Indexer.__init__": {"tf": 1.4142135623730951}}, "df": 1, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}}}}}}}}, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.util": {"tf": 1}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"fast_forward.util.Indexer.__init__": {"tf": 1.4142135623730951}, "fast_forward.util.create_coalesced_index": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.index.OnDiskIndex.__init__": {"tf": 1}}, "df": 1}}}}}}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {"fast_forward.index.OnDiskIndex.__init__": {"tf": 1.4142135623730951}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_forward": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.index": {"tf": 1.4142135623730951}, "fast_forward.util.pyterrier.FFScore.transform": {"tf": 1}}, "df": 3, "d": {"docs": {"fast_forward.Ranking.rr_scores": {"tf": 1}, "fast_forward.index": {"tf": 1.4142135623730951}, "fast_forward.util": {"tf": 1}, "fast_forward.util.pyterrier.FFScore.transform": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate": {"tf": 1}}, "df": 5}, "s": {"docs": {"fast_forward.index": {"tf": 1}, "fast_forward.util.pyterrier.FFScore": {"tf": 1}}, "df": 2}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.util": {"tf": 1}}, "df": 2}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_forward.quantizer": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.util.create_coalesced_index": {"tf": 1}}, "df": 1}}}}}}}, "/": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward": {"tf": 1}}, "df": 1}}}}}}}}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "/": {"3": {"1": {"0": {"docs": {}, "df": 0, "c": {"8": {"2": {"8": {"2": {"1": {"1": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "b": {"3": {"docs": {}, "df": 0, "b": {"9": {"5": {"2": {"8": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "d": {"5": {"9": {"6": {"9": {"5": {"1": {"8": {"4": {"docs": {}, "df": 0, "c": {"8": {"0": {"8": {"2": {"5": {"6": {"8": {"4": {"docs": {}, "df": 0, "a": {"2": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.encoder.TCTColBERTQueryEncoder": {"tf": 1}, "fast_forward.encoder.TCTColBERTDocumentEncoder": {"tf": 1}}, "df": 2}}}}}}}}}}}}}}}}}, "docs": {}, "df": 0}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}}}}}}}}}}}}}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.index.InMemoryIndex.consolidate": {"tf": 1}}, "df": 1, "d": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.util": {"tf": 1.4142135623730951}, "fast_forward.util.create_coalesced_index": {"tf": 1.4142135623730951}}, "df": 3}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.util": {"tf": 2}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.util": {"tf": 1}}, "df": 2, "s": {"docs": {"fast_forward.util": {"tf": 1}, "fast_forward.util.Indexer": {"tf": 1}}, "df": 2}}}}}}}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.encoder.TCTColBERTQueryEncoder": {"tf": 1.4142135623730951}, "fast_forward.encoder.TCTColBERTDocumentEncoder": {"tf": 1.4142135623730951}, "fast_forward.util": {"tf": 1}}, "df": 4}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "n": {"docs": {"fast_forward.util.pyterrier.FFScore.transform": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_forward": {"tf": 1.4142135623730951}, "fast_forward.index": {"tf": 1}, "fast_forward.index.Index.add": {"tf": 1.7320508075688772}, "fast_forward.quantizer": {"tf": 1}, "fast_forward.quantizer.Quantizer.encode": {"tf": 1}}, "df": 5}}}, "s": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}}}}}}}, "e": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.quantizer": {"tf": 1}, "fast_forward.util": {"tf": 1.4142135623730951}, "fast_forward.util.pyterrier": {"tf": 1}}, "df": 3}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_forward.Ranking.__init__": {"tf": 1}, "fast_forward.util.create_coalesced_index": {"tf": 1}}, "df": 2}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.index.InMemoryIndex.consolidate": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.Ranking.q_ids": {"tf": 1}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.util": {"tf": 1}}, "df": 1}, "d": {"docs": {"fast_forward.util.IndexingDict": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "y": {"docs": {"fast_forward.Ranking.__init__": {"tf": 1.4142135623730951}}, "df": 1}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.index.Index.dim": {"tf": 1}, "fast_forward.quantizer.Quantizer.dtype": {"tf": 1.4142135623730951}, "fast_forward.quantizer.Quantizer.dims": {"tf": 1}, "fast_forward.quantizer.Quantizer.encode": {"tf": 1}, "fast_forward.quantizer.Quantizer.decode": {"tf": 1.7320508075688772}}, "df": 5}, "w": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.quantizer.NanoPQ.__init__": {"tf": 1}, "fast_forward.quantizer.NanoOPQ.__init__": {"tf": 1}}, "df": 2}}}}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.util.cos_dist": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward": {"tf": 1.7320508075688772}, "fast_forward.Ranking.__init__": {"tf": 1}, "fast_forward.Ranking.from_run": {"tf": 1}, "fast_forward.Ranking.from_file": {"tf": 1}, "fast_forward.encoder.LambdaEncoder.__init__": {"tf": 1}, "fast_forward.encoder.TransformerEncoder.__init__": {"tf": 1}, "fast_forward.index": {"tf": 1.4142135623730951}, "fast_forward.index.Index.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1.4142135623730951}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1}, "fast_forward.util": {"tf": 1.4142135623730951}, "fast_forward.util.Indexer.__init__": {"tf": 1}, "fast_forward.util.create_coalesced_index": {"tf": 1}, "fast_forward.util.pyterrier.FFScore.__init__": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.__init__": {"tf": 1}}, "df": 15, "d": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.util": {"tf": 1.7320508075688772}}, "df": 2}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_forward.index": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.encoder": {"tf": 1.4142135623730951}}, "df": 2}}}}, "t": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.index": {"tf": 1.4142135623730951}}, "df": 2, "o": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {"fast_forward.Ranking.cut": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"fast_forward.index": {"tf": 1}, "fast_forward.quantizer": {"tf": 1}}, "df": 2}}}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {"fast_forward.util": {"tf": 1}}, "df": 1, ":": {"0": {"docs": {"fast_forward.util": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {"fast_forward": {"tf": 2.23606797749979}, "fast_forward.encoder": {"tf": 1.4142135623730951}, "fast_forward.index": {"tf": 2.6457513110645907}, "fast_forward.index.Index.add": {"tf": 1}, "fast_forward.quantizer.Quantizer.fit": {"tf": 1}, "fast_forward.util": {"tf": 2}, "fast_forward.util.Indexer.__init__": {"tf": 1}, "fast_forward.util.pyterrier": {"tf": 1}}, "df": 8, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.util": {"tf": 1}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.encoder": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"fast_forward.quantizer.Quantizer.set_attached": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.encoder": {"tf": 1}, "fast_forward.encoder.Encoder": {"tf": 1}, "fast_forward.encoder.LambdaEncoder": {"tf": 1}, "fast_forward.index.Index": {"tf": 1}, "fast_forward.quantizer": {"tf": 1}, "fast_forward.quantizer.Quantizer": {"tf": 1}, "fast_forward.util": {"tf": 1}, "fast_forward.util.Indexer": {"tf": 1}}, "df": 9}}}}, "d": {"docs": {"fast_forward": {"tf": 1}}, "df": 1}, "p": {"docs": {}, "df": 0, "u": {"docs": {"fast_forward.util": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "p": {"docs": {"fast_forward": {"tf": 1}}, "df": 1, "s": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.index": {"tf": 1}}, "df": 2}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward": {"tf": 1.7320508075688772}, "fast_forward.encoder": {"tf": 1.4142135623730951}, "fast_forward.index": {"tf": 1.4142135623730951}, "fast_forward.index.Index.__init__": {"tf": 1.4142135623730951}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.to_memory": {"tf": 1}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1.4142135623730951}, "fast_forward.quantizer.NanoPQ.__init__": {"tf": 1}, "fast_forward.quantizer.NanoOPQ.__init__": {"tf": 1}, "fast_forward.util.Indexer.__init__": {"tf": 1}, "fast_forward.util.create_coalesced_index": {"tf": 1}}, "df": 11, "d": {"docs": {"fast_forward.Ranking.rr_scores": {"tf": 1}, "fast_forward.index": {"tf": 1}, "fast_forward.index.Index.dim": {"tf": 1}, "fast_forward.index.Mode": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.quantizer": {"tf": 1.4142135623730951}, "fast_forward.quantizer.Quantizer.serialize": {"tf": 1}, "fast_forward.util": {"tf": 1.4142135623730951}, "fast_forward.util.Indexer.__init__": {"tf": 1}}, "df": 9}, "s": {"docs": {"fast_forward.encoder.TransformerEncoder": {"tf": 1}, "fast_forward.index.OnDiskIndex": {"tf": 1}, "fast_forward.quantizer.NanoPQ": {"tf": 1}, "fast_forward.quantizer.NanoOPQ": {"tf": 1}, "fast_forward.util.Indexer.from_index": {"tf": 1}}, "df": 5}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_forward": {"tf": 2.23606797749979}, "fast_forward.Ranking.rr_scores": {"tf": 1}, "fast_forward.index": {"tf": 1.7320508075688772}, "fast_forward.util.create_coalesced_index": {"tf": 1}, "fast_forward.util.pyterrier": {"tf": 1}, "fast_forward.util.pyterrier.FFScore": {"tf": 1}}, "df": 6}}}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"fast_forward.encoder": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.util": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.Ranking.q_ids": {"tf": 1}, "fast_forward.index.Index.doc_ids": {"tf": 1}, "fast_forward.index.Index.psg_ids": {"tf": 1}, "fast_forward.index.Index.add": {"tf": 1.4142135623730951}}, "df": 4}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.index.OnDiskIndex": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"fast_forward.util": {"tf": 1}, "fast_forward.util.pyterrier": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"fast_forward.util": {"tf": 1}, "fast_forward.util.Indexer": {"tf": 1}}, "df": 2}}}}}}}, "b": {"docs": {"fast_forward.util.cos_dist": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.encoder": {"tf": 1}, "fast_forward.encoder.Encoder": {"tf": 1}, "fast_forward.index.Index": {"tf": 1}, "fast_forward.quantizer.Quantizer": {"tf": 1}}, "df": 4, "d": {"docs": {"fast_forward": {"tf": 1.4142135623730951}, "fast_forward.quantizer": {"tf": 1.4142135623730951}}, "df": 2}}}, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"fast_forward.encoder": {"tf": 1}, "fast_forward.index": {"tf": 1.4142135623730951}, "fast_forward.index.Index.__init__": {"tf": 1.4142135623730951}, "fast_forward.index.Index.batch_iter": {"tf": 1.4142135623730951}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1.4142135623730951}, "fast_forward.index.OnDiskIndex.to_memory": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1.4142135623730951}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1.4142135623730951}, "fast_forward.quantizer.Quantizer.encode": {"tf": 1}, "fast_forward.quantizer.Quantizer.decode": {"tf": 1}, "fast_forward.util": {"tf": 1.4142135623730951}, "fast_forward.util.Indexer.__init__": {"tf": 2.23606797749979}, "fast_forward.util.create_coalesced_index": {"tf": 1}}, "df": 13, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.encoder": {"tf": 1}, "fast_forward.index": {"tf": 1}, "fast_forward.index.Index.batch_iter": {"tf": 1.4142135623730951}, "fast_forward.index.OnDiskIndex.to_memory": {"tf": 1}, "fast_forward.util": {"tf": 1.4142135623730951}, "fast_forward.util.Indexer.__init__": {"tf": 1.4142135623730951}, "fast_forward.util.create_coalesced_index": {"tf": 1}}, "df": 7}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.util.pyterrier": {"tf": 1}}, "df": 1}}}}}}}}}}}, "c": {"docs": {}, "df": 0, "k": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"fast_forward": {"tf": 2.23606797749979}, "fast_forward.Ranking.__init__": {"tf": 1}, "fast_forward.Ranking.normalize": {"tf": 1}, "fast_forward.Ranking.from_run": {"tf": 1}, "fast_forward.Ranking.from_file": {"tf": 1}, "fast_forward.encoder": {"tf": 1}, "fast_forward.index": {"tf": 2.8284271247461903}, "fast_forward.index.Index.add": {"tf": 2.449489742783178}, "fast_forward.index.Index.batch_iter": {"tf": 1}, "fast_forward.quantizer": {"tf": 1.4142135623730951}, "fast_forward.quantizer.Quantizer.fit": {"tf": 1}, "fast_forward.quantizer.Quantizer.encode": {"tf": 1}, "fast_forward.quantizer.Quantizer.decode": {"tf": 1}, "fast_forward.quantizer.Quantizer.serialize": {"tf": 1}, "fast_forward.util": {"tf": 2}, "fast_forward.util.Indexer.__init__": {"tf": 2.23606797749979}, "fast_forward.util.create_coalesced_index": {"tf": 1}, "fast_forward.util.pyterrier": {"tf": 1}}, "df": 18, "s": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.Ranking.cut": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_forward.index": {"tf": 1}, "fast_forward.quantizer.Quantizer.fit": {"tf": 1}}, "df": 2}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}}}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.quantizer": {"tf": 1}, "fast_forward.quantizer.Quantizer.fit": {"tf": 1}, "fast_forward.quantizer.Quantizer.dims": {"tf": 1.4142135623730951}}, "df": 3}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {"fast_forward.quantizer.Quantizer.set_attached": {"tf": 1}, "fast_forward.quantizer.Quantizer.decode": {"tf": 1}, "fast_forward.util.Indexer.__init__": {"tf": 1}}, "df": 3}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.Ranking.cut": {"tf": 1}, "fast_forward.index.Index.add": {"tf": 1}}, "df": 3}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.util": {"tf": 1}, "fast_forward.util.Indexer.__init__": {"tf": 1}}, "df": 2}}}}}}}, "y": {"docs": {"fast_forward.Ranking.__init__": {"tf": 1}, "fast_forward.Ranking.rr_scores": {"tf": 1}, "fast_forward.encoder": {"tf": 1.4142135623730951}, "fast_forward.index": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1.4142135623730951}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}, "fast_forward.quantizer.Quantizer.dtype": {"tf": 1}, "fast_forward.util.IndexingDict": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate": {"tf": 1}}, "df": 9}, "m": {"2": {"5": {"docs": {"fast_forward.util.pyterrier": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}, "r": {"docs": {"fast_forward": {"tf": 2}, "fast_forward.Ranking": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {"fast_forward": {"tf": 1.7320508075688772}, "fast_forward.Ranking.rr_scores": {"tf": 1.4142135623730951}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_forward": {"tf": 5.830951894845301}, "fast_forward.Ranking.__init__": {"tf": 1}, "fast_forward.Ranking.has_queries": {"tf": 1}, "fast_forward.Ranking.q_ids": {"tf": 1}, "fast_forward.Ranking.attach_queries": {"tf": 1.4142135623730951}, "fast_forward.Ranking.normalize": {"tf": 1}, "fast_forward.Ranking.cut": {"tf": 1}, "fast_forward.Ranking.interpolate": {"tf": 1.7320508075688772}, "fast_forward.Ranking.rr_scores": {"tf": 1}, "fast_forward.Ranking.save": {"tf": 1}, "fast_forward.Ranking.from_run": {"tf": 1.4142135623730951}, "fast_forward.Ranking.from_file": {"tf": 1.4142135623730951}, "fast_forward.index": {"tf": 3.7416573867739413}, "fast_forward.index.Index.__init__": {"tf": 1}, "fast_forward.index.Index.mode": {"tf": 1.4142135623730951}, "fast_forward.index.Mode": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1}, "fast_forward.util.to_ir_measures": {"tf": 1.7320508075688772}, "fast_forward.util.pyterrier": {"tf": 1}}, "df": 21, "s": {"docs": {"fast_forward": {"tf": 2.8284271247461903}, "fast_forward.Ranking": {"tf": 1}, "fast_forward.index": {"tf": 1}}, "df": 3}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"fast_forward.quantizer": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.Ranking.__init__": {"tf": 1}, "fast_forward.Ranking.attach_queries": {"tf": 1}, "fast_forward.index.Index.encode_queries": {"tf": 1}, "fast_forward.index.Index.add": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.quantizer.Quantizer.set_attached": {"tf": 1}, "fast_forward.quantizer.Quantizer.fit": {"tf": 1}, "fast_forward.quantizer.Quantizer.decode": {"tf": 1}, "fast_forward.util.Indexer.__init__": {"tf": 1}, "fast_forward.util.create_coalesced_index": {"tf": 1}}, "df": 10}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.encoder": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {"fast_forward": {"tf": 1.4142135623730951}, "fast_forward.Ranking.rr_scores": {"tf": 1}, "fast_forward.index": {"tf": 1.7320508075688772}, "fast_forward.util.pyterrier": {"tf": 1}}, "df": 4, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"fast_forward": {"tf": 1.4142135623730951}, "fast_forward.index": {"tf": 1}}, "df": 2}}, "e": {"docs": {"fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}}, "df": 2, "r": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"fast_forward.index": {"tf": 1}, "fast_forward.index.Index.mode": {"tf": 1}, "fast_forward.index.Index.query_encoder": {"tf": 1}, "fast_forward.index.Index.quantizer": {"tf": 1}, "fast_forward.index.Index.dim": {"tf": 1.7320508075688772}, "fast_forward.index.Index.doc_ids": {"tf": 1}, "fast_forward.index.Index.psg_ids": {"tf": 1}, "fast_forward.quantizer.Quantizer.dims": {"tf": 1}, "fast_forward.quantizer.Quantizer.serialize": {"tf": 1}, "fast_forward.util.to_ir_measures": {"tf": 1}}, "df": 10, "s": {"docs": {"fast_forward.Ranking.has_queries": {"tf": 1}, "fast_forward.Ranking.q_ids": {"tf": 1}, "fast_forward.Ranking.attach_queries": {"tf": 1}, "fast_forward.Ranking.normalize": {"tf": 1}, "fast_forward.Ranking.cut": {"tf": 1}, "fast_forward.Ranking.interpolate": {"tf": 1}, "fast_forward.Ranking.rr_scores": {"tf": 1}, "fast_forward.Ranking.from_run": {"tf": 1}, "fast_forward.Ranking.from_file": {"tf": 1}, "fast_forward.encoder.TransformerEncoder": {"tf": 1}, "fast_forward.index.Index.mode": {"tf": 1}, "fast_forward.index.Index.encode_queries": {"tf": 1}, "fast_forward.index.Index.query_encoder": {"tf": 1}, "fast_forward.index.Index.quantizer": {"tf": 1}, "fast_forward.index.Index.dim": {"tf": 1}, "fast_forward.index.Index.doc_ids": {"tf": 1}, "fast_forward.index.Index.psg_ids": {"tf": 1}, "fast_forward.index.OnDiskIndex.to_memory": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}, "fast_forward.quantizer.Quantizer.dtype": {"tf": 1}, "fast_forward.quantizer.Quantizer.dims": {"tf": 1}, "fast_forward.quantizer.Quantizer.encode": {"tf": 1}, "fast_forward.quantizer.Quantizer.decode": {"tf": 1}, "fast_forward.quantizer.Quantizer.serialize": {"tf": 1}, "fast_forward.quantizer.Quantizer.deserialize": {"tf": 1}, "fast_forward.util.to_ir_measures": {"tf": 1}, "fast_forward.util.cos_dist": {"tf": 1}, "fast_forward.util.pyterrier.FFScore.transform": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.transform": {"tf": 1}}, "df": 29}}}}}, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.Ranking.from_file": {"tf": 1}, "fast_forward.index.OnDiskIndex": {"tf": 1}}, "df": 3}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_forward.index.Index.add": {"tf": 1}}, "df": 1, "s": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.index": {"tf": 1}, "fast_forward.util": {"tf": 1}}, "df": 3}, "s": {"docs": {"fast_forward.index": {"tf": 1}, "fast_forward.util.Indexer.__init__": {"tf": 1}}, "df": 2}}}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.Ranking.__init__": {"tf": 1}, "fast_forward.Ranking.from_run": {"tf": 1}, "fast_forward.Ranking.from_file": {"tf": 1}}, "df": 4}}, "s": {"docs": {"fast_forward.Ranking": {"tf": 1}, "fast_forward.util.IndexingDict": {"tf": 1}}, "df": 2}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_forward.quantizer.Quantizer.serialize": {"tf": 1}}, "df": 1, "s": {"docs": {"fast_forward.index": {"tf": 1.4142135623730951}, "fast_forward.index.Index.encode_queries": {"tf": 1}, "fast_forward.index.Index.add": {"tf": 1.4142135623730951}, "fast_forward.quantizer.Quantizer.decode": {"tf": 1}, "fast_forward.quantizer.Quantizer.serialize": {"tf": 1}, "fast_forward.util": {"tf": 1}, "fast_forward.util.Indexer.from_index": {"tf": 1}}, "df": 7}}}}}}}}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.quantizer.Quantizer.deserialize": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.util.Indexer.from_index": {"tf": 1}}, "df": 1}}}}}}}}}}, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"fast_forward": {"tf": 1.4142135623730951}, "fast_forward.Ranking.rr_scores": {"tf": 1}}, "df": 2}}}}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.Ranking.cut": {"tf": 1}}, "df": 1, "s": {"docs": {"fast_forward.Ranking.__init__": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {"fast_forward.util.pyterrier.FFScore.transform": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.transform": {"tf": 1}}, "df": 2, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.index": {"tf": 2}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_forward.Ranking.cut": {"tf": 1}, "fast_forward.Ranking.interpolate": {"tf": 1}, "fast_forward.Ranking.from_run": {"tf": 1}, "fast_forward.Ranking.from_file": {"tf": 1}, "fast_forward.index": {"tf": 1}}, "df": 5}}}}}}, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}}, "df": 2}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_forward.util": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}}}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {"fast_forward": {"tf": 2.449489742783178}, "fast_forward.Ranking.from_run": {"tf": 1.7320508075688772}}, "df": 2, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward": {"tf": 1.4142135623730951}, "fast_forward.Ranking.save": {"tf": 1}, "fast_forward.Ranking.from_file": {"tf": 1.4142135623730951}}, "df": 3, "s": {"docs": {"fast_forward": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {"fast_forward": {"tf": 1}}, "df": 1}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.index.Index.encode_queries": {"tf": 1}, "fast_forward.index.Index.add": {"tf": 1}, "fast_forward.quantizer.Quantizer.set_attached": {"tf": 1}, "fast_forward.quantizer.Quantizer.fit": {"tf": 1}, "fast_forward.quantizer.Quantizer.decode": {"tf": 1}}, "df": 5}}}}}}}}}}}, "r": {"docs": {"fast_forward": {"tf": 1.7320508075688772}, "fast_forward.Ranking.rr_scores": {"tf": 1.4142135623730951}}, "df": 2, "f": {"docs": {"fast_forward": {"tf": 1.4142135623730951}, "fast_forward.Ranking.rr_scores": {"tf": 1}}, "df": 2}}, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.Ranking.__init__": {"tf": 1}}, "df": 1}}}}, "p": {"1": {"docs": {"fast_forward.index": {"tf": 1.4142135623730951}}, "df": 1}, "2": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.encoder": {"tf": 1}, "fast_forward.index": {"tf": 2.8284271247461903}, "fast_forward.index.Index.psg_ids": {"tf": 1.4142135623730951}, "fast_forward.index.Index.add": {"tf": 1.7320508075688772}, "fast_forward.index.Index.batch_iter": {"tf": 1.4142135623730951}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.util.pyterrier": {"tf": 1.4142135623730951}}, "df": 8, "s": {"docs": {"fast_forward.index": {"tf": 1.7320508075688772}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"fast_forward": {"tf": 2.6457513110645907}, "fast_forward.encoder.TransformerEncoder.__init__": {"tf": 1}, "fast_forward.index": {"tf": 1.4142135623730951}, "fast_forward.quantizer": {"tf": 1.4142135623730951}, "fast_forward.util": {"tf": 1.4142135623730951}}, "df": 5, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.quantizer": {"tf": 1}}, "df": 2}}}, "/": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.util": {"tf": 1}}, "df": 2}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {"fast_forward": {"tf": 1}}, "df": 1}}}}}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {"fast_forward": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {"fast_forward": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.Ranking.interpolate": {"tf": 1}, "fast_forward.Ranking.rr_scores": {"tf": 1}, "fast_forward.index": {"tf": 1.7320508075688772}, "fast_forward.util.pyterrier.FFInterpolate.__init__": {"tf": 1}}, "df": 4, "s": {"docs": {"fast_forward.Ranking.__init__": {"tf": 1}, "fast_forward.Ranking.attach_queries": {"tf": 1}, "fast_forward.Ranking.cut": {"tf": 1}, "fast_forward.Ranking.interpolate": {"tf": 1}, "fast_forward.Ranking.rr_scores": {"tf": 1}, "fast_forward.Ranking.save": {"tf": 1}, "fast_forward.Ranking.from_run": {"tf": 1}, "fast_forward.Ranking.from_file": {"tf": 1}, "fast_forward.encoder.LambdaEncoder.__init__": {"tf": 1}, "fast_forward.encoder.TransformerEncoder.__init__": {"tf": 1}, "fast_forward.index.Index.__init__": {"tf": 1}, "fast_forward.index.Index.encode_queries": {"tf": 1}, "fast_forward.index.Index.add": {"tf": 1}, "fast_forward.index.Index.batch_iter": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.to_memory": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1}, "fast_forward.quantizer.Quantizer.fit": {"tf": 1}, "fast_forward.quantizer.Quantizer.encode": {"tf": 1}, "fast_forward.quantizer.Quantizer.decode": {"tf": 1}, "fast_forward.quantizer.Quantizer.deserialize": {"tf": 1}, "fast_forward.quantizer.NanoPQ.__init__": {"tf": 1}, "fast_forward.quantizer.NanoOPQ.__init__": {"tf": 1}, "fast_forward.util.Indexer.__init__": {"tf": 1}, "fast_forward.util.Indexer.from_dicts": {"tf": 1}, "fast_forward.util.Indexer.from_index": {"tf": 1}, "fast_forward.util.to_ir_measures": {"tf": 1}, "fast_forward.util.cos_dist": {"tf": 1}, "fast_forward.util.create_coalesced_index": {"tf": 1}, "fast_forward.util.pyterrier.FFScore.__init__": {"tf": 1}, "fast_forward.util.pyterrier.FFScore.transform": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.__init__": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.transform": {"tf": 1}}, "df": 34}}}}}}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.index": {"tf": 1}, "fast_forward.util.pyterrier.FFScore.transform": {"tf": 1}}, "df": 2}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.index": {"tf": 1.4142135623730951}, "fast_forward.util": {"tf": 1}}, "df": 2}}}}, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.util.pyterrier": {"tf": 1.7320508075688772}, "fast_forward.util.pyterrier.FFScore": {"tf": 1}, "fast_forward.util.pyterrier.FFScore.transform": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.transform": {"tf": 1}}, "df": 6}}}}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_forward": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"fast_forward.encoder.TransformerEncoder.__init__": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {"fast_forward.encoder": {"tf": 2}, "fast_forward.encoder.TCTColBERTQueryEncoder": {"tf": 1}, "fast_forward.encoder.TCTColBERTDocumentEncoder": {"tf": 1}}, "df": 3}}}}}}, "#": {"docs": {}, "df": 0, "l": {"2": {"7": {"docs": {"fast_forward.encoder.TCTColBERTDocumentEncoder": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "7": {"2": {"docs": {"fast_forward.encoder.TCTColBERTQueryEncoder": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "i": {"docs": {}, "df": 0, "p": {"docs": {"fast_forward": {"tf": 1.7320508075688772}}, "df": 1, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.util.pyterrier": {"tf": 1}}, "df": 1, "s": {"docs": {"fast_forward.util.pyterrier": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.encoder": {"tf": 1}, "fast_forward.encoder.LambdaEncoder.__init__": {"tf": 1}}, "df": 2}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_forward": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1, "d": {"docs": {"fast_forward.util.Indexer.__init__": {"tf": 1.7320508075688772}, "fast_forward.util.pyterrier": {"tf": 1}}, "df": 2}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}}}}}, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.quantizer": {"tf": 1.7320508075688772}, "fast_forward.quantizer.NanoPQ": {"tf": 1}, "fast_forward.quantizer.NanoPQ.__init__": {"tf": 1}, "fast_forward.quantizer.NanoOPQ": {"tf": 1}, "fast_forward.quantizer.NanoOPQ.__init__": {"tf": 1}}, "df": 5}, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.quantizer.Quantizer.dtype": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.encoder.TransformerEncoder": {"tf": 1}, "fast_forward.encoder.TransformerEncoder.__init__": {"tf": 1}, "fast_forward.encoder.TCTColBERTQueryEncoder": {"tf": 1}, "fast_forward.encoder.TCTColBERTDocumentEncoder": {"tf": 1}, "fast_forward.util": {"tf": 1}}, "df": 6, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.encoder": {"tf": 1}}, "df": 1}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_forward.quantizer.Quantizer.set_attached": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.util.pyterrier.FFScore.transform": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.quantizer": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.Ranking.cut": {"tf": 1}, "fast_forward.quantizer.NanoPQ.__init__": {"tf": 1}, "fast_forward.quantizer.NanoOPQ.__init__": {"tf": 1}, "fast_forward.util": {"tf": 1}}, "df": 4, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.Ranking.interpolate": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}}}}}}}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.encoder.TransformerEncoder": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "g": {"docs": {"fast_forward.index": {"tf": 1}, "fast_forward.index.Index.add": {"tf": 1.4142135623730951}}, "df": 2}}, "t": {"docs": {"fast_forward.util.pyterrier": {"tf": 1}}, "df": 1}, "l": {"docs": {"fast_forward.util.pyterrier": {"tf": 1}}, "df": 1}}, "d": {"0": {"docs": {"fast_forward": {"tf": 1.4142135623730951}}, "df": 1}, "1": {"docs": {"fast_forward": {"tf": 1.4142135623730951}, "fast_forward.index": {"tf": 2.23606797749979}}, "df": 2}, "2": {"docs": {"fast_forward": {"tf": 1.4142135623730951}, "fast_forward.index": {"tf": 1.7320508075688772}}, "df": 2}, "docs": {}, "df": 0, "o": {"docs": {"fast_forward.encoder": {"tf": 1.4142135623730951}, "fast_forward.index": {"tf": 1}, "fast_forward.index.Index.add": {"tf": 1}}, "df": 3, "c": {"docs": {"fast_forward.index": {"tf": 1}, "fast_forward.index.Index.add": {"tf": 1.4142135623730951}, "fast_forward.util": {"tf": 2.6457513110645907}}, "df": 3, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.Ranking.q_ids": {"tf": 1}, "fast_forward.encoder.TCTColBERTDocumentEncoder": {"tf": 1}, "fast_forward.index": {"tf": 2.23606797749979}, "fast_forward.index.Index.doc_ids": {"tf": 1.4142135623730951}, "fast_forward.index.Index.add": {"tf": 1.7320508075688772}, "fast_forward.index.Index.batch_iter": {"tf": 1.4142135623730951}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.util": {"tf": 1}, "fast_forward.util.create_coalesced_index": {"tf": 1}, "fast_forward.util.pyterrier.FFScore.transform": {"tf": 1}}, "df": 11, "/": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.util": {"tf": 1}, "fast_forward.util.Indexer.__init__": {"tf": 1}, "fast_forward.util.IndexingDict": {"tf": 1}}, "df": 4}}}}}}}}, "s": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.Ranking": {"tf": 1}, "fast_forward.Ranking.cut": {"tf": 1}, "fast_forward.Ranking.rr_scores": {"tf": 1}, "fast_forward.index": {"tf": 1.4142135623730951}}, "df": 4}}}}}}}}}}}}}}}, "s": {"docs": {"fast_forward.util": {"tf": 1.4142135623730951}}, "df": 1}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.index.Index.add": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.index": {"tf": 1.4142135623730951}, "fast_forward.index.OnDiskIndex": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}}, "df": 5}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.util.cos_dist": {"tf": 1.4142135623730951}, "fast_forward.util.create_coalesced_index": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.util": {"tf": 1}, "fast_forward.util.Indexer.from_dicts": {"tf": 1.4142135623730951}}, "df": 3}}}, "y": {"docs": {"fast_forward.index": {"tf": 1}, "fast_forward.util.IndexingDict": {"tf": 1}}, "df": 2}}}}}}, "s": {"docs": {"fast_forward.util": {"tf": 1.4142135623730951}, "fast_forward.util.IndexingDict": {"tf": 1}}, "df": 2}}}, "m": {"docs": {"fast_forward.index.Index.add": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_forward.index.Index.dim": {"tf": 1}, "fast_forward.quantizer.Quantizer.dims": {"tf": 1.4142135623730951}}, "df": 2, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"fast_forward.index": {"tf": 1}, "fast_forward.index.Index.dim": {"tf": 1.4142135623730951}}, "df": 2}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.index.Index.add": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {"fast_forward.quantizer.Quantizer.dims": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"fast_forward.Ranking.__init__": {"tf": 2.23606797749979}, "fast_forward.Ranking.from_run": {"tf": 1}, "fast_forward.Ranking.from_file": {"tf": 1}, "fast_forward.quantizer.Quantizer.dtype": {"tf": 1.4142135623730951}, "fast_forward.quantizer.Quantizer.deserialize": {"tf": 1.4142135623730951}, "fast_forward.util.Indexer.from_dicts": {"tf": 1.4142135623730951}, "fast_forward.util.to_ir_measures": {"tf": 1.4142135623730951}, "fast_forward.util.pyterrier.FFScore.transform": {"tf": 1.7320508075688772}, "fast_forward.util.pyterrier.FFInterpolate.transform": {"tf": 1.4142135623730951}}, "df": 9, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}, "fast_forward.util.pyterrier": {"tf": 1}}, "df": 3}}}}}}, "f": {"docs": {"fast_forward.Ranking.__init__": {"tf": 1}}, "df": 1}, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.Ranking.__init__": {"tf": 1}, "fast_forward.Ranking.from_run": {"tf": 1}, "fast_forward.Ranking.from_file": {"tf": 1}}, "df": 3}}}}, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.encoder.TransformerEncoder.__init__": {"tf": 1.4142135623730951}, "fast_forward.util": {"tf": 1}}, "df": 2}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.index": {"tf": 1}, "fast_forward.index.OnDiskIndex": {"tf": 1}}, "df": 2}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}}}}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}}}}}}}, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"fast_forward.index": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"fast_forward.index": {"tf": 2}}, "df": 1}}}}, "f": {"docs": {"fast_forward.util": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.quantizer": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.quantizer.Quantizer.decode": {"tf": 1}}, "df": 1, "d": {"docs": {"fast_forward.quantizer.Quantizer.decode": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"fast_forward.util.create_coalesced_index": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.index.Index.add": {"tf": 1}}, "df": 1, "s": {"docs": {"fast_forward.index.Index.add": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_forward.util": {"tf": 1}}, "df": 1}}}}}}, "m": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.quantizer": {"tf": 1}, "fast_forward.quantizer.NanoPQ.__init__": {"tf": 1}, "fast_forward.quantizer.NanoOPQ.__init__": {"tf": 1}}, "df": 4, "a": {"docs": {}, "df": 0, "x": {"docs": {"fast_forward.Ranking.normalize": {"tf": 1}, "fast_forward.Ranking.interpolate": {"tf": 1}, "fast_forward.index.OnDiskIndex": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1.4142135623730951}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}}, "df": 5, "p": {"docs": {"fast_forward": {"tf": 1.4142135623730951}, "fast_forward.index": {"tf": 1}, "fast_forward.util": {"tf": 1}}, "df": 3}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"fast_forward.index.OnDiskIndex.__init__": {"tf": 1.4142135623730951}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}}, "df": 2}}}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward": {"tf": 1}}, "df": 1}}}}}}}, "y": {"docs": {"fast_forward.util.Indexer.__init__": {"tf": 1.4142135623730951}}, "df": 1}}, "y": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.index": {"tf": 1}, "fast_forward.index.Index.add": {"tf": 2}, "fast_forward.index.Index.batch_iter": {"tf": 1}, "fast_forward.quantizer.Quantizer.dims": {"tf": 1}}, "df": 5}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.Ranking.__init__": {"tf": 1}, "fast_forward.Ranking.attach_queries": {"tf": 1}, "fast_forward.Ranking.from_run": {"tf": 1}, "fast_forward.Ranking.from_file": {"tf": 1}}, "df": 4}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.encoder": {"tf": 1}}, "df": 1}}, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"fast_forward.index.Index.add": {"tf": 1.4142135623730951}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {"fast_forward.util.pyterrier": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward": {"tf": 1.7320508075688772}, "fast_forward.index": {"tf": 3.1622776601683795}, "fast_forward.index.Index.__init__": {"tf": 1.4142135623730951}, "fast_forward.index.Index.mode": {"tf": 1.4142135623730951}, "fast_forward.index.Mode": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1.4142135623730951}, "fast_forward.index.OnDiskIndex.load": {"tf": 1.4142135623730951}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1.4142135623730951}, "fast_forward.util": {"tf": 1.4142135623730951}}, "df": 9, "l": {"docs": {"fast_forward.encoder.TransformerEncoder": {"tf": 1}, "fast_forward.encoder.TransformerEncoder.__init__": {"tf": 1.4142135623730951}}, "df": 2, "s": {"docs": {"fast_forward.encoder.TCTColBERTQueryEncoder": {"tf": 1}, "fast_forward.encoder.TCTColBERTDocumentEncoder": {"tf": 1}}, "df": 2}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.index": {"tf": 1}, "fast_forward.quantizer.NanoPQ": {"tf": 1}, "fast_forward.quantizer.NanoOPQ": {"tf": 1}, "fast_forward.util": {"tf": 1}}, "df": 5}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.util.pyterrier.FFScore.transform": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {"fast_forward.util.pyterrier": {"tf": 1}}, "df": 1, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.encoder": {"tf": 1}, "fast_forward.util": {"tf": 1}, "fast_forward.util.pyterrier": {"tf": 1}}, "df": 4}}}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_forward": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {"fast_forward.util": {"tf": 1}, "fast_forward.util.create_coalesced_index": {"tf": 1}}, "df": 2}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.index.Index.add": {"tf": 1.7320508075688772}, "fast_forward.quantizer": {"tf": 1}, "fast_forward.util.create_coalesced_index": {"tf": 1}}, "df": 3}}}, "y": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.index": {"tf": 3.3166247903554}, "fast_forward.quantizer": {"tf": 1}, "fast_forward.util": {"tf": 2.449489742783178}, "fast_forward.util.pyterrier": {"tf": 1.4142135623730951}}, "df": 5}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.Ranking.__init__": {"tf": 1}, "fast_forward.Ranking.from_run": {"tf": 1}, "fast_forward.encoder": {"tf": 1.4142135623730951}}, "df": 3}}}, "a": {"docs": {"fast_forward.quantizer.Quantizer.deserialize": {"tf": 1}}, "df": 1, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"fast_forward.quantizer.Quantizer.deserialize": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"fast_forward.quantizer.NanoPQ.__init__": {"tf": 1.4142135623730951}, "fast_forward.quantizer.NanoOPQ.__init__": {"tf": 1.4142135623730951}}, "df": 2}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"fast_forward.index": {"tf": 1.7320508075688772}, "fast_forward.index.OnDiskIndex.to_memory": {"tf": 1}, "fast_forward.index.InMemoryIndex": {"tf": 1}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1}, "fast_forward.index.InMemoryIndex.consolidate": {"tf": 1}}, "df": 5}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.quantizer": {"tf": 1}}, "df": 1}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.util.to_ir_measures": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"fast_forward.Ranking.normalize": {"tf": 1}, "fast_forward.Ranking.interpolate": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}}, "df": 4, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}}, "df": 2}}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_forward.Ranking.interpolate": {"tf": 1}}, "df": 1}}}}}, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.util.pyterrier": {"tf": 1}}, "df": 1}}}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {"fast_forward": {"tf": 1.4142135623730951}, "fast_forward.index": {"tf": 1}, "fast_forward.index.OnDiskIndex": {"tf": 1}}, "df": 3}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}}, "df": 2, "u": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.index.OnDiskIndex.load": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.Ranking.__init__": {"tf": 1}, "fast_forward.Ranking.attach_queries": {"tf": 1}, "fast_forward.index.Index.add": {"tf": 1.7320508075688772}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.util.Indexer.__init__": {"tf": 1.4142135623730951}, "fast_forward.util.create_coalesced_index": {"tf": 1}}, "df": 6}}}}}, "s": {"docs": {"fast_forward.quantizer.Quantizer.dims": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.util.pyterrier": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.index": {"tf": 1.7320508075688772}, "fast_forward.index.Index.dim": {"tf": 1}, "fast_forward.index.Index.add": {"tf": 2}, "fast_forward.quantizer.Quantizer.decode": {"tf": 1}, "fast_forward.util.cos_dist": {"tf": 1.4142135623730951}}, "df": 5, "s": {"docs": {"fast_forward.index": {"tf": 2}, "fast_forward.index.Index.dim": {"tf": 1}, "fast_forward.index.Index.add": {"tf": 1.7320508075688772}, "fast_forward.index.Index.batch_iter": {"tf": 1.4142135623730951}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1.7320508075688772}, "fast_forward.index.OnDiskIndex.to_memory": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1.4142135623730951}, "fast_forward.quantizer": {"tf": 1.7320508075688772}, "fast_forward.quantizer.Quantizer.fit": {"tf": 1.4142135623730951}, "fast_forward.quantizer.Quantizer.dims": {"tf": 1}, "fast_forward.quantizer.Quantizer.encode": {"tf": 2}, "fast_forward.quantizer.Quantizer.decode": {"tf": 1}, "fast_forward.util": {"tf": 1}, "fast_forward.util.Indexer.__init__": {"tf": 1}, "fast_forward.util.Indexer.from_index": {"tf": 1.4142135623730951}, "fast_forward.util.cos_dist": {"tf": 1}, "fast_forward.util.create_coalesced_index": {"tf": 1.4142135623730951}}, "df": 18}}}}}, "r": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.quantizer.NanoPQ.__init__": {"tf": 1}, "fast_forward.quantizer.NanoOPQ.__init__": {"tf": 1}}, "df": 2}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"fast_forward.quantizer.NanoPQ.__init__": {"tf": 1}, "fast_forward.quantizer.NanoOPQ.__init__": {"tf": 1}}, "df": 2}}}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_forward.util": {"tf": 1}}, "df": 1}}}}}}}, "q": {"1": {"docs": {"fast_forward": {"tf": 1.7320508075688772}}, "df": 1}, "2": {"docs": {"fast_forward": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_forward": {"tf": 1.4142135623730951}, "fast_forward.quantizer": {"tf": 2}, "fast_forward.quantizer.Quantizer.dims": {"tf": 1}}, "df": 3}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.index.Index.__init__": {"tf": 1.4142135623730951}, "fast_forward.index.Index.quantizer": {"tf": 1.4142135623730951}, "fast_forward.index.Index.dim": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1.4142135623730951}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1.4142135623730951}, "fast_forward.quantizer": {"tf": 2.449489742783178}, "fast_forward.quantizer.Quantizer.set_attached": {"tf": 1.7320508075688772}, "fast_forward.quantizer.Quantizer.fit": {"tf": 1.7320508075688772}, "fast_forward.quantizer.Quantizer.dtype": {"tf": 1}, "fast_forward.quantizer.Quantizer.dims": {"tf": 1}, "fast_forward.quantizer.Quantizer.decode": {"tf": 1}, "fast_forward.quantizer.Quantizer.serialize": {"tf": 1.4142135623730951}, "fast_forward.quantizer.Quantizer.deserialize": {"tf": 2.23606797749979}, "fast_forward.quantizer.NanoPQ": {"tf": 1}, "fast_forward.quantizer.NanoPQ.__init__": {"tf": 1}, "fast_forward.quantizer.NanoOPQ": {"tf": 1}, "fast_forward.quantizer.NanoOPQ.__init__": {"tf": 1}, "fast_forward.util": {"tf": 2.23606797749979}, "fast_forward.util.Indexer.__init__": {"tf": 3}}, "df": 19, "s": {"docs": {"fast_forward.quantizer": {"tf": 1.7320508075688772}, "fast_forward.quantizer.Quantizer": {"tf": 1}, "fast_forward.quantizer.Quantizer.fit": {"tf": 1}}, "df": 3}}, "d": {"docs": {"fast_forward.util": {"tf": 1}, "fast_forward.util.Indexer.from_index": {"tf": 1}}, "df": 2}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"fast_forward": {"tf": 2.8284271247461903}, "fast_forward.Ranking.__init__": {"tf": 1}, "fast_forward.Ranking.q_ids": {"tf": 1.4142135623730951}, "fast_forward.Ranking.attach_queries": {"tf": 1}, "fast_forward.Ranking.cut": {"tf": 1.4142135623730951}, "fast_forward.Ranking.from_run": {"tf": 1}, "fast_forward.Ranking.from_file": {"tf": 1}, "fast_forward.encoder": {"tf": 1}, "fast_forward.encoder.TCTColBERTQueryEncoder": {"tf": 1}, "fast_forward.index": {"tf": 2.449489742783178}, "fast_forward.index.Index.__init__": {"tf": 1.4142135623730951}, "fast_forward.index.Index.encode_queries": {"tf": 1.4142135623730951}, "fast_forward.index.Index.query_encoder": {"tf": 1.4142135623730951}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1.7320508075688772}, "fast_forward.index.OnDiskIndex.load": {"tf": 1.7320508075688772}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1.7320508075688772}, "fast_forward.util.pyterrier.FFScore.transform": {"tf": 1}}, "df": 17}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward": {"tf": 2.23606797749979}, "fast_forward.Ranking": {"tf": 1}, "fast_forward.Ranking.__init__": {"tf": 1.7320508075688772}, "fast_forward.Ranking.has_queries": {"tf": 1.4142135623730951}, "fast_forward.Ranking.q_ids": {"tf": 1}, "fast_forward.Ranking.attach_queries": {"tf": 2.23606797749979}, "fast_forward.Ranking.from_run": {"tf": 1.4142135623730951}, "fast_forward.Ranking.from_file": {"tf": 1.4142135623730951}, "fast_forward.index": {"tf": 2.6457513110645907}, "fast_forward.index.Index.encode_queries": {"tf": 1.7320508075688772}}, "df": 10}}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward": {"tf": 7.483314773547883}, "fast_forward.encoder": {"tf": 1.4142135623730951}, "fast_forward.index": {"tf": 4}, "fast_forward.quantizer": {"tf": 1.4142135623730951}, "fast_forward.util": {"tf": 3.7416573867739413}, "fast_forward.util.pyterrier": {"tf": 2.449489742783178}}, "df": 6}}}, "n": {"docs": {"fast_forward": {"tf": 1.4142135623730951}}, "df": 1}}, "h": {"5": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.index": {"tf": 1}, "fast_forward.quantizer": {"tf": 1}, "fast_forward.util": {"tf": 1.4142135623730951}}, "df": 4, "p": {"docs": {}, "df": 0, "y": {"docs": {"fast_forward.index.OnDiskIndex": {"tf": 1.4142135623730951}}, "df": 1}}}, "docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.Ranking.__init__": {"tf": 1}, "fast_forward.Ranking.from_run": {"tf": 1}, "fast_forward.Ranking.from_file": {"tf": 1}, "fast_forward.encoder": {"tf": 1}, "fast_forward.index": {"tf": 1.4142135623730951}, "fast_forward.util.Indexer.__init__": {"tf": 1.4142135623730951}}, "df": 7}, "o": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.index.OnDiskIndex": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, ":": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "b": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.encoder.TCTColBERTQueryEncoder": {"tf": 1}, "fast_forward.encoder.TCTColBERTDocumentEncoder": {"tf": 1}}, "df": 3}}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward": {"tf": 1.4142135623730951}, "fast_forward.index.Index.add": {"tf": 1.4142135623730951}}, "df": 2}}, "s": {"docs": {"fast_forward.Ranking.has_queries": {"tf": 1}, "fast_forward.index": {"tf": 2}, "fast_forward.index.Index.add": {"tf": 1}, "fast_forward.quantizer.Quantizer.set_attached": {"tf": 1}, "fast_forward.quantizer.Quantizer.decode": {"tf": 1}, "fast_forward.util.Indexer.__init__": {"tf": 1}}, "df": 6}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.index": {"tf": 1.7320508075688772}, "fast_forward.quantizer.NanoPQ": {"tf": 1}, "fast_forward.quantizer.NanoOPQ": {"tf": 1}, "fast_forward.util": {"tf": 1}}, "df": 5}}, "l": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.index": {"tf": 1}, "fast_forward.index.InMemoryIndex": {"tf": 1}}, "df": 2}, "p": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}}}}}, "d": {"docs": {}, "df": 0, "f": {"5": {"docs": {"fast_forward.index.OnDiskIndex": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1.7320508075688772}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}}}, "w": {"docs": {"fast_forward.Ranking": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"fast_forward": {"tf": 1.4142135623730951}, "fast_forward.Ranking.__init__": {"tf": 1}, "fast_forward.Ranking.q_ids": {"tf": 1}, "fast_forward.Ranking.attach_queries": {"tf": 1}, "fast_forward.Ranking.normalize": {"tf": 1}, "fast_forward.Ranking.interpolate": {"tf": 1}, "fast_forward.Ranking.rr_scores": {"tf": 1}, "fast_forward.encoder": {"tf": 1}, "fast_forward.index": {"tf": 1.4142135623730951}, "fast_forward.quantizer": {"tf": 1}, "fast_forward.util": {"tf": 1}, "fast_forward.util.pyterrier.FFScore.transform": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.transform": {"tf": 1}}, "df": 13}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"fast_forward.util.Indexer.__init__": {"tf": 1}}, "df": 1}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.Ranking.__init__": {"tf": 1.4142135623730951}, "fast_forward.Ranking.has_queries": {"tf": 1.4142135623730951}}, "df": 2}}}}, "n": {"docs": {"fast_forward.Ranking.__init__": {"tf": 1}, "fast_forward.Ranking.attach_queries": {"tf": 1}, "fast_forward.index": {"tf": 1.4142135623730951}, "fast_forward.index.Index.encode_queries": {"tf": 1}, "fast_forward.index.Index.add": {"tf": 2}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1}, "fast_forward.quantizer.Quantizer.set_attached": {"tf": 1}, "fast_forward.quantizer.Quantizer.fit": {"tf": 1}, "fast_forward.quantizer.Quantizer.decode": {"tf": 1}, "fast_forward.util": {"tf": 1}, "fast_forward.util.Indexer.__init__": {"tf": 1.4142135623730951}, "fast_forward.util.create_coalesced_index": {"tf": 1}}, "df": 13}, "r": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"fast_forward.encoder": {"tf": 1}, "fast_forward.index": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "y": {"docs": {"fast_forward.encoder": {"tf": 1}, "fast_forward.index": {"tf": 1}}, "df": 2}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.encoder": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.index.OnDiskIndex": {"tf": 1}}, "df": 1}, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"fast_forward.quantizer": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"fast_forward.util.pyterrier": {"tf": 1}}, "df": 1}}}}}}, "g": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward": {"tf": 1.4142135623730951}}, "df": 1}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"fast_forward.index": {"tf": 1}, "fast_forward.util.pyterrier": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.util": {"tf": 1.4142135623730951}}, "df": 1, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_forward": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {"fast_forward.util.pyterrier": {"tf": 2}}, "df": 1}}, "n": {"docs": {"fast_forward": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {}, "df": 0, "w": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.encoder": {"tf": 1}}, "df": 2}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.index.Index.add": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward": {"tf": 1.4142135623730951}, "fast_forward.Ranking.__init__": {"tf": 1.4142135623730951}, "fast_forward.Ranking.from_run": {"tf": 1.4142135623730951}, "fast_forward.encoder.TransformerEncoder.__init__": {"tf": 1}}, "df": 4}}, "n": {"docs": {"fast_forward.Ranking.__init__": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "q": {"docs": {"fast_forward.quantizer": {"tf": 2.23606797749979}, "fast_forward.quantizer.NanoPQ": {"tf": 1}, "fast_forward.quantizer.NanoPQ.__init__": {"tf": 1}, "fast_forward.quantizer.NanoOPQ": {"tf": 1}, "fast_forward.quantizer.NanoOPQ.__init__": {"tf": 1}, "fast_forward.util": {"tf": 1.4142135623730951}}, "df": 6}}, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "q": {"docs": {"fast_forward.quantizer": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {"fast_forward.index.Index.encode_queries": {"tf": 1}, "fast_forward.index.Index.dim": {"tf": 1}}, "df": 2, "r": {"docs": {"fast_forward.index.Index.add": {"tf": 1}}, "df": 1, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"fast_forward.quantizer": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.Ranking.normalize": {"tf": 1}, "fast_forward.Ranking.interpolate": {"tf": 1}}, "df": 2, "d": {"docs": {"fast_forward.Ranking.normalize": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_forward.Ranking.interpolate": {"tf": 1}}, "df": 1}}}}}}}}}}}, "t": {"docs": {"fast_forward.index": {"tf": 1}, "fast_forward.index.Index.add": {"tf": 1.4142135623730951}, "fast_forward.quantizer.Quantizer.set_attached": {"tf": 1}, "fast_forward.quantizer.Quantizer.decode": {"tf": 1}, "fast_forward.util.Indexer.__init__": {"tf": 1}, "fast_forward.util.create_coalesced_index": {"tf": 1}}, "df": 6, "e": {"docs": {"fast_forward.encoder": {"tf": 1}, "fast_forward.index": {"tf": 1}}, "df": 2}}, "n": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.index.Index.dim": {"tf": 1}, "fast_forward.index.Index.add": {"tf": 1.4142135623730951}, "fast_forward.index.Index.batch_iter": {"tf": 1}, "fast_forward.quantizer.Quantizer.dims": {"tf": 1}}, "df": 4}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {"fast_forward.index.Index.add": {"tf": 1}}, "df": 1, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.Ranking.cut": {"tf": 1}, "fast_forward.index": {"tf": 1.7320508075688772}, "fast_forward.index.Index.add": {"tf": 1.4142135623730951}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 2}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1.4142135623730951}, "fast_forward.quantizer.NanoPQ.__init__": {"tf": 1.4142135623730951}, "fast_forward.quantizer.NanoOPQ.__init__": {"tf": 1.4142135623730951}}, "df": 8}}}, "p": {"docs": {}, "df": 0, "y": {"docs": {"fast_forward.index": {"tf": 1}, "fast_forward.quantizer": {"tf": 1}}, "df": 2}}}}, "p": {"docs": {"fast_forward.quantizer": {"tf": 1.7320508075688772}}, "df": 1}}, "k": {"docs": {"fast_forward.Ranking.cut": {"tf": 1.4142135623730951}, "fast_forward.Ranking.rr_scores": {"tf": 1.4142135623730951}}, "df": 2, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {"fast_forward.Ranking.cut": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"fast_forward.quantizer": {"tf": 1}, "fast_forward.quantizer.NanoPQ.__init__": {"tf": 1}, "fast_forward.quantizer.NanoOPQ.__init__": {"tf": 1}}, "df": 3}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.quantizer.Quantizer.fit": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "n": {"docs": {"fast_forward.util": {"tf": 1}}, "df": 1}}}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"fast_forward.Ranking.interpolate": {"tf": 1}}, "df": 1}}}}, "y": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.index.Index.batch_iter": {"tf": 1}, "fast_forward.util": {"tf": 1}}, "df": 2, "s": {"docs": {"fast_forward.util": {"tf": 1}}, "df": 1}}}}}}}}}, "pipeline": ["trimmer"], "_isPrebuiltIndex": true}; + /** pdoc search index */const docs = {"version": "0.9.5", "fields": ["qualname", "fullname", "annotation", "default_value", "signature", "bases", "doc"], "ref": "fullname", "documentStore": {"docs": {"fast_forward": {"fullname": "fast_forward", "modulename": "fast_forward", "kind": "module", "doc": "

This is the implementation of Fast-Forward indexes.

\n\n

Important: As this library is still in its early stages, the API is subject to change!

\n\n

Features

\n\n
    \n
  • Efficient look-up-based computation of semantic ranking scores
  • \n
  • Interpolation of lexical (retrieval) and semantic (re-ranking) scores
  • \n
  • Passage- and document-level ranking, including MaxP, FirstP, and AverageP
  • \n
  • Early stopping for limiting index look-ups
  • \n
  • Index compression via quantization and sequential coalescing
  • \n
\n\n

How to...

\n\n\n\n

Installation

\n\n

Install the package via pip:

\n\n
\n
pip install fast-forward-indexes\n
\n
\n\n

Alternatively, the package can be installed from source:

\n\n
\n
git clone https://github.com/mrjleo/fast-forward-indexes.git\ncd fast-forward-indexes\npython -m pip install .\n
\n
\n\n

After installing the package, simply import the library:

\n\n
\n
import fast_forward\n
\n
\n\n

Getting started

\n\n

Using a Fast-Forward index is as simple as providing a TREC run with sparse scores:

\n\n
\n
from pathlib import Path\n\nfrom fast_forward import Ranking\nfrom fast_forward.index import OnDiskIndex, Mode\nfrom fast_forward.encoder import TCTColBERTQueryEncoder\n\n# choose a pre-trained query encoder\nencoder = TCTColBERTQueryEncoder("castorini/tct_colbert-msmarco")\n\n# load an index on disk\nff_index = OnDiskIndex.load(Path("/path/to/index.h5"), encoder, mode=Mode.MAXP)\n\n# load a run (TREC format) and attach all required queries\nfirst_stage_ranking = (\n    Ranking.from_file(Path("/path/to/input/run.tsv"))\n    .attach_queries(\n        {\n            "q1": "query 1",\n            "q2": "query 2",\n            # ...\n            "qn": "query n",\n        }\n    )\n    .cut(5000)\n)\n\n# compute the corresponding semantic scores\nout = ff_index(first_stage_ranking)\n\n# interpolate scores and create a new TREC runfile\nfirst_stage_ranking.interpolate(out, 0.1).save(Path("/path/to/output/run.tsv"))\n
\n
\n\n

Rankings

\n\n

Rankings (or runs) are represented using the Ranking class. Each ranking contains query IDs, document/passage IDs, and corresponding scores. Rankings may be instantiated from TREC runfiles using Ranking.from_file:

\n\n
\n
r = Ranking.from_file(Path("/path/to/TREC/run.tsv"))\n
\n
\n\n

Alternatively, rankings can be created from nested dictionaries using Ranking.from_run:

\n\n
\n
run = {\n    "q1": {"d0": 1, "d1": 2, "d2": 3},\n    "q2": {"d0": 4, "d1": 5, "d2": 6},\n}\nr = Ranking.from_run(run)\n
\n
\n\n

Optionally, rankings can have queries attached using Ranking.attach_queries:

\n\n
\n
r = r.attach_queries(\n    {\n        "q1": "query 1",\n        "q2": "query 2",\n        # ...\n        "qn": "query n",\n    }\n)\n
\n
\n\n

Rankings implement addition and multiplication operators, for example:

\n\n
\n
ranking_3 = 0.1 * ranking_1 + ranking_2\n
\n
\n\n

Ranking.interpolate allows to interpolate the scores of two rankings (i.e., retrieval and re-ranking):

\n\n
\n
first_stage_ranking = Ranking.from_file(Path("/path/to/TREC/run.tsv"))\nsemantic_scores = my_index(first_stage_ranking)\ninterpolated_ranking = first_stage_ranking.interpolate(semantic_scores, 0.1)\n# equivalent to (but slightly more efficient than):\ninterpolated_ranking = first_stage_ranking * 0.1 + semantic_scores * 0.9\n
\n
\n\n

Additionally, Ranking.rr_scores recomputes a ranking's scores based on the reciprocal rank. This allows, for example, to perform reciprocal rank fusion (RRF) as follows:

\n\n
\n
rrf_ranking = first_stage_ranking.rr_scores() + semantic_scores.rr_scores()\n
\n
\n\n

Further information about rank fusion can be found here.

\n\n

Finally, a ranking can have a name set and be saved as a TREC runfile:

\n\n
\n
interpolated_ranking.name = "Fast-Forward, alpha=0.1"\ninterpolated_ranking.save(Path("/path/to/output/run.tsv"))\n
\n
\n"}, "fast_forward.Ranking": {"fullname": "fast_forward.Ranking", "modulename": "fast_forward", "qualname": "Ranking", "kind": "class", "doc": "

Represents rankings of documents/passages w.r.t. queries.

\n"}, "fast_forward.Ranking.__init__": {"fullname": "fast_forward.Ranking.__init__", "modulename": "fast_forward", "qualname": "Ranking.__init__", "kind": "function", "doc": "

Create a ranking from an existing data frame. Removes rows with NaN scores.

\n\n
Parameters
\n\n
    \n
  • df: Data frame containing IDs and scores.
  • \n
  • name: Method name.
  • \n
  • queries: Query IDs mapped to queries.
  • \n
  • dtype: How the scores should be represented in the data frame.
  • \n
  • copy: Whether to copy the data frame.
  • \n
  • is_sorted: Whether the data frame is already sorted (by score).
  • \n
\n\n
Raises
\n\n
    \n
  • ValueError: When the queries are incomplete.
  • \n
\n", "signature": "(\tdf: pandas.core.frame.DataFrame,\tname: str | None = None,\tqueries: Mapping[str, str] | None = None,\tdtype: numpy.dtype = dtype('float32'),\tcopy: bool = True,\tis_sorted: bool = False)"}, "fast_forward.Ranking.name": {"fullname": "fast_forward.Ranking.name", "modulename": "fast_forward", "qualname": "Ranking.name", "kind": "variable", "doc": "

\n"}, "fast_forward.Ranking.has_queries": {"fullname": "fast_forward.Ranking.has_queries", "modulename": "fast_forward", "qualname": "Ranking.has_queries", "kind": "variable", "doc": "

Whether the ranking has queries attached.

\n\n
Returns
\n\n
\n

Whether queries exist.

\n
\n", "annotation": ": bool"}, "fast_forward.Ranking.q_ids": {"fullname": "fast_forward.Ranking.q_ids", "modulename": "fast_forward", "qualname": "Ranking.q_ids", "kind": "variable", "doc": "

The set of (unique) query IDs in this ranking.

\n\n

Only queries with at least one scored document are considered.

\n\n
Returns
\n\n
\n

The query IDs.

\n
\n", "annotation": ": set[str]"}, "fast_forward.Ranking.attach_queries": {"fullname": "fast_forward.Ranking.attach_queries", "modulename": "fast_forward", "qualname": "Ranking.attach_queries", "kind": "function", "doc": "

Attach queries to the ranking.

\n\n
Parameters
\n\n
    \n
  • queries: Query IDs mapped to queries.
  • \n
\n\n
Raises
\n\n
    \n
  • ValueError: When the queries are incomplete.
  • \n
\n\n
Returns
\n\n
\n

The ranking with queries attached.

\n
\n", "signature": "(self, queries: Mapping[str, str]) -> fast_forward.ranking.Ranking:", "funcdef": "def"}, "fast_forward.Ranking.normalize": {"fullname": "fast_forward.Ranking.normalize", "modulename": "fast_forward", "qualname": "Ranking.normalize", "kind": "function", "doc": "

Normalize the scores (min-max) to be in [0, 1].

\n\n

If all scores are equal, they are set to 0.

\n\n
Returns
\n\n
\n

A ranking with normalized scores.

\n
\n", "signature": "(self) -> fast_forward.ranking.Ranking:", "funcdef": "def"}, "fast_forward.Ranking.cut": {"fullname": "fast_forward.Ranking.cut", "modulename": "fast_forward", "qualname": "Ranking.cut", "kind": "function", "doc": "

For each query, remove all but the top-k scoring documents/passages.

\n\n
Parameters
\n\n
    \n
  • cutoff: Number of best scores per query to keep (k).
  • \n
\n\n
Returns
\n\n
\n

The resulting ranking.

\n
\n", "signature": "(self, cutoff: int) -> fast_forward.ranking.Ranking:", "funcdef": "def"}, "fast_forward.Ranking.interpolate": {"fullname": "fast_forward.Ranking.interpolate", "modulename": "fast_forward", "qualname": "Ranking.interpolate", "kind": "function", "doc": "

Interpolate as score = self.score * alpha + other.score * (1 - alpha).

\n\n

Missing scores in either ranking are treated as zero.

\n\n
Parameters
\n\n
    \n
  • other: Ranking to interpolate with.
  • \n
  • alpha: Interpolation parameter.
  • \n
  • normalize: Perform min-max normalization.
  • \n
\n\n
Returns
\n\n
\n

The resulting ranking.

\n
\n", "signature": "(\tself,\tother: fast_forward.ranking.Ranking,\talpha: float,\tnormalize: bool = False) -> fast_forward.ranking.Ranking:", "funcdef": "def"}, "fast_forward.Ranking.rr_scores": {"fullname": "fast_forward.Ranking.rr_scores", "modulename": "fast_forward", "qualname": "Ranking.rr_scores", "kind": "function", "doc": "

Re-score documents/passages using reciprocal rank.

\n\n

A score is computed as 1 / (rank + k).

\n\n

Used by RRF.

\n\n
Parameters
\n\n
    \n
  • k: RR scoring parameter.
  • \n
\n\n
Returns
\n\n
\n

A ranking with RR scores.

\n
\n", "signature": "(self, k: int = 60) -> fast_forward.ranking.Ranking:", "funcdef": "def"}, "fast_forward.Ranking.save": {"fullname": "fast_forward.Ranking.save", "modulename": "fast_forward", "qualname": "Ranking.save", "kind": "function", "doc": "

Save the ranking in a TREC runfile.

\n\n
Parameters
\n\n
    \n
  • target: Output file.
  • \n
\n", "signature": "(self, target: pathlib.Path) -> None:", "funcdef": "def"}, "fast_forward.Ranking.from_run": {"fullname": "fast_forward.Ranking.from_run", "modulename": "fast_forward", "qualname": "Ranking.from_run", "kind": "function", "doc": "

Create a Ranking object from a TREC run.

\n\n
Parameters
\n\n
    \n
  • run: TREC run.
  • \n
  • name: Method name.
  • \n
  • queries: Query IDs mapped to queries.
  • \n
  • dtype: How the score should be represented in the data frame.
  • \n
\n\n
Returns
\n\n
\n

The resulting ranking.

\n
\n", "signature": "(\tcls,\trun: Mapping[str, Mapping[str, float]],\tname: str | None = None,\tqueries: Mapping[str, str] | None = None,\tdtype: numpy.dtype = dtype('float32')) -> fast_forward.ranking.Ranking:", "funcdef": "def"}, "fast_forward.Ranking.from_file": {"fullname": "fast_forward.Ranking.from_file", "modulename": "fast_forward", "qualname": "Ranking.from_file", "kind": "function", "doc": "

Create a Ranking object from a runfile in TREC format.

\n\n
Parameters
\n\n
    \n
  • f: TREC runfile to read.
  • \n
  • queries: Query IDs mapped to queries.
  • \n
  • dtype: How the score should be represented in the data frame.
  • \n
\n\n
Returns
\n\n
\n

The resulting ranking.

\n
\n", "signature": "(\tcls,\tf: pathlib.Path,\tqueries: Mapping[str, str] | None = None,\tdtype: numpy.dtype = dtype('float32')) -> fast_forward.ranking.Ranking:", "funcdef": "def"}, "fast_forward.encoder": {"fullname": "fast_forward.encoder", "modulename": "fast_forward.encoder", "kind": "module", "doc": "

Custom encoders

\n\n

Custom encoders can easily be implemented. The preferred way to do this is by subclassing fast_forward.encoder.base.Encoder and overriding the _encode method. This allows the new encoder to make use of batch encoding.

\n\n

Alternatively, one can use the LambdaEncoder class, which wraps a function that encodes a single piece of text. The following example shows how to do this with a Pyserini query encoder:

\n\n
\n
pyserini_encoder = pyserini.encode.AnceQueryEncoder("castorini/ance-msmarco-passage")\nance_encoder = LambdaEncoder(pyserini_encoder.encode)\n
\n
\n\n

Note that this method is usually less efficient, as the texts are encoded one by one rather than in batches.

\n"}, "fast_forward.encoder.Encoder": {"fullname": "fast_forward.encoder.Encoder", "modulename": "fast_forward.encoder", "qualname": "Encoder", "kind": "class", "doc": "

Base class for encoders.

\n", "bases": "abc.ABC"}, "fast_forward.encoder.LambdaEncoder": {"fullname": "fast_forward.encoder.LambdaEncoder", "modulename": "fast_forward.encoder", "qualname": "LambdaEncoder", "kind": "class", "doc": "

Encoder adapter class for arbitrary encoding functions.

\n", "bases": "fast_forward.encoder.base.Encoder"}, "fast_forward.encoder.LambdaEncoder.__init__": {"fullname": "fast_forward.encoder.LambdaEncoder.__init__", "modulename": "fast_forward.encoder", "qualname": "LambdaEncoder.__init__", "kind": "function", "doc": "

Create a lambda encoder.

\n\n
Parameters
\n\n
    \n
  • f: Function to encode a single piece of text.
  • \n
\n", "signature": "(f: Callable[[str], numpy.ndarray])"}, "fast_forward.encoder.TransformerEncoder": {"fullname": "fast_forward.encoder.TransformerEncoder", "modulename": "fast_forward.encoder", "qualname": "TransformerEncoder", "kind": "class", "doc": "

Uses a pre-trained transformer model for encoding. Returns the pooler output.

\n", "bases": "fast_forward.encoder.base.Encoder"}, "fast_forward.encoder.TransformerEncoder.__init__": {"fullname": "fast_forward.encoder.TransformerEncoder.__init__", "modulename": "fast_forward.encoder", "qualname": "TransformerEncoder.__init__", "kind": "function", "doc": "

Create a transformer encoder.

\n\n
Parameters
\n\n
    \n
  • model: Pre-trained transformer model (name or path).
  • \n
  • device: PyTorch device.
  • \n
  • **tokenizer_args: Additional tokenizer arguments.
  • \n
\n", "signature": "(\tmodel: str | pathlib.Path,\tdevice: str = 'cpu',\t**tokenizer_args: Any)"}, "fast_forward.encoder.TCTColBERTQueryEncoder": {"fullname": "fast_forward.encoder.TCTColBERTQueryEncoder", "modulename": "fast_forward.encoder", "qualname": "TCTColBERTQueryEncoder", "kind": "class", "doc": "

Query encoder for pre-trained TCT-ColBERT models.

\n\n

Adapted from Pyserini:\nhttps://github.com/castorini/pyserini/blob/310c828211bb3b9528cfd59695184c80825684a2/pyserini/encode/_tct_colbert.py#L72

\n", "bases": "fast_forward.encoder.transformer.TransformerEncoder"}, "fast_forward.encoder.TCTColBERTDocumentEncoder": {"fullname": "fast_forward.encoder.TCTColBERTDocumentEncoder", "modulename": "fast_forward.encoder", "qualname": "TCTColBERTDocumentEncoder", "kind": "class", "doc": "

Document encoder for pre-trained TCT-ColBERT models.

\n\n

Adapted from Pyserini:\nhttps://github.com/castorini/pyserini/blob/310c828211bb3b9528cfd59695184c80825684a2/pyserini/encode/_tct_colbert.py#L27

\n", "bases": "fast_forward.encoder.transformer.TransformerEncoder"}, "fast_forward.index": {"fullname": "fast_forward.index", "modulename": "fast_forward.index", "kind": "module", "doc": "

Indexes

\n\n

Indexes are the core of the Fast-Forward library. In the following, you'll find some snippets how to create and use indexes.

\n\n

Index types

\n\n

Currently, two types of indexes are available:

\n\n
    \n
  • InMemoryIndex: Everything is held in memory entirely.
  • \n
  • OnDiskIndex: Vectors are stored on disk and accessed on demand.
  • \n
\n\n

OnDiskIndexes can be loaded into memory using OnDiskIndex.to_memory.

\n\n

Creating an index

\n\n

The following snippet illustrates how to create an OnDiskIndex object (given a fast_forward.encoder.Encoder, my_query_encoder) and add some vector representations to it:

\n\n
\n
my_index = OnDiskIndex(Path("my_index.h5"), my_query_encoder)\nmy_index.add(\n    my_vectors,  # shape (3, 768)\n    doc_ids=["d1", "d1", "d2"],\n    psg_ids=["d1_p1", "d1_p2", "d2_p1"]\n)\n
\n
\n\n

Here, my_vectors is a Numpy array of shape (3, 768), 768 being the dimensionality of the vector representations. The first two vectors correspond to two passages of the document d1, the third vector corresponds to d2, which has only a single passage. It is also possible to provide either only document IDs or only passage IDs.

\n\n

The index can then be subsequently loaded back using OnDiskIndex.load.

\n\n

Using an index

\n\n

An index can be used to compute semantic re-ranking scores by calling them directly. It requires a fast_forward.Ranking (typically, this comes from a sparse retriever) with the corresponding queries:

\n\n
\n
ranking = Ranking.from_file(Path("/path/to/sparse/run.tsv"), queries)\nresult = my_index(ranking)\n
\n
\n\n

Here, queries is a simple dictionary mapping query IDs to actual queries to be encoded. The resulting ranking, result, has the semantic scores for the query-document (or query-passage) pairs. Afterwards, retrieval and re-ranking scores may be combined (see Rankings).

\n\n

If the input ranking has a large number of queries, one can use the batch_size parameter. The following example processes the ranking in batches of 16 queries each:

\n\n
\n
result = my_index(ranking, batch_size=16)\n
\n
\n\n

Ranking mode

\n\n

Each index has a ranking Mode. The active mode determines the way scores are computed. For example, consider the example index from earlier. Setting the mode to Mode.PASSAGE instructs the index to compute scores on the passage level (and expect passage IDs in the input ranking):

\n\n
\n
my_index.mode = Mode.PASSAGE\n
\n
\n\n

Similarly, the index can return document IDs, where the score of a document computes as

\n\n
    \n
  • the highest score of its passages (Mode.MAXP),
  • \n
  • the score of the its first passage (Mode.FIRSTP) or
  • \n
  • the average score of all its passages (Mode.AVEP).
  • \n
\n\n

Early stopping

\n\n

Early stopping is a technique to limit the number of index look-ups. This can be beneficial for OnDiskIndexes, especially when the disk is slow. For early stopping, a relatively small cut-off depth (e.g., 10) is required, and it is mostly helpful when a large number of candidates are to be re-ranked. More information can be found in the paper. Note that the implementation here differs slightly from the algorithm in the paper, as the early stopping criterion is only computed at depths that are specified via the early_stopping_depths parameter for performance reasons.

\n\n

The following snippet demonstrates early stopping with

\n\n
    \n
  • a cut-off depth of 5,
  • \n
  • interpolation parameter 0.2,
  • \n
  • depths 400 and 5000.
  • \n
\n\n
\n
result = my_index(\n    ranking,\n    early_stopping=5,\n    early_stopping_alpha=0.2,\n    early_stopping_depths=(400, 5000),\n)\n
\n
\n\n

Specifically, in the first step, the top-400 documents/passages for each query are scored. Afterwards, the top-5000 documents/passages are scored only for those queries that do not meet the early stopping criterion yet.

\n"}, "fast_forward.index.Index": {"fullname": "fast_forward.index.Index", "modulename": "fast_forward.index", "qualname": "Index", "kind": "class", "doc": "

Abstract base class for Fast-Forward indexes.

\n", "bases": "abc.ABC"}, "fast_forward.index.Index.__init__": {"fullname": "fast_forward.index.Index.__init__", "modulename": "fast_forward.index", "qualname": "Index.__init__", "kind": "function", "doc": "

Create an index.

\n\n
Parameters
\n\n
    \n
  • query_encoder: The query encoder to use.
  • \n
  • quantizer: The quantizer to use.
  • \n
  • mode: The ranking mode.
  • \n
  • encoder_batch_size: The encoder batch size.
  • \n
\n", "signature": "(\tquery_encoder: fast_forward.encoder.base.Encoder | None = None,\tquantizer: fast_forward.quantizer.base.Quantizer | None = None,\tmode: fast_forward.index.base.Mode = <Mode.MAXP: 2>,\tencoder_batch_size: int = 32)"}, "fast_forward.index.Index.mode": {"fullname": "fast_forward.index.Index.mode", "modulename": "fast_forward.index", "qualname": "Index.mode", "kind": "variable", "doc": "

Return the ranking mode.

\n\n
Returns
\n\n
\n

The ranking mode.

\n
\n", "annotation": ": fast_forward.index.base.Mode"}, "fast_forward.index.Index.encode_queries": {"fullname": "fast_forward.index.Index.encode_queries", "modulename": "fast_forward.index", "qualname": "Index.encode_queries", "kind": "function", "doc": "

Encode queries.

\n\n
Parameters
\n\n
    \n
  • queries: The queries to encode.
  • \n
\n\n
Raises
\n\n
    \n
  • RuntimeError: When no query encoder exists.
  • \n
\n\n
Returns
\n\n
\n

The query representations.

\n
\n", "signature": "(self, queries: Sequence[str]) -> numpy.ndarray:", "funcdef": "def"}, "fast_forward.index.Index.query_encoder": {"fullname": "fast_forward.index.Index.query_encoder", "modulename": "fast_forward.index", "qualname": "Index.query_encoder", "kind": "variable", "doc": "

Return the query encoder if it exists.

\n\n
Returns
\n\n
\n

The query encoder (if any).

\n
\n", "annotation": ": fast_forward.encoder.base.Encoder | None"}, "fast_forward.index.Index.quantizer": {"fullname": "fast_forward.index.Index.quantizer", "modulename": "fast_forward.index", "qualname": "Index.quantizer", "kind": "variable", "doc": "

Return the quantizer if it exists.

\n\n
Returns
\n\n
\n

The quantizer (if any).

\n
\n", "annotation": ": fast_forward.quantizer.base.Quantizer | None"}, "fast_forward.index.Index.dim": {"fullname": "fast_forward.index.Index.dim", "modulename": "fast_forward.index", "qualname": "Index.dim", "kind": "variable", "doc": "

Return the dimensionality of the vector index.

\n\n

If no vectors exist, return None.\nIf a quantizer is used, return the dimension of the codes.

\n\n
Returns
\n\n
\n

The dimensionality (if any).

\n
\n", "annotation": ": int | None"}, "fast_forward.index.Index.doc_ids": {"fullname": "fast_forward.index.Index.doc_ids", "modulename": "fast_forward.index", "qualname": "Index.doc_ids", "kind": "variable", "doc": "

Return all unique document IDs.

\n\n
Returns
\n\n
\n

The document IDs.

\n
\n", "annotation": ": set[str]"}, "fast_forward.index.Index.psg_ids": {"fullname": "fast_forward.index.Index.psg_ids", "modulename": "fast_forward.index", "qualname": "Index.psg_ids", "kind": "variable", "doc": "

Return all unique passage IDs.

\n\n
Returns
\n\n
\n

The passage IDs.

\n
\n", "annotation": ": set[str]"}, "fast_forward.index.Index.add": {"fullname": "fast_forward.index.Index.add", "modulename": "fast_forward.index", "qualname": "Index.add", "kind": "function", "doc": "

Add vector representations and corresponding IDs to the index.

\n\n

Only one of doc_ids and psg_ids may be None.\nIndividual IDs in the sequence may also be None, but each vector must have at\nleast one associated ID.\nDocument IDs may have duplicates, passage IDs must be unique.

\n\n
Parameters
\n\n
    \n
  • vectors: The representations, shape (num_vectors, dim).
  • \n
  • doc_ids: The corresponding document IDs (may be duplicate).
  • \n
  • psg_ids: The corresponding passage IDs (must be unique).
  • \n
\n\n
Raises
\n\n
    \n
  • ValueError: When the number of IDs does not match the number of vectors.
  • \n
  • ValueError: \nWhen the input vector and index dimensionalities do not match.
  • \n
  • ValueError: When a vector has neither a document nor a passage ID.
  • \n
  • RuntimeError: When items can't be added to the index for any reason.
  • \n
\n", "signature": "(\tself,\tvectors: numpy.ndarray,\tdoc_ids: Sequence[str | None] | None = None,\tpsg_ids: Sequence[str | None] | None = None) -> None:", "funcdef": "def"}, "fast_forward.index.Index.batch_iter": {"fullname": "fast_forward.index.Index.batch_iter", "modulename": "fast_forward.index", "qualname": "Index.batch_iter", "kind": "function", "doc": "

Iterate over all vectors, document IDs, and passage IDs in batches.

\n\n

IDs may be either strings or None.

\n\n
Parameters
\n\n
    \n
  • batch_size: Batch size.\n:yield: Batches of vectors, document IDs (if any), passage IDs (if any).
  • \n
\n", "signature": "(\tself,\tbatch_size: int) -> Iterator[tuple[numpy.ndarray, Sequence[str | None], Sequence[str | None]]]:", "funcdef": "def"}, "fast_forward.index.Mode": {"fullname": "fast_forward.index.Mode", "modulename": "fast_forward.index", "qualname": "Mode", "kind": "class", "doc": "

Enum used to set the ranking mode of an index.

\n", "bases": "enum.Enum"}, "fast_forward.index.Mode.PASSAGE": {"fullname": "fast_forward.index.Mode.PASSAGE", "modulename": "fast_forward.index", "qualname": "Mode.PASSAGE", "kind": "variable", "doc": "

\n", "default_value": "<Mode.PASSAGE: 1>"}, "fast_forward.index.Mode.MAXP": {"fullname": "fast_forward.index.Mode.MAXP", "modulename": "fast_forward.index", "qualname": "Mode.MAXP", "kind": "variable", "doc": "

\n", "default_value": "<Mode.MAXP: 2>"}, "fast_forward.index.Mode.FIRSTP": {"fullname": "fast_forward.index.Mode.FIRSTP", "modulename": "fast_forward.index", "qualname": "Mode.FIRSTP", "kind": "variable", "doc": "

\n", "default_value": "<Mode.FIRSTP: 3>"}, "fast_forward.index.Mode.AVEP": {"fullname": "fast_forward.index.Mode.AVEP", "modulename": "fast_forward.index", "qualname": "Mode.AVEP", "kind": "variable", "doc": "

\n", "default_value": "<Mode.AVEP: 4>"}, "fast_forward.index.OnDiskIndex": {"fullname": "fast_forward.index.OnDiskIndex", "modulename": "fast_forward.index", "qualname": "OnDiskIndex", "kind": "class", "doc": "

Fast-Forward index that is read on-demand from disk.

\n\n

Uses HDF5 via h5py under the hood. The max_indexing_size argument works around a\nh5py limitation.

\n", "bases": "fast_forward.index.base.Index"}, "fast_forward.index.OnDiskIndex.__init__": {"fullname": "fast_forward.index.OnDiskIndex.__init__", "modulename": "fast_forward.index", "qualname": "OnDiskIndex.__init__", "kind": "function", "doc": "

Create an index on disk.

\n\n
Parameters
\n\n
    \n
  • index_file: The index file to create (or overwrite).
  • \n
  • query_encoder: The query encoder.
  • \n
  • quantizer: The quantizer to use.
  • \n
  • mode: The ranking mode.
  • \n
  • encoder_batch_size: Batch size for the query encoder.
  • \n
  • init_size: Initial size to allocate (number of vectors).
  • \n
  • resize_min_val: Minimum number of vectors to increase index size by.
  • \n
  • hdf5_chunk_size: Override chunk size used by HDF5.
  • \n
  • max_id_length: \nMaximum length of document and passage IDs (number of characters).
  • \n
  • overwrite: Overwrite index file if it exists.
  • \n
  • max_indexing_size: \nMaximum number of vectors to retrieve from the HDF5 dataset at once.
  • \n
\n\n
Raises
\n\n
    \n
  • ValueError: When the file exists and overwrite=False.
  • \n
\n", "signature": "(\tindex_file: pathlib.Path,\tquery_encoder: fast_forward.encoder.base.Encoder | None = None,\tquantizer: fast_forward.quantizer.base.Quantizer | None = None,\tmode: fast_forward.index.base.Mode = <Mode.MAXP: 2>,\tencoder_batch_size: int = 32,\tinit_size: int = 16384,\tresize_min_val: int = 1024,\thdf5_chunk_size: int | None = None,\tmax_id_length: int = 8,\toverwrite: bool = False,\tmax_indexing_size: int = 1024)"}, "fast_forward.index.OnDiskIndex.to_memory": {"fullname": "fast_forward.index.OnDiskIndex.to_memory", "modulename": "fast_forward.index", "qualname": "OnDiskIndex.to_memory", "kind": "function", "doc": "

Load the index entirely into memory.

\n\n
Parameters
\n\n
    \n
  • batch_size: Use batches instead of adding all vectors at once.
  • \n
\n\n
Returns
\n\n
\n

The loaded index.

\n
\n", "signature": "(\tself,\tbatch_size: int | None = None) -> fast_forward.index.memory.InMemoryIndex:", "funcdef": "def"}, "fast_forward.index.OnDiskIndex.load": {"fullname": "fast_forward.index.OnDiskIndex.load", "modulename": "fast_forward.index", "qualname": "OnDiskIndex.load", "kind": "function", "doc": "

Open an existing index on disk.

\n\n
Parameters
\n\n
    \n
  • index_file: The index file to open.
  • \n
  • query_encoder: The query encoder.
  • \n
  • mode: The ranking mode.
  • \n
  • encoder_batch_size: Batch size for the query encoder.
  • \n
  • resize_min_val: Minimum value to increase index size by.
  • \n
  • max_indexing_size: \nMaximum number of vectors to retrieve from the HDF5 dataset at once.
  • \n
\n\n
Returns
\n\n
\n

The index.

\n
\n", "signature": "(\tcls,\tindex_file: pathlib.Path,\tquery_encoder: fast_forward.encoder.base.Encoder | None = None,\tmode: fast_forward.index.base.Mode = <Mode.MAXP: 2>,\tencoder_batch_size: int = 32,\tresize_min_val: int = 1024,\tmax_indexing_size: int = 1024) -> fast_forward.index.disk.OnDiskIndex:", "funcdef": "def"}, "fast_forward.index.InMemoryIndex": {"fullname": "fast_forward.index.InMemoryIndex", "modulename": "fast_forward.index", "qualname": "InMemoryIndex", "kind": "class", "doc": "

Fast-Forward index that is held entirely in memory.

\n", "bases": "fast_forward.index.base.Index"}, "fast_forward.index.InMemoryIndex.__init__": {"fullname": "fast_forward.index.InMemoryIndex.__init__", "modulename": "fast_forward.index", "qualname": "InMemoryIndex.__init__", "kind": "function", "doc": "

Create an index in memory.

\n\n
Parameters
\n\n
    \n
  • query_encoder: The query encoder to use.
  • \n
  • quantizer: The quantizer to use.
  • \n
  • mode: The ranking mode.
  • \n
  • encoder_batch_size: Batch size for the query encoder.
  • \n
  • init_size: Initial index size (number of vectors).
  • \n
  • alloc_size: Shard size (number of vectors) allocated when index is full.
  • \n
\n", "signature": "(\tquery_encoder: fast_forward.encoder.base.Encoder | None = None,\tquantizer: fast_forward.quantizer.base.Quantizer | None = None,\tmode: fast_forward.index.base.Mode = <Mode.MAXP: 2>,\tencoder_batch_size: int = 32,\tinit_size: int = 16384,\talloc_size: int = 16384)"}, "fast_forward.index.InMemoryIndex.consolidate": {"fullname": "fast_forward.index.InMemoryIndex.consolidate", "modulename": "fast_forward.index", "qualname": "InMemoryIndex.consolidate", "kind": "function", "doc": "

Combine all shards of the index in one contiguous section in the memory.

\n", "signature": "(self) -> None:", "funcdef": "def"}, "fast_forward.quantizer": {"fullname": "fast_forward.quantizer", "modulename": "fast_forward.quantizer", "kind": "module", "doc": "

Quantization

\n\n

Fast-Forward indexes support (product) quantization as a means of compressing an index. The Quantizer class defines the interface for quantizers to implement. Currently, the following quantizers are available:

\n\n\n\n

Quantizers must be trained before they are used with the corresponding Fast-Forward index. The typical workflow is as follows:

\n\n
\n
from pathlib import Path\n\nimport numpy as np\n\nfrom fast_forward.index import OnDiskIndex\nfrom fast_forward.quantizer import NanoPQ\n\n# in practice, a subset of the encoded corpus should be used as training vectors\ntraining_vectors = np.random.normal(size=(2**10, 768)).astype(np.float32)\n\nquantizer = NanoPQ(M=8, Ks=256)\nquantizer.fit(training_vectors)\n\nindex = OnDiskIndex(Path("my_index.h5"), quantizer=quantizer)\n
\n
\n"}, "fast_forward.quantizer.Quantizer": {"fullname": "fast_forward.quantizer.Quantizer", "modulename": "fast_forward.quantizer", "qualname": "Quantizer", "kind": "class", "doc": "

Base class for quantizers.

\n", "bases": "abc.ABC"}, "fast_forward.quantizer.Quantizer.set_attached": {"fullname": "fast_forward.quantizer.Quantizer.set_attached", "modulename": "fast_forward.quantizer", "qualname": "Quantizer.set_attached", "kind": "function", "doc": "

Set the quantizer as attached, preventing calls to Quantizer.fit.

\n\n
Raises
\n\n
    \n
  • RuntimeError: When the quantizer has not been fit.
  • \n
\n", "signature": "(self) -> None:", "funcdef": "def"}, "fast_forward.quantizer.Quantizer.fit": {"fullname": "fast_forward.quantizer.Quantizer.fit", "modulename": "fast_forward.quantizer", "qualname": "Quantizer.fit", "kind": "function", "doc": "

Fit (train) the quantizer.

\n\n

Quantizers can only be trained before being attached to an index in order to\navoid inconsistencies.

\n\n
Parameters
\n\n
    \n
  • vectors: The training vectors.
  • \n
  • **kwargs: Arguments specific to the quantizer.
  • \n
\n\n
Raises
\n\n
    \n
  • RuntimeError: When the quantizer is aready attached to an index.
  • \n
\n", "signature": "(self, vectors: numpy.ndarray, **kwargs: Any) -> None:", "funcdef": "def"}, "fast_forward.quantizer.Quantizer.dtype": {"fullname": "fast_forward.quantizer.Quantizer.dtype", "modulename": "fast_forward.quantizer", "qualname": "Quantizer.dtype", "kind": "variable", "doc": "

The data type of the codes produced by this quantizer.

\n\n
Returns
\n\n
\n

The data type of the codes.

\n
\n", "annotation": ": numpy.dtype"}, "fast_forward.quantizer.Quantizer.dims": {"fullname": "fast_forward.quantizer.Quantizer.dims", "modulename": "fast_forward.quantizer", "qualname": "Quantizer.dims", "kind": "variable", "doc": "

The dimensions before and after quantization.

\n\n

May return None values before the quantizer is trained.

\n\n
Returns
\n\n
\n

Dimension of the original vectors and dimension of the codes.

\n
\n", "annotation": ": tuple[int | None, int | None]"}, "fast_forward.quantizer.Quantizer.encode": {"fullname": "fast_forward.quantizer.Quantizer.encode", "modulename": "fast_forward.quantizer", "qualname": "Quantizer.encode", "kind": "function", "doc": "

Encode a batch of vectors.

\n\n
Parameters
\n\n
    \n
  • vectors: The vectors to be encoded.
  • \n
\n\n
Returns
\n\n
\n

The codes corresponding to the vectors.

\n
\n", "signature": "(self, vectors: numpy.ndarray) -> numpy.ndarray:", "funcdef": "def"}, "fast_forward.quantizer.Quantizer.decode": {"fullname": "fast_forward.quantizer.Quantizer.decode", "modulename": "fast_forward.quantizer", "qualname": "Quantizer.decode", "kind": "function", "doc": "

Decode a batch of codes to obtain approximate vector representations.

\n\n
Parameters
\n\n
    \n
  • codes: The codes to be decoded.
  • \n
\n\n
Raises
\n\n
    \n
  • RuntimeError: When the quantizer has not been fit.
  • \n
\n\n
Returns
\n\n
\n

The approximated vectors.

\n
\n", "signature": "(self, codes: numpy.ndarray) -> numpy.ndarray:", "funcdef": "def"}, "fast_forward.quantizer.Quantizer.serialize": {"fullname": "fast_forward.quantizer.Quantizer.serialize", "modulename": "fast_forward.quantizer", "qualname": "Quantizer.serialize", "kind": "function", "doc": "

Return a serialized representation of the quantizer.

\n\n

This representations is used to be stored in the index.

\n\n
Returns
\n\n
\n

The serialized quantizer.

\n
\n", "signature": "(\tself) -> tuple[Mapping[str, str | bool | float], Mapping[str, str | bool | float], Mapping[str, numpy.ndarray]]:", "funcdef": "def"}, "fast_forward.quantizer.Quantizer.deserialize": {"fullname": "fast_forward.quantizer.Quantizer.deserialize", "modulename": "fast_forward.quantizer", "qualname": "Quantizer.deserialize", "kind": "function", "doc": "

Reconstruct a serialized quantizer.

\n\n
Parameters
\n\n
    \n
  • meta: The quantizer metadata.
  • \n
  • attributes: The quantizer attributes.
  • \n
  • data: The quantizer data.
  • \n
\n\n
Returns
\n\n
\n

The loaded quantizer.

\n
\n", "signature": "(\tcls,\tmeta: Mapping[str, str | bool | float],\tattributes: Mapping[str, str | bool | float],\tdata: Mapping[str, numpy.ndarray]) -> fast_forward.quantizer.base.Quantizer:", "funcdef": "def"}, "fast_forward.quantizer.NanoPQ": {"fullname": "fast_forward.quantizer.NanoPQ", "modulename": "fast_forward.quantizer", "qualname": "NanoPQ", "kind": "class", "doc": "

Product quantizer that uses the nanopq library.

\n\n

More information is available\nhere.

\n", "bases": "fast_forward.quantizer.base.Quantizer"}, "fast_forward.quantizer.NanoPQ.__init__": {"fullname": "fast_forward.quantizer.NanoPQ.__init__", "modulename": "fast_forward.quantizer", "qualname": "NanoPQ.__init__", "kind": "function", "doc": "

Instantiate a nanopq product quantizer.

\n\n
Parameters
\n\n
    \n
  • M: The number of subspaces.
  • \n
  • Ks: The number of codewords per subspace.
  • \n
  • metric: The metric to use.
  • \n
  • verbose: Enable verbosity.
  • \n
\n", "signature": "(M: int, Ks: int, metric: str = 'dot', verbose: bool = False)"}, "fast_forward.quantizer.NanoOPQ": {"fullname": "fast_forward.quantizer.NanoOPQ", "modulename": "fast_forward.quantizer", "qualname": "NanoOPQ", "kind": "class", "doc": "

Optimized product quantizer that uses the nanopq library.

\n\n

More information is available\nhere.

\n", "bases": "fast_forward.quantizer.base.Quantizer"}, "fast_forward.quantizer.NanoOPQ.__init__": {"fullname": "fast_forward.quantizer.NanoOPQ.__init__", "modulename": "fast_forward.quantizer", "qualname": "NanoOPQ.__init__", "kind": "function", "doc": "

Instantiate a nanopq optimized product quantizer.

\n\n
Parameters
\n\n
    \n
  • M: The number of subspaces.
  • \n
  • Ks: The number of codewords per subspace.
  • \n
  • metric: The metric to use.
  • \n
  • verbose: Enable verbosity.
  • \n
\n", "signature": "(M: int, Ks: int, metric: str = 'dot', verbose: bool = False)"}, "fast_forward.util": {"fullname": "fast_forward.util", "modulename": "fast_forward.util", "kind": "module", "doc": "

Indexing

\n\n

The Indexer class is a utility for indexing collections or adding pre-computed vectors to an index.

\n\n

If the size of the collection is known in advance, it can be specified when the index is created in order to avoid subsequent resizing operations:

\n\n
\n
my_index = OnDiskIndex(Path("my_index.h5"), init_size=1000000)\n
\n
\n\n

In order to index a corpus, a document/passage encoder is required, for example:

\n\n
\n
doc_encoder = TCTColBERTDocumentEncoder(\n    "castorini/tct_colbert-msmarco",\n    device="cuda:0" if torch.cuda.is_available() else "cpu",\n)\n
\n
\n\n

The indexer can be created as follows:

\n\n
\n
indexer = Indexer(my_index, doc_encoder, encoder_batch_size=8)\n
\n
\n\n

Indexer.from_dicts consumes an iterator that yields dictionaries:

\n\n
\n
def docs_iter():\n    for doc in my_corpus:\n        yield {"doc_id": doc.get_doc_id(), "text": doc.get_text()}\n\nindexer.from_dicts(docs_iter())\n
\n
\n\n

Additionally, indexers can be used to automatically fit and attach a quantizer during indexing. In this example, a quantized version (target_index) of an existing index (source_index) is created:

\n\n
\n
from fast_forward.quantizer import NanoPQ\n\nIndexer(\n    target_index,\n    quantizer=NanoPQ(8, 256),\n    batch_size=2**16,\n    quantizer_fit_batches=2,\n).from_index(source_index)\n
\n
\n\n

Here, the first two batches (of size $2^{16}$) are buffered and used to fit the quantizer.

\n\n

Sequential coalescing

\n\n

The sequential coalescing algorithm is a compression technique for indexes with multiple representations per document. More information can be found in the paper. It is implemented as fast_forward.util.create_coalesced_index. Example usage:

\n\n
\n
my_index = OnDiskIndex.load(Path("/path/to/index.h5"))\ncoalesced_index = InMemoryIndex(mode=Mode.MAXP)\ncreate_coalesced_index(my_index, coalesced_index, 0.3)\n
\n
\n"}, "fast_forward.util.Indexer": {"fullname": "fast_forward.util.Indexer", "modulename": "fast_forward.util", "qualname": "Indexer", "kind": "class", "doc": "

Utility class for indexing collections.

\n"}, "fast_forward.util.Indexer.__init__": {"fullname": "fast_forward.util.Indexer.__init__", "modulename": "fast_forward.util", "qualname": "Indexer.__init__", "kind": "function", "doc": "

Create an indexer.

\n\n

Optionally, a quantizer can automatically be fit on the first batch(es) to be\nindexed. This requires the index to be empty.\nIf a quantizer is provided, the first batch(es) will be buffered and used to fit\nthe quantizer.

\n\n
Parameters
\n\n
    \n
  • index: The target index.
  • \n
  • encoder: Document/passage encoder.
  • \n
  • encoder_batch_size: Encoder batch size.
  • \n
  • batch_size: How many vectors to add to the index at once.
  • \n
  • quantizer: A quantizer to be fit and attached to the index.
  • \n
  • quantizer_fit_batches: How many batches to use to fit the quantizer.
  • \n
\n\n
Raises
\n\n
    \n
  • ValueError: When a quantizer is provided that has already been fit.
  • \n
  • ValueError: When a quantizer is provided and the index is not empty.
  • \n
\n", "signature": "(\tindex: fast_forward.index.base.Index,\tencoder: fast_forward.encoder.base.Encoder | None = None,\tencoder_batch_size: int = 128,\tbatch_size: int = 65536,\tquantizer: fast_forward.quantizer.base.Quantizer | None = None,\tquantizer_fit_batches: int = 1)"}, "fast_forward.util.Indexer.from_dicts": {"fullname": "fast_forward.util.Indexer.from_dicts", "modulename": "fast_forward.util", "qualname": "Indexer.from_dicts", "kind": "function", "doc": "

Index data from dictionaries.

\n\n
Parameters
\n\n
    \n
  • data: An iterable of the dictionaries.
  • \n
\n", "signature": "(self, data: Iterable[fast_forward.util.indexer.IndexingDict]) -> None:", "funcdef": "def"}, "fast_forward.util.Indexer.from_index": {"fullname": "fast_forward.util.Indexer.from_index", "modulename": "fast_forward.util", "qualname": "Indexer.from_index", "kind": "function", "doc": "

Transfer vectors and IDs from another index.

\n\n

If the source index uses quantized representations, the vectors are\nreconstructed first.

\n\n
Parameters
\n\n
    \n
  • index: The source index.
  • \n
\n", "signature": "(self, index: fast_forward.index.base.Index) -> None:", "funcdef": "def"}, "fast_forward.util.IndexingDict": {"fullname": "fast_forward.util.IndexingDict", "modulename": "fast_forward.util", "qualname": "IndexingDict", "kind": "class", "doc": "

Dictionary that represents a document/passage.

\n\n

Consumed by Indexer.from_dicts.

\n", "bases": "typing.TypedDict"}, "fast_forward.util.IndexingDict.text": {"fullname": "fast_forward.util.IndexingDict.text", "modulename": "fast_forward.util", "qualname": "IndexingDict.text", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "fast_forward.util.IndexingDict.doc_id": {"fullname": "fast_forward.util.IndexingDict.doc_id", "modulename": "fast_forward.util", "qualname": "IndexingDict.doc_id", "kind": "variable", "doc": "

\n", "annotation": ": str | None"}, "fast_forward.util.IndexingDict.psg_id": {"fullname": "fast_forward.util.IndexingDict.psg_id", "modulename": "fast_forward.util", "qualname": "IndexingDict.psg_id", "kind": "variable", "doc": "

\n", "annotation": ": str | None"}, "fast_forward.util.to_ir_measures": {"fullname": "fast_forward.util.to_ir_measures", "modulename": "fast_forward.util", "qualname": "to_ir_measures", "kind": "function", "doc": "

Return a ranking as a data frame suitable for the ir-measures library.

\n\n
Parameters
\n\n
    \n
  • ranking: The input ranking.
  • \n
\n\n
Returns
\n\n
\n

The data frame.

\n
\n", "signature": "(ranking: fast_forward.ranking.Ranking) -> pandas.core.frame.DataFrame:", "funcdef": "def"}, "fast_forward.util.cos_dist": {"fullname": "fast_forward.util.cos_dist", "modulename": "fast_forward.util", "qualname": "cos_dist", "kind": "function", "doc": "

Cosine distance of two vectors.

\n\n
Parameters
\n\n
    \n
  • a: First vector.
  • \n
  • b: Second vector.
  • \n
\n\n
Returns
\n\n
\n

Cosine distance.

\n
\n", "signature": "(a: numpy.ndarray, b: numpy.ndarray) -> float:", "funcdef": "def"}, "fast_forward.util.create_coalesced_index": {"fullname": "fast_forward.util.create_coalesced_index", "modulename": "fast_forward.util", "qualname": "create_coalesced_index", "kind": "function", "doc": "

Create a compressed index using sequential coalescing.

\n\n
Parameters
\n\n
    \n
  • source_index: Source index (containing multiple vectors for each document).
  • \n
  • target_index: Target index (must be empty).
  • \n
  • delta: The coalescing threshold.
  • \n
  • distance_function: The distance function.
  • \n
  • batch_size: Use batches instead of adding all vectors at the end.
  • \n
\n\n
Raises
\n\n
    \n
  • ValueError: When the target index is not empty.
  • \n
\n", "signature": "(\tsource_index: fast_forward.index.base.Index,\ttarget_index: fast_forward.index.base.Index,\tdelta: float,\tdistance_function: Callable[[numpy.ndarray, numpy.ndarray], float] = <function cos_dist>,\tbatch_size: int | None = None) -> None:", "funcdef": "def"}, "fast_forward.util.pyterrier": {"fullname": "fast_forward.util.pyterrier", "modulename": "fast_forward.util.pyterrier", "kind": "module", "doc": "

PyTerrier transformers

\n\n

Fast-Forward indexes can seamlessly be integrated into PyTerrier pipelines using the transformers provided in fast_forward.util.pyterrier. Specifically, a re-ranking pipeline might look like this, given that my_index is a Fast-Forward index of the MS MARCO passage corpus:

\n\n
\n
bm25 = pt.BatchRetrieve.from_dataset(\n    "msmarco_passage", variant="terrier_stemmed", wmodel="BM25"\n)\n\nff_pl = bm25 % 5000 >> FFScore(my_index) >> FFInterpolate(0.2)\n
\n
\n"}, "fast_forward.util.pyterrier.FFScore": {"fullname": "fast_forward.util.pyterrier.FFScore", "modulename": "fast_forward.util.pyterrier", "qualname": "FFScore", "kind": "class", "doc": "

PyTerrier transformer that computes scores using a Fast-Forward index.

\n", "bases": "pyterrier.transformer.Transformer"}, "fast_forward.util.pyterrier.FFScore.__init__": {"fullname": "fast_forward.util.pyterrier.FFScore.__init__", "modulename": "fast_forward.util.pyterrier", "qualname": "FFScore.__init__", "kind": "function", "doc": "

Create an FFScore transformer.

\n\n
Parameters
\n\n
    \n
  • index: The Fast-Forward index.
  • \n
\n", "signature": "(index: fast_forward.index.base.Index)"}, "fast_forward.util.pyterrier.FFScore.transform": {"fullname": "fast_forward.util.pyterrier.FFScore.transform", "modulename": "fast_forward.util.pyterrier", "qualname": "FFScore.transform", "kind": "function", "doc": "

Compute the scores for all query-document pairs in the data frame.

\n\n

The previous scores are moved to the \"score_0\" column.

\n\n
Parameters
\n\n
    \n
  • inp: The PyTerrier data frame.
  • \n
\n\n
Returns
\n\n
\n

A data frame with the computed scores.

\n
\n", "signature": "(self, inp: pandas.core.frame.DataFrame) -> pandas.core.frame.DataFrame:", "funcdef": "def"}, "fast_forward.util.pyterrier.FFInterpolate": {"fullname": "fast_forward.util.pyterrier.FFInterpolate", "modulename": "fast_forward.util.pyterrier", "qualname": "FFInterpolate", "kind": "class", "doc": "

PyTerrier transformer that interpolates scores computed by FFScore.

\n", "bases": "pyterrier.transformer.Transformer"}, "fast_forward.util.pyterrier.FFInterpolate.__init__": {"fullname": "fast_forward.util.pyterrier.FFInterpolate.__init__", "modulename": "fast_forward.util.pyterrier", "qualname": "FFInterpolate.__init__", "kind": "function", "doc": "

Create an FFInterpolate transformer.

\n\n
Parameters
\n\n
    \n
  • alpha: The interpolation parameter.
  • \n
\n", "signature": "(alpha: float)"}, "fast_forward.util.pyterrier.FFInterpolate.alpha": {"fullname": "fast_forward.util.pyterrier.FFInterpolate.alpha", "modulename": "fast_forward.util.pyterrier", "qualname": "FFInterpolate.alpha", "kind": "variable", "doc": "

\n"}, "fast_forward.util.pyterrier.FFInterpolate.transform": {"fullname": "fast_forward.util.pyterrier.FFInterpolate.transform", "modulename": "fast_forward.util.pyterrier", "qualname": "FFInterpolate.transform", "kind": "function", "doc": "

Interpolate the scores as alpha * score_0 + (1 - alpha) * score.

\n\n
Parameters
\n\n
    \n
  • inp: The PyTerrier data frame.
  • \n
\n\n
Returns
\n\n
\n

A data frame with the interpolated scores.

\n
\n", "signature": "(self, inp: pandas.core.frame.DataFrame) -> pandas.core.frame.DataFrame:", "funcdef": "def"}}, "docInfo": {"fast_forward": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 1479}, "fast_forward.Ranking": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 11}, "fast_forward.Ranking.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 162, "bases": 0, "doc": 116}, "fast_forward.Ranking.name": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "fast_forward.Ranking.has_queries": {"qualname": 3, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 22}, "fast_forward.Ranking.q_ids": {"qualname": 3, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 38}, "fast_forward.Ranking.attach_queries": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 47, "bases": 0, "doc": 59}, "fast_forward.Ranking.normalize": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 25, "bases": 0, "doc": 45}, "fast_forward.Ranking.cut": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 35, "bases": 0, "doc": 53}, "fast_forward.Ranking.interpolate": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 77, "bases": 0, "doc": 79}, "fast_forward.Ranking.rr_scores": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 42, "bases": 0, "doc": 64}, "fast_forward.Ranking.save": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 29, "bases": 0, "doc": 25}, "fast_forward.Ranking.from_run": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 154, "bases": 0, "doc": 74}, "fast_forward.Ranking.from_file": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 113, "bases": 0, "doc": 70}, "fast_forward.encoder": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 179}, "fast_forward.encoder.Encoder": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 2, "doc": 7}, "fast_forward.encoder.LambdaEncoder": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 5, "doc": 10}, "fast_forward.encoder.LambdaEncoder.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 28}, "fast_forward.encoder.TransformerEncoder": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 5, "doc": 15}, "fast_forward.encoder.TransformerEncoder.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 62, "bases": 0, "doc": 45}, "fast_forward.encoder.TCTColBERTQueryEncoder": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 5, "doc": 23}, "fast_forward.encoder.TCTColBERTDocumentEncoder": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 5, "doc": 23}, "fast_forward.index": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 1044}, "fast_forward.index.Index": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 2, "doc": 10}, "fast_forward.index.Index.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 157, "bases": 0, "doc": 56}, "fast_forward.index.Index.mode": {"qualname": 2, "fullname": 5, "annotation": 6, "default_value": 0, "signature": 0, "bases": 0, "doc": 20}, "fast_forward.index.Index.encode_queries": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 35, "bases": 0, "doc": 53}, "fast_forward.index.Index.query_encoder": {"qualname": 3, "fullname": 6, "annotation": 8, "default_value": 0, "signature": 0, "bases": 0, "doc": 25}, "fast_forward.index.Index.quantizer": {"qualname": 2, "fullname": 5, "annotation": 8, "default_value": 0, "signature": 0, "bases": 0, "doc": 23}, "fast_forward.index.Index.dim": {"qualname": 2, "fullname": 5, "annotation": 4, "default_value": 0, "signature": 0, "bases": 0, "doc": 46}, "fast_forward.index.Index.doc_ids": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 21}, "fast_forward.index.Index.psg_ids": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 21}, "fast_forward.index.Index.add": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 105, "bases": 0, "doc": 190}, "fast_forward.index.Index.batch_iter": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 74, "bases": 0, "doc": 54}, "fast_forward.index.Mode": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 2, "doc": 13}, "fast_forward.index.Mode.PASSAGE": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 7, "signature": 0, "bases": 0, "doc": 3}, "fast_forward.index.Mode.MAXP": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 7, "signature": 0, "bases": 0, "doc": 3}, "fast_forward.index.Mode.FIRSTP": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 7, "signature": 0, "bases": 0, "doc": 3}, "fast_forward.index.Mode.AVEP": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 7, "signature": 0, "bases": 0, "doc": 3}, "fast_forward.index.OnDiskIndex": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 5, "doc": 37}, "fast_forward.index.OnDiskIndex.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 297, "bases": 0, "doc": 189}, "fast_forward.index.OnDiskIndex.to_memory": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 56, "bases": 0, "doc": 45}, "fast_forward.index.OnDiskIndex.load": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 201, "bases": 0, "doc": 108}, "fast_forward.index.InMemoryIndex": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 5, "doc": 12}, "fast_forward.index.InMemoryIndex.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 195, "bases": 0, "doc": 90}, "fast_forward.index.InMemoryIndex.consolidate": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 14, "bases": 0, "doc": 16}, "fast_forward.quantizer": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 331}, "fast_forward.quantizer.Quantizer": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 2, "doc": 7}, "fast_forward.quantizer.Quantizer.set_attached": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 14, "bases": 0, "doc": 35}, "fast_forward.quantizer.Quantizer.fit": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 41, "bases": 0, "doc": 75}, "fast_forward.quantizer.Quantizer.dtype": {"qualname": 2, "fullname": 5, "annotation": 3, "default_value": 0, "signature": 0, "bases": 0, "doc": 29}, "fast_forward.quantizer.Quantizer.dims": {"qualname": 2, "fullname": 5, "annotation": 7, "default_value": 0, "signature": 0, "bases": 0, "doc": 43}, "fast_forward.quantizer.Quantizer.encode": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 34, "bases": 0, "doc": 42}, "fast_forward.quantizer.Quantizer.decode": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 34, "bases": 0, "doc": 64}, "fast_forward.quantizer.Quantizer.serialize": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 92, "bases": 0, "doc": 36}, "fast_forward.quantizer.Quantizer.deserialize": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 129, "bases": 0, "doc": 54}, "fast_forward.quantizer.NanoPQ": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 5, "doc": 20}, "fast_forward.quantizer.NanoPQ.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 62, "bases": 0, "doc": 55}, "fast_forward.quantizer.NanoOPQ": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 5, "doc": 21}, "fast_forward.quantizer.NanoOPQ.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 62, "bases": 0, "doc": 56}, "fast_forward.util": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 692}, "fast_forward.util.Indexer": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 8}, "fast_forward.util.Indexer.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 170, "bases": 0, "doc": 174}, "fast_forward.util.Indexer.from_dicts": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 46, "bases": 0, "doc": 25}, "fast_forward.util.Indexer.from_index": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 40, "bases": 0, "doc": 41}, "fast_forward.util.IndexingDict": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 2, "doc": 18}, "fast_forward.util.IndexingDict.text": {"qualname": 2, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "fast_forward.util.IndexingDict.doc_id": {"qualname": 3, "fullname": 6, "annotation": 4, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "fast_forward.util.IndexingDict.psg_id": {"qualname": 3, "fullname": 6, "annotation": 4, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "fast_forward.util.to_ir_measures": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 45, "bases": 0, "doc": 45}, "fast_forward.util.cos_dist": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 39, "bases": 0, "doc": 43}, "fast_forward.util.create_coalesced_index": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 160, "bases": 0, "doc": 100}, "fast_forward.util.pyterrier": {"qualname": 0, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 186}, "fast_forward.util.pyterrier.FFScore": {"qualname": 1, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 3, "doc": 13}, "fast_forward.util.pyterrier.FFScore.__init__": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 30, "bases": 0, "doc": 24}, "fast_forward.util.pyterrier.FFScore.transform": {"qualname": 2, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 54, "bases": 0, "doc": 62}, "fast_forward.util.pyterrier.FFInterpolate": {"qualname": 1, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 3, "doc": 13}, "fast_forward.util.pyterrier.FFInterpolate.__init__": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 14, "bases": 0, "doc": 23}, "fast_forward.util.pyterrier.FFInterpolate.alpha": {"qualname": 2, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "fast_forward.util.pyterrier.FFInterpolate.transform": {"qualname": 2, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 54, "bases": 0, "doc": 52}}, "length": 80, "save": true}, "index": {"qualname": {"root": {"docs": {"fast_forward.Ranking.__init__": {"tf": 1}, "fast_forward.encoder.LambdaEncoder.__init__": {"tf": 1}, "fast_forward.encoder.TransformerEncoder.__init__": {"tf": 1}, "fast_forward.index.Index.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1}, "fast_forward.quantizer.NanoPQ.__init__": {"tf": 1}, "fast_forward.quantizer.NanoOPQ.__init__": {"tf": 1}, "fast_forward.util.Indexer.__init__": {"tf": 1}, "fast_forward.util.pyterrier.FFScore.__init__": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.__init__": {"tf": 1}}, "df": 11, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_forward.Ranking": {"tf": 1}, "fast_forward.Ranking.__init__": {"tf": 1}, "fast_forward.Ranking.name": {"tf": 1}, "fast_forward.Ranking.has_queries": {"tf": 1}, "fast_forward.Ranking.q_ids": {"tf": 1}, "fast_forward.Ranking.attach_queries": {"tf": 1}, "fast_forward.Ranking.normalize": {"tf": 1}, "fast_forward.Ranking.cut": {"tf": 1}, "fast_forward.Ranking.interpolate": {"tf": 1}, "fast_forward.Ranking.rr_scores": {"tf": 1}, "fast_forward.Ranking.save": {"tf": 1}, "fast_forward.Ranking.from_run": {"tf": 1}, "fast_forward.Ranking.from_file": {"tf": 1}}, "df": 13}}}}}}, "r": {"docs": {"fast_forward.Ranking.rr_scores": {"tf": 1}}, "df": 1}, "u": {"docs": {}, "df": 0, "n": {"docs": {"fast_forward.Ranking.from_run": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.Ranking.__init__": {"tf": 1}, "fast_forward.encoder.LambdaEncoder.__init__": {"tf": 1}, "fast_forward.encoder.TransformerEncoder.__init__": {"tf": 1}, "fast_forward.index.Index.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1}, "fast_forward.quantizer.NanoPQ.__init__": {"tf": 1}, "fast_forward.quantizer.NanoOPQ.__init__": {"tf": 1}, "fast_forward.util.Indexer.__init__": {"tf": 1}, "fast_forward.util.pyterrier.FFScore.__init__": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.__init__": {"tf": 1}}, "df": 11}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.Ranking.interpolate": {"tf": 1}}, "df": 1}}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {"fast_forward.index.Index": {"tf": 1}, "fast_forward.index.Index.__init__": {"tf": 1}, "fast_forward.index.Index.mode": {"tf": 1}, "fast_forward.index.Index.encode_queries": {"tf": 1}, "fast_forward.index.Index.query_encoder": {"tf": 1}, "fast_forward.index.Index.quantizer": {"tf": 1}, "fast_forward.index.Index.dim": {"tf": 1}, "fast_forward.index.Index.doc_ids": {"tf": 1}, "fast_forward.index.Index.psg_ids": {"tf": 1}, "fast_forward.index.Index.add": {"tf": 1}, "fast_forward.index.Index.batch_iter": {"tf": 1}, "fast_forward.util.Indexer.from_index": {"tf": 1}, "fast_forward.util.create_coalesced_index": {"tf": 1}}, "df": 13, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.util.Indexer": {"tf": 1}, "fast_forward.util.Indexer.__init__": {"tf": 1}, "fast_forward.util.Indexer.from_dicts": {"tf": 1}, "fast_forward.util.Indexer.from_index": {"tf": 1}}, "df": 4}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.util.IndexingDict": {"tf": 1}, "fast_forward.util.IndexingDict.text": {"tf": 1}, "fast_forward.util.IndexingDict.doc_id": {"tf": 1}, "fast_forward.util.IndexingDict.psg_id": {"tf": 1}}, "df": 4}}}}}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {"fast_forward.index.InMemoryIndex": {"tf": 1}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1}, "fast_forward.index.InMemoryIndex.consolidate": {"tf": 1}}, "df": 3}}}}}}}}}}}}, "d": {"docs": {"fast_forward.util.IndexingDict.doc_id": {"tf": 1}, "fast_forward.util.IndexingDict.psg_id": {"tf": 1}}, "df": 2, "s": {"docs": {"fast_forward.Ranking.q_ids": {"tf": 1}, "fast_forward.index.Index.doc_ids": {"tf": 1}, "fast_forward.index.Index.psg_ids": {"tf": 1}}, "df": 3}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.index.Index.batch_iter": {"tf": 1}}, "df": 1}}}, "r": {"docs": {"fast_forward.util.to_ir_measures": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.Ranking.name": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "q": {"docs": {"fast_forward.quantizer.NanoPQ": {"tf": 1}, "fast_forward.quantizer.NanoPQ.__init__": {"tf": 1}}, "df": 2}}, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "q": {"docs": {"fast_forward.quantizer.NanoOPQ": {"tf": 1}, "fast_forward.quantizer.NanoOPQ.__init__": {"tf": 1}}, "df": 2}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.Ranking.normalize": {"tf": 1}}, "df": 1}}}}}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.Ranking.has_queries": {"tf": 1}}, "df": 1}}}, "q": {"docs": {"fast_forward.Ranking.q_ids": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.Ranking.has_queries": {"tf": 1}, "fast_forward.Ranking.attach_queries": {"tf": 1}, "fast_forward.index.Index.encode_queries": {"tf": 1}}, "df": 3}}}, "y": {"docs": {"fast_forward.index.Index.query_encoder": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.index.Index.quantizer": {"tf": 1}, "fast_forward.quantizer.Quantizer": {"tf": 1}, "fast_forward.quantizer.Quantizer.set_attached": {"tf": 1}, "fast_forward.quantizer.Quantizer.fit": {"tf": 1}, "fast_forward.quantizer.Quantizer.dtype": {"tf": 1}, "fast_forward.quantizer.Quantizer.dims": {"tf": 1}, "fast_forward.quantizer.Quantizer.encode": {"tf": 1}, "fast_forward.quantizer.Quantizer.decode": {"tf": 1}, "fast_forward.quantizer.Quantizer.serialize": {"tf": 1}, "fast_forward.quantizer.Quantizer.deserialize": {"tf": 1}}, "df": 10}}}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"fast_forward.Ranking.attach_queries": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.quantizer.Quantizer.set_attached": {"tf": 1}}, "df": 1}}}}}}}, "d": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.index.Index.add": {"tf": 1}}, "df": 1}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {"fast_forward.index.Mode.AVEP": {"tf": 1}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {"fast_forward.util.pyterrier.FFInterpolate.alpha": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.Ranking.cut": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.index.InMemoryIndex.consolidate": {"tf": 1}}, "df": 1}}}}}}}}}, "s": {"docs": {"fast_forward.util.cos_dist": {"tf": 1}}, "df": 1}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.util.create_coalesced_index": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.util.create_coalesced_index": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.Ranking.rr_scores": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.Ranking.save": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.quantizer.Quantizer.set_attached": {"tf": 1}}, "df": 1}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.quantizer.Quantizer.serialize": {"tf": 1}}, "df": 1}}}}}}}}}, "f": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"fast_forward.Ranking.from_run": {"tf": 1}, "fast_forward.Ranking.from_file": {"tf": 1}, "fast_forward.util.Indexer.from_dicts": {"tf": 1}, "fast_forward.util.Indexer.from_index": {"tf": 1}}, "df": 4}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.Ranking.from_file": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {"fast_forward.index.Mode.FIRSTP": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {"fast_forward.quantizer.Quantizer.fit": {"tf": 1}}, "df": 1}}, "f": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.util.pyterrier.FFScore": {"tf": 1}, "fast_forward.util.pyterrier.FFScore.__init__": {"tf": 1}, "fast_forward.util.pyterrier.FFScore.transform": {"tf": 1}}, "df": 3}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.util.pyterrier.FFInterpolate": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.__init__": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.alpha": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.transform": {"tf": 1}}, "df": 4}}}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.index.Index.encode_queries": {"tf": 1}, "fast_forward.quantizer.Quantizer.encode": {"tf": 1}}, "df": 2, "r": {"docs": {"fast_forward.encoder.Encoder": {"tf": 1}, "fast_forward.index.Index.query_encoder": {"tf": 1}}, "df": 2}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.encoder.LambdaEncoder": {"tf": 1}, "fast_forward.encoder.LambdaEncoder.__init__": {"tf": 1}}, "df": 2}}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.index.OnDiskIndex.load": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"fast_forward.util.pyterrier.FFScore.transform": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.transform": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.encoder.TransformerEncoder": {"tf": 1}, "fast_forward.encoder.TransformerEncoder.__init__": {"tf": 1}}, "df": 2}}}}}}}}}}}}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.encoder.TCTColBERTQueryEncoder": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.encoder.TCTColBERTDocumentEncoder": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}}}}, "o": {"docs": {"fast_forward.index.OnDiskIndex.to_memory": {"tf": 1}, "fast_forward.util.to_ir_measures": {"tf": 1}}, "df": 2}, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.util.IndexingDict.text": {"tf": 1}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.index.Index.mode": {"tf": 1}, "fast_forward.index.Mode": {"tf": 1}, "fast_forward.index.Mode.PASSAGE": {"tf": 1}, "fast_forward.index.Mode.MAXP": {"tf": 1}, "fast_forward.index.Mode.FIRSTP": {"tf": 1}, "fast_forward.index.Mode.AVEP": {"tf": 1}}, "df": 6}}}, "a": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "p": {"docs": {"fast_forward.index.Mode.MAXP": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"fast_forward.index.OnDiskIndex.to_memory": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.util.to_ir_measures": {"tf": 1}}, "df": 1}}}}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {"fast_forward.index.Index.dim": {"tf": 1}}, "df": 1, "s": {"docs": {"fast_forward.quantizer.Quantizer.dims": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.util.Indexer.from_dicts": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.util.cos_dist": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "c": {"docs": {"fast_forward.index.Index.doc_ids": {"tf": 1}, "fast_forward.util.IndexingDict.doc_id": {"tf": 1}}, "df": 2}}, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.quantizer.Quantizer.dtype": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.quantizer.Quantizer.decode": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.quantizer.Quantizer.deserialize": {"tf": 1}}, "df": 1}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "g": {"docs": {"fast_forward.index.Index.psg_ids": {"tf": 1}, "fast_forward.util.IndexingDict.psg_id": {"tf": 1}}, "df": 2}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.index.Mode.PASSAGE": {"tf": 1}}, "df": 1}}}}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"fast_forward.index.Index.batch_iter": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {"fast_forward.index.OnDiskIndex": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.to_memory": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}}, "df": 4}}}}}}}}}}}}}, "fullname": {"root": {"docs": {"fast_forward.Ranking.__init__": {"tf": 1}, "fast_forward.encoder.LambdaEncoder.__init__": {"tf": 1}, "fast_forward.encoder.TransformerEncoder.__init__": {"tf": 1}, "fast_forward.index.Index.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1}, "fast_forward.quantizer.NanoPQ.__init__": {"tf": 1}, "fast_forward.quantizer.NanoOPQ.__init__": {"tf": 1}, "fast_forward.util.Indexer.__init__": {"tf": 1}, "fast_forward.util.pyterrier.FFScore.__init__": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.__init__": {"tf": 1}}, "df": 11, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.Ranking": {"tf": 1}, "fast_forward.Ranking.__init__": {"tf": 1}, "fast_forward.Ranking.name": {"tf": 1}, "fast_forward.Ranking.has_queries": {"tf": 1}, "fast_forward.Ranking.q_ids": {"tf": 1}, "fast_forward.Ranking.attach_queries": {"tf": 1}, "fast_forward.Ranking.normalize": {"tf": 1}, "fast_forward.Ranking.cut": {"tf": 1}, "fast_forward.Ranking.interpolate": {"tf": 1}, "fast_forward.Ranking.rr_scores": {"tf": 1}, "fast_forward.Ranking.save": {"tf": 1}, "fast_forward.Ranking.from_run": {"tf": 1}, "fast_forward.Ranking.from_file": {"tf": 1}, "fast_forward.encoder": {"tf": 1}, "fast_forward.encoder.Encoder": {"tf": 1}, "fast_forward.encoder.LambdaEncoder": {"tf": 1}, "fast_forward.encoder.LambdaEncoder.__init__": {"tf": 1}, "fast_forward.encoder.TransformerEncoder": {"tf": 1}, "fast_forward.encoder.TransformerEncoder.__init__": {"tf": 1}, "fast_forward.encoder.TCTColBERTQueryEncoder": {"tf": 1}, "fast_forward.encoder.TCTColBERTDocumentEncoder": {"tf": 1}, "fast_forward.index": {"tf": 1}, "fast_forward.index.Index": {"tf": 1}, "fast_forward.index.Index.__init__": {"tf": 1}, "fast_forward.index.Index.mode": {"tf": 1}, "fast_forward.index.Index.encode_queries": {"tf": 1}, "fast_forward.index.Index.query_encoder": {"tf": 1}, "fast_forward.index.Index.quantizer": {"tf": 1}, "fast_forward.index.Index.dim": {"tf": 1}, "fast_forward.index.Index.doc_ids": {"tf": 1}, "fast_forward.index.Index.psg_ids": {"tf": 1}, "fast_forward.index.Index.add": {"tf": 1}, "fast_forward.index.Index.batch_iter": {"tf": 1}, "fast_forward.index.Mode": {"tf": 1}, "fast_forward.index.Mode.PASSAGE": {"tf": 1}, "fast_forward.index.Mode.MAXP": {"tf": 1}, "fast_forward.index.Mode.FIRSTP": {"tf": 1}, "fast_forward.index.Mode.AVEP": {"tf": 1}, "fast_forward.index.OnDiskIndex": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.to_memory": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}, "fast_forward.index.InMemoryIndex": {"tf": 1}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1}, "fast_forward.index.InMemoryIndex.consolidate": {"tf": 1}, "fast_forward.quantizer": {"tf": 1}, "fast_forward.quantizer.Quantizer": {"tf": 1}, "fast_forward.quantizer.Quantizer.set_attached": {"tf": 1}, "fast_forward.quantizer.Quantizer.fit": {"tf": 1}, "fast_forward.quantizer.Quantizer.dtype": {"tf": 1}, "fast_forward.quantizer.Quantizer.dims": {"tf": 1}, "fast_forward.quantizer.Quantizer.encode": {"tf": 1}, "fast_forward.quantizer.Quantizer.decode": {"tf": 1}, "fast_forward.quantizer.Quantizer.serialize": {"tf": 1}, "fast_forward.quantizer.Quantizer.deserialize": {"tf": 1}, "fast_forward.quantizer.NanoPQ": {"tf": 1}, "fast_forward.quantizer.NanoPQ.__init__": {"tf": 1}, "fast_forward.quantizer.NanoOPQ": {"tf": 1}, "fast_forward.quantizer.NanoOPQ.__init__": {"tf": 1}, "fast_forward.util": {"tf": 1}, "fast_forward.util.Indexer": {"tf": 1}, "fast_forward.util.Indexer.__init__": {"tf": 1}, "fast_forward.util.Indexer.from_dicts": {"tf": 1}, "fast_forward.util.Indexer.from_index": {"tf": 1}, "fast_forward.util.IndexingDict": {"tf": 1}, "fast_forward.util.IndexingDict.text": {"tf": 1}, "fast_forward.util.IndexingDict.doc_id": {"tf": 1}, "fast_forward.util.IndexingDict.psg_id": {"tf": 1}, "fast_forward.util.to_ir_measures": {"tf": 1}, "fast_forward.util.cos_dist": {"tf": 1}, "fast_forward.util.create_coalesced_index": {"tf": 1}, "fast_forward.util.pyterrier": {"tf": 1}, "fast_forward.util.pyterrier.FFScore": {"tf": 1}, "fast_forward.util.pyterrier.FFScore.__init__": {"tf": 1}, "fast_forward.util.pyterrier.FFScore.transform": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.__init__": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.alpha": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.transform": {"tf": 1}}, "df": 80}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.Ranking": {"tf": 1}, "fast_forward.Ranking.__init__": {"tf": 1}, "fast_forward.Ranking.name": {"tf": 1}, "fast_forward.Ranking.has_queries": {"tf": 1}, "fast_forward.Ranking.q_ids": {"tf": 1}, "fast_forward.Ranking.attach_queries": {"tf": 1}, "fast_forward.Ranking.normalize": {"tf": 1}, "fast_forward.Ranking.cut": {"tf": 1}, "fast_forward.Ranking.interpolate": {"tf": 1}, "fast_forward.Ranking.rr_scores": {"tf": 1}, "fast_forward.Ranking.save": {"tf": 1}, "fast_forward.Ranking.from_run": {"tf": 1}, "fast_forward.Ranking.from_file": {"tf": 1}, "fast_forward.encoder": {"tf": 1}, "fast_forward.encoder.Encoder": {"tf": 1}, "fast_forward.encoder.LambdaEncoder": {"tf": 1}, "fast_forward.encoder.LambdaEncoder.__init__": {"tf": 1}, "fast_forward.encoder.TransformerEncoder": {"tf": 1}, "fast_forward.encoder.TransformerEncoder.__init__": {"tf": 1}, "fast_forward.encoder.TCTColBERTQueryEncoder": {"tf": 1}, "fast_forward.encoder.TCTColBERTDocumentEncoder": {"tf": 1}, "fast_forward.index": {"tf": 1}, "fast_forward.index.Index": {"tf": 1}, "fast_forward.index.Index.__init__": {"tf": 1}, "fast_forward.index.Index.mode": {"tf": 1}, "fast_forward.index.Index.encode_queries": {"tf": 1}, "fast_forward.index.Index.query_encoder": {"tf": 1}, "fast_forward.index.Index.quantizer": {"tf": 1}, "fast_forward.index.Index.dim": {"tf": 1}, "fast_forward.index.Index.doc_ids": {"tf": 1}, "fast_forward.index.Index.psg_ids": {"tf": 1}, "fast_forward.index.Index.add": {"tf": 1}, "fast_forward.index.Index.batch_iter": {"tf": 1}, "fast_forward.index.Mode": {"tf": 1}, "fast_forward.index.Mode.PASSAGE": {"tf": 1}, "fast_forward.index.Mode.MAXP": {"tf": 1}, "fast_forward.index.Mode.FIRSTP": {"tf": 1}, "fast_forward.index.Mode.AVEP": {"tf": 1}, "fast_forward.index.OnDiskIndex": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.to_memory": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}, "fast_forward.index.InMemoryIndex": {"tf": 1}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1}, "fast_forward.index.InMemoryIndex.consolidate": {"tf": 1}, "fast_forward.quantizer": {"tf": 1}, "fast_forward.quantizer.Quantizer": {"tf": 1}, "fast_forward.quantizer.Quantizer.set_attached": {"tf": 1}, "fast_forward.quantizer.Quantizer.fit": {"tf": 1}, "fast_forward.quantizer.Quantizer.dtype": {"tf": 1}, "fast_forward.quantizer.Quantizer.dims": {"tf": 1}, "fast_forward.quantizer.Quantizer.encode": {"tf": 1}, "fast_forward.quantizer.Quantizer.decode": {"tf": 1}, "fast_forward.quantizer.Quantizer.serialize": {"tf": 1}, "fast_forward.quantizer.Quantizer.deserialize": {"tf": 1}, "fast_forward.quantizer.NanoPQ": {"tf": 1}, "fast_forward.quantizer.NanoPQ.__init__": {"tf": 1}, "fast_forward.quantizer.NanoOPQ": {"tf": 1}, "fast_forward.quantizer.NanoOPQ.__init__": {"tf": 1}, "fast_forward.util": {"tf": 1}, "fast_forward.util.Indexer": {"tf": 1}, "fast_forward.util.Indexer.__init__": {"tf": 1}, "fast_forward.util.Indexer.from_dicts": {"tf": 1}, "fast_forward.util.Indexer.from_index": {"tf": 1}, "fast_forward.util.IndexingDict": {"tf": 1}, "fast_forward.util.IndexingDict.text": {"tf": 1}, "fast_forward.util.IndexingDict.doc_id": {"tf": 1}, "fast_forward.util.IndexingDict.psg_id": {"tf": 1}, "fast_forward.util.to_ir_measures": {"tf": 1}, "fast_forward.util.cos_dist": {"tf": 1}, "fast_forward.util.create_coalesced_index": {"tf": 1}, "fast_forward.util.pyterrier": {"tf": 1}, "fast_forward.util.pyterrier.FFScore": {"tf": 1}, "fast_forward.util.pyterrier.FFScore.__init__": {"tf": 1}, "fast_forward.util.pyterrier.FFScore.transform": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.__init__": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.alpha": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.transform": {"tf": 1}}, "df": 80}}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"fast_forward.Ranking.from_run": {"tf": 1}, "fast_forward.Ranking.from_file": {"tf": 1}, "fast_forward.util.Indexer.from_dicts": {"tf": 1}, "fast_forward.util.Indexer.from_index": {"tf": 1}}, "df": 4}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.Ranking.from_file": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {"fast_forward.index.Mode.FIRSTP": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {"fast_forward.quantizer.Quantizer.fit": {"tf": 1}}, "df": 1}}, "f": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.util.pyterrier.FFScore": {"tf": 1}, "fast_forward.util.pyterrier.FFScore.__init__": {"tf": 1}, "fast_forward.util.pyterrier.FFScore.transform": {"tf": 1}}, "df": 3}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.util.pyterrier.FFInterpolate": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.__init__": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.alpha": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.transform": {"tf": 1}}, "df": 4}}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_forward.Ranking": {"tf": 1}, "fast_forward.Ranking.__init__": {"tf": 1}, "fast_forward.Ranking.name": {"tf": 1}, "fast_forward.Ranking.has_queries": {"tf": 1}, "fast_forward.Ranking.q_ids": {"tf": 1}, "fast_forward.Ranking.attach_queries": {"tf": 1}, "fast_forward.Ranking.normalize": {"tf": 1}, "fast_forward.Ranking.cut": {"tf": 1}, "fast_forward.Ranking.interpolate": {"tf": 1}, "fast_forward.Ranking.rr_scores": {"tf": 1}, "fast_forward.Ranking.save": {"tf": 1}, "fast_forward.Ranking.from_run": {"tf": 1}, "fast_forward.Ranking.from_file": {"tf": 1}}, "df": 13}}}}}}, "r": {"docs": {"fast_forward.Ranking.rr_scores": {"tf": 1}}, "df": 1}, "u": {"docs": {}, "df": 0, "n": {"docs": {"fast_forward.Ranking.from_run": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.Ranking.__init__": {"tf": 1}, "fast_forward.encoder.LambdaEncoder.__init__": {"tf": 1}, "fast_forward.encoder.TransformerEncoder.__init__": {"tf": 1}, "fast_forward.index.Index.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1}, "fast_forward.quantizer.NanoPQ.__init__": {"tf": 1}, "fast_forward.quantizer.NanoOPQ.__init__": {"tf": 1}, "fast_forward.util.Indexer.__init__": {"tf": 1}, "fast_forward.util.pyterrier.FFScore.__init__": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.__init__": {"tf": 1}}, "df": 11}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.Ranking.interpolate": {"tf": 1}}, "df": 1}}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {"fast_forward.index": {"tf": 1}, "fast_forward.index.Index": {"tf": 1.4142135623730951}, "fast_forward.index.Index.__init__": {"tf": 1.4142135623730951}, "fast_forward.index.Index.mode": {"tf": 1.4142135623730951}, "fast_forward.index.Index.encode_queries": {"tf": 1.4142135623730951}, "fast_forward.index.Index.query_encoder": {"tf": 1.4142135623730951}, "fast_forward.index.Index.quantizer": {"tf": 1.4142135623730951}, "fast_forward.index.Index.dim": {"tf": 1.4142135623730951}, "fast_forward.index.Index.doc_ids": {"tf": 1.4142135623730951}, "fast_forward.index.Index.psg_ids": {"tf": 1.4142135623730951}, "fast_forward.index.Index.add": {"tf": 1.4142135623730951}, "fast_forward.index.Index.batch_iter": {"tf": 1.4142135623730951}, "fast_forward.index.Mode": {"tf": 1}, "fast_forward.index.Mode.PASSAGE": {"tf": 1}, "fast_forward.index.Mode.MAXP": {"tf": 1}, "fast_forward.index.Mode.FIRSTP": {"tf": 1}, "fast_forward.index.Mode.AVEP": {"tf": 1}, "fast_forward.index.OnDiskIndex": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.to_memory": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}, "fast_forward.index.InMemoryIndex": {"tf": 1}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1}, "fast_forward.index.InMemoryIndex.consolidate": {"tf": 1}, "fast_forward.util.Indexer.from_index": {"tf": 1}, "fast_forward.util.create_coalesced_index": {"tf": 1}}, "df": 26, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.util.Indexer": {"tf": 1}, "fast_forward.util.Indexer.__init__": {"tf": 1}, "fast_forward.util.Indexer.from_dicts": {"tf": 1}, "fast_forward.util.Indexer.from_index": {"tf": 1}}, "df": 4}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.util.IndexingDict": {"tf": 1}, "fast_forward.util.IndexingDict.text": {"tf": 1}, "fast_forward.util.IndexingDict.doc_id": {"tf": 1}, "fast_forward.util.IndexingDict.psg_id": {"tf": 1}}, "df": 4}}}}}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {"fast_forward.index.InMemoryIndex": {"tf": 1}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1}, "fast_forward.index.InMemoryIndex.consolidate": {"tf": 1}}, "df": 3}}}}}}}}}}}}, "d": {"docs": {"fast_forward.util.IndexingDict.doc_id": {"tf": 1}, "fast_forward.util.IndexingDict.psg_id": {"tf": 1}}, "df": 2, "s": {"docs": {"fast_forward.Ranking.q_ids": {"tf": 1}, "fast_forward.index.Index.doc_ids": {"tf": 1}, "fast_forward.index.Index.psg_ids": {"tf": 1}}, "df": 3}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.index.Index.batch_iter": {"tf": 1}}, "df": 1}}}, "r": {"docs": {"fast_forward.util.to_ir_measures": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.Ranking.name": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "q": {"docs": {"fast_forward.quantizer.NanoPQ": {"tf": 1}, "fast_forward.quantizer.NanoPQ.__init__": {"tf": 1}}, "df": 2}}, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "q": {"docs": {"fast_forward.quantizer.NanoOPQ": {"tf": 1}, "fast_forward.quantizer.NanoOPQ.__init__": {"tf": 1}}, "df": 2}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.Ranking.normalize": {"tf": 1}}, "df": 1}}}}}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.Ranking.has_queries": {"tf": 1}}, "df": 1}}}, "q": {"docs": {"fast_forward.Ranking.q_ids": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.Ranking.has_queries": {"tf": 1}, "fast_forward.Ranking.attach_queries": {"tf": 1}, "fast_forward.index.Index.encode_queries": {"tf": 1}}, "df": 3}}}, "y": {"docs": {"fast_forward.index.Index.query_encoder": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.index.Index.quantizer": {"tf": 1}, "fast_forward.quantizer": {"tf": 1}, "fast_forward.quantizer.Quantizer": {"tf": 1.4142135623730951}, "fast_forward.quantizer.Quantizer.set_attached": {"tf": 1.4142135623730951}, "fast_forward.quantizer.Quantizer.fit": {"tf": 1.4142135623730951}, "fast_forward.quantizer.Quantizer.dtype": {"tf": 1.4142135623730951}, "fast_forward.quantizer.Quantizer.dims": {"tf": 1.4142135623730951}, "fast_forward.quantizer.Quantizer.encode": {"tf": 1.4142135623730951}, "fast_forward.quantizer.Quantizer.decode": {"tf": 1.4142135623730951}, "fast_forward.quantizer.Quantizer.serialize": {"tf": 1.4142135623730951}, "fast_forward.quantizer.Quantizer.deserialize": {"tf": 1.4142135623730951}, "fast_forward.quantizer.NanoPQ": {"tf": 1}, "fast_forward.quantizer.NanoPQ.__init__": {"tf": 1}, "fast_forward.quantizer.NanoOPQ": {"tf": 1}, "fast_forward.quantizer.NanoOPQ.__init__": {"tf": 1}}, "df": 15}}}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"fast_forward.Ranking.attach_queries": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.quantizer.Quantizer.set_attached": {"tf": 1}}, "df": 1}}}}}}}, "d": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.index.Index.add": {"tf": 1}}, "df": 1}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {"fast_forward.index.Mode.AVEP": {"tf": 1}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {"fast_forward.util.pyterrier.FFInterpolate.alpha": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.Ranking.cut": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.index.InMemoryIndex.consolidate": {"tf": 1}}, "df": 1}}}}}}}}}, "s": {"docs": {"fast_forward.util.cos_dist": {"tf": 1}}, "df": 1}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.util.create_coalesced_index": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.util.create_coalesced_index": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.Ranking.rr_scores": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.Ranking.save": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.quantizer.Quantizer.set_attached": {"tf": 1}}, "df": 1}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.quantizer.Quantizer.serialize": {"tf": 1}}, "df": 1}}}}}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.index.Index.encode_queries": {"tf": 1}, "fast_forward.quantizer.Quantizer.encode": {"tf": 1}}, "df": 2, "r": {"docs": {"fast_forward.encoder": {"tf": 1}, "fast_forward.encoder.Encoder": {"tf": 1.4142135623730951}, "fast_forward.encoder.LambdaEncoder": {"tf": 1}, "fast_forward.encoder.LambdaEncoder.__init__": {"tf": 1}, "fast_forward.encoder.TransformerEncoder": {"tf": 1}, "fast_forward.encoder.TransformerEncoder.__init__": {"tf": 1}, "fast_forward.encoder.TCTColBERTQueryEncoder": {"tf": 1}, "fast_forward.encoder.TCTColBERTDocumentEncoder": {"tf": 1}, "fast_forward.index.Index.query_encoder": {"tf": 1}}, "df": 9}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.encoder.LambdaEncoder": {"tf": 1}, "fast_forward.encoder.LambdaEncoder.__init__": {"tf": 1}}, "df": 2}}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.index.OnDiskIndex.load": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"fast_forward.util.pyterrier.FFScore.transform": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.transform": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.encoder.TransformerEncoder": {"tf": 1}, "fast_forward.encoder.TransformerEncoder.__init__": {"tf": 1}}, "df": 2}}}}}}}}}}}}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.encoder.TCTColBERTQueryEncoder": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.encoder.TCTColBERTDocumentEncoder": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}}}}, "o": {"docs": {"fast_forward.index.OnDiskIndex.to_memory": {"tf": 1}, "fast_forward.util.to_ir_measures": {"tf": 1}}, "df": 2}, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.util.IndexingDict.text": {"tf": 1}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.index.Index.mode": {"tf": 1}, "fast_forward.index.Mode": {"tf": 1}, "fast_forward.index.Mode.PASSAGE": {"tf": 1}, "fast_forward.index.Mode.MAXP": {"tf": 1}, "fast_forward.index.Mode.FIRSTP": {"tf": 1}, "fast_forward.index.Mode.AVEP": {"tf": 1}}, "df": 6}}}, "a": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "p": {"docs": {"fast_forward.index.Mode.MAXP": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"fast_forward.index.OnDiskIndex.to_memory": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.util.to_ir_measures": {"tf": 1}}, "df": 1}}}}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {"fast_forward.index.Index.dim": {"tf": 1}}, "df": 1, "s": {"docs": {"fast_forward.quantizer.Quantizer.dims": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.util.Indexer.from_dicts": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.util.cos_dist": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "c": {"docs": {"fast_forward.index.Index.doc_ids": {"tf": 1}, "fast_forward.util.IndexingDict.doc_id": {"tf": 1}}, "df": 2}}, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.quantizer.Quantizer.dtype": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.quantizer.Quantizer.decode": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.quantizer.Quantizer.deserialize": {"tf": 1}}, "df": 1}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "g": {"docs": {"fast_forward.index.Index.psg_ids": {"tf": 1}, "fast_forward.util.IndexingDict.psg_id": {"tf": 1}}, "df": 2}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.index.Mode.PASSAGE": {"tf": 1}}, "df": 1}}}}}}, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.util.pyterrier": {"tf": 1}, "fast_forward.util.pyterrier.FFScore": {"tf": 1}, "fast_forward.util.pyterrier.FFScore.__init__": {"tf": 1}, "fast_forward.util.pyterrier.FFScore.transform": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.__init__": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.alpha": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.transform": {"tf": 1}}, "df": 8}}}}}}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"fast_forward.index.Index.batch_iter": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {"fast_forward.index.OnDiskIndex": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.to_memory": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}}, "df": 4}}}}}}}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"fast_forward.util": {"tf": 1}, "fast_forward.util.Indexer": {"tf": 1}, "fast_forward.util.Indexer.__init__": {"tf": 1}, "fast_forward.util.Indexer.from_dicts": {"tf": 1}, "fast_forward.util.Indexer.from_index": {"tf": 1}, "fast_forward.util.IndexingDict": {"tf": 1}, "fast_forward.util.IndexingDict.text": {"tf": 1}, "fast_forward.util.IndexingDict.doc_id": {"tf": 1}, "fast_forward.util.IndexingDict.psg_id": {"tf": 1}, "fast_forward.util.to_ir_measures": {"tf": 1}, "fast_forward.util.cos_dist": {"tf": 1}, "fast_forward.util.create_coalesced_index": {"tf": 1}, "fast_forward.util.pyterrier": {"tf": 1}, "fast_forward.util.pyterrier.FFScore": {"tf": 1}, "fast_forward.util.pyterrier.FFScore.__init__": {"tf": 1}, "fast_forward.util.pyterrier.FFScore.transform": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.__init__": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.alpha": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.transform": {"tf": 1}}, "df": 20}}}}}}, "annotation": {"root": {"docs": {"fast_forward.Ranking.has_queries": {"tf": 1}, "fast_forward.Ranking.q_ids": {"tf": 1}, "fast_forward.index.Index.mode": {"tf": 1}, "fast_forward.index.Index.query_encoder": {"tf": 1.4142135623730951}, "fast_forward.index.Index.quantizer": {"tf": 1.4142135623730951}, "fast_forward.index.Index.dim": {"tf": 1.4142135623730951}, "fast_forward.index.Index.doc_ids": {"tf": 1}, "fast_forward.index.Index.psg_ids": {"tf": 1}, "fast_forward.quantizer.Quantizer.dtype": {"tf": 1}, "fast_forward.quantizer.Quantizer.dims": {"tf": 1.7320508075688772}, "fast_forward.util.IndexingDict.text": {"tf": 1}, "fast_forward.util.IndexingDict.doc_id": {"tf": 1.4142135623730951}, "fast_forward.util.IndexingDict.psg_id": {"tf": 1.4142135623730951}}, "df": 13, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"fast_forward.Ranking.has_queries": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.index.Index.mode": {"tf": 1}, "fast_forward.index.Index.query_encoder": {"tf": 1}, "fast_forward.index.Index.quantizer": {"tf": 1}}, "df": 3}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.Ranking.q_ids": {"tf": 1}, "fast_forward.index.Index.doc_ids": {"tf": 1}, "fast_forward.index.Index.psg_ids": {"tf": 1}}, "df": 3}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.util.IndexingDict.text": {"tf": 1}, "fast_forward.util.IndexingDict.doc_id": {"tf": 1}, "fast_forward.util.IndexingDict.psg_id": {"tf": 1}}, "df": 3}}}, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.index.Index.mode": {"tf": 1}, "fast_forward.index.Index.query_encoder": {"tf": 1}, "fast_forward.index.Index.quantizer": {"tf": 1}}, "df": 3}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.index.Index.mode": {"tf": 1}, "fast_forward.index.Index.query_encoder": {"tf": 1}, "fast_forward.index.Index.quantizer": {"tf": 1}}, "df": 3}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {"fast_forward.index.Index.mode": {"tf": 1}}, "df": 1}}}, "t": {"docs": {"fast_forward.index.Index.dim": {"tf": 1}, "fast_forward.quantizer.Quantizer.dims": {"tf": 1}}, "df": 2}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.index.Index.mode": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.index.Index.query_encoder": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.index.Index.query_encoder": {"tf": 1}, "fast_forward.index.Index.quantizer": {"tf": 1}, "fast_forward.index.Index.dim": {"tf": 1}, "fast_forward.quantizer.Quantizer.dims": {"tf": 1.4142135623730951}, "fast_forward.util.IndexingDict.doc_id": {"tf": 1}, "fast_forward.util.IndexingDict.psg_id": {"tf": 1}}, "df": 6}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"fast_forward.quantizer.Quantizer.dtype": {"tf": 1}}, "df": 1}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.index.Index.quantizer": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}, "d": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.quantizer.Quantizer.dtype": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.quantizer.Quantizer.dims": {"tf": 1}}, "df": 1}}}}}}}}}}}, "default_value": {"root": {"1": {"docs": {"fast_forward.index.Mode.PASSAGE": {"tf": 1}}, "df": 1}, "2": {"docs": {"fast_forward.index.Mode.MAXP": {"tf": 1}}, "df": 1}, "3": {"docs": {"fast_forward.index.Mode.FIRSTP": {"tf": 1}}, "df": 1}, "4": {"docs": {"fast_forward.index.Mode.AVEP": {"tf": 1}}, "df": 1}, "docs": {"fast_forward.index.Mode.PASSAGE": {"tf": 1.4142135623730951}, "fast_forward.index.Mode.MAXP": {"tf": 1.4142135623730951}, "fast_forward.index.Mode.FIRSTP": {"tf": 1.4142135623730951}, "fast_forward.index.Mode.AVEP": {"tf": 1.4142135623730951}}, "df": 4, "l": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.index.Mode.PASSAGE": {"tf": 1}, "fast_forward.index.Mode.MAXP": {"tf": 1}, "fast_forward.index.Mode.FIRSTP": {"tf": 1}, "fast_forward.index.Mode.AVEP": {"tf": 1}}, "df": 4}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.index.Mode.PASSAGE": {"tf": 1}, "fast_forward.index.Mode.MAXP": {"tf": 1}, "fast_forward.index.Mode.FIRSTP": {"tf": 1}, "fast_forward.index.Mode.AVEP": {"tf": 1}}, "df": 4}}}, "a": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "p": {"docs": {"fast_forward.index.Mode.MAXP": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.index.Mode.PASSAGE": {"tf": 1}}, "df": 1}}}}}}}, "g": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.index.Mode.PASSAGE": {"tf": 1}, "fast_forward.index.Mode.MAXP": {"tf": 1}, "fast_forward.index.Mode.FIRSTP": {"tf": 1}, "fast_forward.index.Mode.AVEP": {"tf": 1}}, "df": 4}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {"fast_forward.index.Mode.FIRSTP": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {"fast_forward.index.Mode.AVEP": {"tf": 1}}, "df": 1}}}}}}, "signature": {"root": {"1": {"0": {"2": {"4": {"docs": {"fast_forward.index.OnDiskIndex.__init__": {"tf": 1.4142135623730951}, "fast_forward.index.OnDiskIndex.load": {"tf": 1.4142135623730951}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"8": {"docs": {"fast_forward.util.Indexer.__init__": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "6": {"3": {"8": {"4": {"docs": {"fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1.4142135623730951}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"fast_forward.util.Indexer.__init__": {"tf": 1}}, "df": 1}, "2": {"docs": {"fast_forward.index.Index.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1}}, "df": 4}, "3": {"2": {"docs": {"fast_forward.index.Index.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1}}, "df": 4}, "9": {"docs": {"fast_forward.Ranking.__init__": {"tf": 1.4142135623730951}, "fast_forward.Ranking.from_run": {"tf": 1.4142135623730951}, "fast_forward.Ranking.from_file": {"tf": 1.4142135623730951}, "fast_forward.encoder.TransformerEncoder.__init__": {"tf": 1.4142135623730951}, "fast_forward.quantizer.NanoPQ.__init__": {"tf": 1.4142135623730951}, "fast_forward.quantizer.NanoOPQ.__init__": {"tf": 1.4142135623730951}}, "df": 6}, "docs": {}, "df": 0}, "6": {"0": {"docs": {"fast_forward.Ranking.rr_scores": {"tf": 1}}, "df": 1}, "5": {"5": {"3": {"6": {"docs": {"fast_forward.util.Indexer.__init__": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"docs": {"fast_forward.index.OnDiskIndex.__init__": {"tf": 1}}, "df": 1}, "docs": {"fast_forward.Ranking.__init__": {"tf": 11.532562594670797}, "fast_forward.Ranking.attach_queries": {"tf": 6.164414002968976}, "fast_forward.Ranking.normalize": {"tf": 4.47213595499958}, "fast_forward.Ranking.cut": {"tf": 5.291502622129181}, "fast_forward.Ranking.interpolate": {"tf": 7.874007874011811}, "fast_forward.Ranking.rr_scores": {"tf": 5.830951894845301}, "fast_forward.Ranking.save": {"tf": 4.898979485566356}, "fast_forward.Ranking.from_run": {"tf": 11.224972160321824}, "fast_forward.Ranking.from_file": {"tf": 9.591663046625438}, "fast_forward.encoder.LambdaEncoder.__init__": {"tf": 5.0990195135927845}, "fast_forward.encoder.TransformerEncoder.__init__": {"tf": 7.0710678118654755}, "fast_forward.index.Index.__init__": {"tf": 11.135528725660043}, "fast_forward.index.Index.encode_queries": {"tf": 5.385164807134504}, "fast_forward.index.Index.add": {"tf": 9.273618495495704}, "fast_forward.index.Index.batch_iter": {"tf": 7.745966692414834}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 15.231546211727817}, "fast_forward.index.OnDiskIndex.to_memory": {"tf": 6.708203932499369}, "fast_forward.index.OnDiskIndex.load": {"tf": 12.489995996796797}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 12.409673645990857}, "fast_forward.index.InMemoryIndex.consolidate": {"tf": 3.4641016151377544}, "fast_forward.quantizer.Quantizer.set_attached": {"tf": 3.4641016151377544}, "fast_forward.quantizer.Quantizer.fit": {"tf": 5.830951894845301}, "fast_forward.quantizer.Quantizer.encode": {"tf": 5.291502622129181}, "fast_forward.quantizer.Quantizer.decode": {"tf": 5.291502622129181}, "fast_forward.quantizer.Quantizer.serialize": {"tf": 8.717797887081348}, "fast_forward.quantizer.Quantizer.deserialize": {"tf": 10.295630140987}, "fast_forward.quantizer.NanoPQ.__init__": {"tf": 7.0710678118654755}, "fast_forward.quantizer.NanoOPQ.__init__": {"tf": 7.0710678118654755}, "fast_forward.util.Indexer.__init__": {"tf": 11.575836902790225}, "fast_forward.util.Indexer.from_dicts": {"tf": 6.082762530298219}, "fast_forward.util.Indexer.from_index": {"tf": 5.656854249492381}, "fast_forward.util.to_ir_measures": {"tf": 6}, "fast_forward.util.cos_dist": {"tf": 5.656854249492381}, "fast_forward.util.create_coalesced_index": {"tf": 11.180339887498949}, "fast_forward.util.pyterrier.FFScore.__init__": {"tf": 4.898979485566356}, "fast_forward.util.pyterrier.FFScore.transform": {"tf": 6.6332495807108}, "fast_forward.util.pyterrier.FFInterpolate.__init__": {"tf": 3.4641016151377544}, "fast_forward.util.pyterrier.FFInterpolate.transform": {"tf": 6.6332495807108}}, "df": 38, "d": {"docs": {}, "df": 0, "f": {"docs": {"fast_forward.Ranking.__init__": {"tf": 1}}, "df": 1}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"fast_forward.quantizer.Quantizer.deserialize": {"tf": 1}, "fast_forward.util.Indexer.from_dicts": {"tf": 1}}, "df": 2, "f": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.Ranking.__init__": {"tf": 1}, "fast_forward.util.to_ir_measures": {"tf": 1}, "fast_forward.util.pyterrier.FFScore.transform": {"tf": 1.4142135623730951}, "fast_forward.util.pyterrier.FFInterpolate.transform": {"tf": 1.4142135623730951}}, "df": 4}}}}}}}}, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.Ranking.__init__": {"tf": 1.7320508075688772}, "fast_forward.Ranking.from_run": {"tf": 1.7320508075688772}, "fast_forward.Ranking.from_file": {"tf": 1.7320508075688772}}, "df": 3}}}}, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.encoder.TransformerEncoder.__init__": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"fast_forward.util.create_coalesced_index": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "c": {"docs": {"fast_forward.index.Index.add": {"tf": 1}}, "df": 1}, "t": {"docs": {"fast_forward.quantizer.NanoPQ.__init__": {"tf": 1}, "fast_forward.quantizer.NanoOPQ.__init__": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {"fast_forward.index.OnDiskIndex.load": {"tf": 1}}, "df": 1}, "t": {"docs": {"fast_forward.util.create_coalesced_index": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.util.create_coalesced_index": {"tf": 1}}, "df": 1}}}}}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.Ranking.__init__": {"tf": 1}, "fast_forward.util.to_ir_measures": {"tf": 1}, "fast_forward.util.pyterrier.FFScore.transform": {"tf": 1.4142135623730951}, "fast_forward.util.pyterrier.FFInterpolate.transform": {"tf": 1.4142135623730951}}, "df": 4}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"fast_forward.Ranking.save": {"tf": 1}, "fast_forward.Ranking.from_file": {"tf": 1}, "fast_forward.encoder.TransformerEncoder.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}}, "df": 5, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {"fast_forward.Ranking.save": {"tf": 1}, "fast_forward.Ranking.from_file": {"tf": 1}, "fast_forward.encoder.TransformerEncoder.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}}, "df": 5}}}}}}, "s": {"docs": {}, "df": 0, "g": {"docs": {"fast_forward.index.Index.add": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.Ranking.__init__": {"tf": 1}, "fast_forward.util.to_ir_measures": {"tf": 1}, "fast_forward.util.pyterrier.FFScore.transform": {"tf": 1.4142135623730951}, "fast_forward.util.pyterrier.FFInterpolate.transform": {"tf": 1.4142135623730951}}, "df": 4}}, "p": {"docs": {}, "df": 0, "y": {"docs": {"fast_forward.Ranking.__init__": {"tf": 1}}, "df": 1}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.quantizer.Quantizer.decode": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"fast_forward.util.create_coalesced_index": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {"fast_forward.Ranking.cut": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.Ranking.from_run": {"tf": 1}, "fast_forward.Ranking.from_file": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}, "fast_forward.quantizer.Quantizer.deserialize": {"tf": 1}}, "df": 4}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.encoder.LambdaEncoder.__init__": {"tf": 1}, "fast_forward.util.create_coalesced_index": {"tf": 1}}, "df": 2}}}}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {"fast_forward.encoder.TransformerEncoder.__init__": {"tf": 1}}, "df": 1}}, "h": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {"fast_forward.index.OnDiskIndex.__init__": {"tf": 1}}, "df": 1}}}}}, "f": {"docs": {"fast_forward.Ranking.from_file": {"tf": 1}, "fast_forward.encoder.LambdaEncoder.__init__": {"tf": 1}}, "df": 2, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.Ranking.__init__": {"tf": 1}, "fast_forward.util.to_ir_measures": {"tf": 1}, "fast_forward.util.pyterrier.FFScore.transform": {"tf": 1.4142135623730951}, "fast_forward.util.pyterrier.FFInterpolate.transform": {"tf": 1.4142135623730951}}, "df": 4}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"3": {"2": {"docs": {"fast_forward.Ranking.__init__": {"tf": 1}, "fast_forward.Ranking.from_run": {"tf": 1}, "fast_forward.Ranking.from_file": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {"fast_forward.Ranking.interpolate": {"tf": 1}, "fast_forward.Ranking.from_run": {"tf": 1}, "fast_forward.quantizer.Quantizer.serialize": {"tf": 1.4142135623730951}, "fast_forward.quantizer.Quantizer.deserialize": {"tf": 1.4142135623730951}, "fast_forward.util.cos_dist": {"tf": 1}, "fast_forward.util.create_coalesced_index": {"tf": 1.4142135623730951}, "fast_forward.util.pyterrier.FFInterpolate.__init__": {"tf": 1}}, "df": 7}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.Ranking.__init__": {"tf": 1}, "fast_forward.Ranking.interpolate": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.quantizer.NanoPQ.__init__": {"tf": 1}, "fast_forward.quantizer.NanoOPQ.__init__": {"tf": 1}}, "df": 5}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.Ranking.attach_queries": {"tf": 1}, "fast_forward.Ranking.normalize": {"tf": 1}, "fast_forward.Ranking.cut": {"tf": 1}, "fast_forward.Ranking.interpolate": {"tf": 1.4142135623730951}, "fast_forward.Ranking.rr_scores": {"tf": 1}, "fast_forward.Ranking.from_run": {"tf": 1}, "fast_forward.Ranking.from_file": {"tf": 1}, "fast_forward.index.Index.__init__": {"tf": 1.7320508075688772}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1.7320508075688772}, "fast_forward.index.OnDiskIndex.to_memory": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1.7320508075688772}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1.7320508075688772}, "fast_forward.quantizer.Quantizer.deserialize": {"tf": 1}, "fast_forward.util.Indexer.__init__": {"tf": 1.7320508075688772}, "fast_forward.util.Indexer.from_dicts": {"tf": 1}, "fast_forward.util.Indexer.from_index": {"tf": 1}, "fast_forward.util.to_ir_measures": {"tf": 1}, "fast_forward.util.create_coalesced_index": {"tf": 1.4142135623730951}, "fast_forward.util.pyterrier.FFScore.__init__": {"tf": 1}}, "df": 19}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.Ranking.attach_queries": {"tf": 1}, "fast_forward.Ranking.normalize": {"tf": 1}, "fast_forward.Ranking.cut": {"tf": 1}, "fast_forward.Ranking.interpolate": {"tf": 1.4142135623730951}, "fast_forward.Ranking.rr_scores": {"tf": 1}, "fast_forward.Ranking.from_run": {"tf": 1}, "fast_forward.Ranking.from_file": {"tf": 1}, "fast_forward.index.Index.__init__": {"tf": 1.7320508075688772}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1.7320508075688772}, "fast_forward.index.OnDiskIndex.to_memory": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1.7320508075688772}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1.7320508075688772}, "fast_forward.quantizer.Quantizer.deserialize": {"tf": 1}, "fast_forward.util.Indexer.__init__": {"tf": 1.7320508075688772}, "fast_forward.util.Indexer.from_dicts": {"tf": 1}, "fast_forward.util.Indexer.from_index": {"tf": 1}, "fast_forward.util.to_ir_measures": {"tf": 1}, "fast_forward.util.create_coalesced_index": {"tf": 1.4142135623730951}, "fast_forward.util.pyterrier.FFScore.__init__": {"tf": 1}}, "df": 19}}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}}, "df": 2}}, "t": {"docs": {"fast_forward.util.Indexer.__init__": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_forward.util.create_coalesced_index": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.Ranking.__init__": {"tf": 1}, "fast_forward.Ranking.from_run": {"tf": 1}}, "df": 2}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.Ranking.__init__": {"tf": 2}, "fast_forward.Ranking.save": {"tf": 1}, "fast_forward.Ranking.from_run": {"tf": 2}, "fast_forward.Ranking.from_file": {"tf": 1.4142135623730951}, "fast_forward.index.Index.__init__": {"tf": 2}, "fast_forward.index.Index.add": {"tf": 2.6457513110645907}, "fast_forward.index.Index.batch_iter": {"tf": 1.4142135623730951}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 2.449489742783178}, "fast_forward.index.OnDiskIndex.to_memory": {"tf": 1.4142135623730951}, "fast_forward.index.OnDiskIndex.load": {"tf": 1.4142135623730951}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 2}, "fast_forward.index.InMemoryIndex.consolidate": {"tf": 1}, "fast_forward.quantizer.Quantizer.set_attached": {"tf": 1}, "fast_forward.quantizer.Quantizer.fit": {"tf": 1}, "fast_forward.util.Indexer.__init__": {"tf": 2}, "fast_forward.util.Indexer.from_dicts": {"tf": 1}, "fast_forward.util.Indexer.from_index": {"tf": 1}, "fast_forward.util.create_coalesced_index": {"tf": 1.7320508075688772}}, "df": 18}}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.Ranking.interpolate": {"tf": 1}}, "df": 1}}}}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"fast_forward.Ranking.__init__": {"tf": 1}, "fast_forward.Ranking.from_run": {"tf": 1}, "fast_forward.Ranking.from_file": {"tf": 1}, "fast_forward.encoder.LambdaEncoder.__init__": {"tf": 1}, "fast_forward.index.Index.encode_queries": {"tf": 1}, "fast_forward.index.Index.add": {"tf": 1}, "fast_forward.index.Index.batch_iter": {"tf": 1}, "fast_forward.quantizer.Quantizer.fit": {"tf": 1}, "fast_forward.quantizer.Quantizer.encode": {"tf": 1.4142135623730951}, "fast_forward.quantizer.Quantizer.decode": {"tf": 1.4142135623730951}, "fast_forward.quantizer.Quantizer.serialize": {"tf": 1}, "fast_forward.quantizer.Quantizer.deserialize": {"tf": 1}, "fast_forward.util.cos_dist": {"tf": 1.4142135623730951}, "fast_forward.util.create_coalesced_index": {"tf": 1.4142135623730951}}, "df": 14}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"fast_forward.encoder.LambdaEncoder.__init__": {"tf": 1}, "fast_forward.index.Index.encode_queries": {"tf": 1}, "fast_forward.index.Index.add": {"tf": 1}, "fast_forward.index.Index.batch_iter": {"tf": 1}, "fast_forward.quantizer.Quantizer.fit": {"tf": 1}, "fast_forward.quantizer.Quantizer.encode": {"tf": 1.4142135623730951}, "fast_forward.quantizer.Quantizer.decode": {"tf": 1.4142135623730951}, "fast_forward.quantizer.Quantizer.serialize": {"tf": 1}, "fast_forward.quantizer.Quantizer.deserialize": {"tf": 1}, "fast_forward.util.cos_dist": {"tf": 1.4142135623730951}, "fast_forward.util.create_coalesced_index": {"tf": 1.4142135623730951}}, "df": 11}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.Ranking.__init__": {"tf": 1.7320508075688772}, "fast_forward.Ranking.attach_queries": {"tf": 1.4142135623730951}, "fast_forward.Ranking.from_run": {"tf": 2.23606797749979}, "fast_forward.Ranking.from_file": {"tf": 1.4142135623730951}, "fast_forward.encoder.LambdaEncoder.__init__": {"tf": 1}, "fast_forward.encoder.TransformerEncoder.__init__": {"tf": 1.4142135623730951}, "fast_forward.index.Index.encode_queries": {"tf": 1}, "fast_forward.index.Index.add": {"tf": 1.4142135623730951}, "fast_forward.index.Index.batch_iter": {"tf": 1.4142135623730951}, "fast_forward.quantizer.Quantizer.serialize": {"tf": 2.23606797749979}, "fast_forward.quantizer.Quantizer.deserialize": {"tf": 2.23606797749979}, "fast_forward.quantizer.NanoPQ.__init__": {"tf": 1}, "fast_forward.quantizer.NanoOPQ.__init__": {"tf": 1}}, "df": 13}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.Ranking.__init__": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.util.create_coalesced_index": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "f": {"docs": {"fast_forward.Ranking.attach_queries": {"tf": 1}, "fast_forward.Ranking.normalize": {"tf": 1}, "fast_forward.Ranking.cut": {"tf": 1}, "fast_forward.Ranking.interpolate": {"tf": 1}, "fast_forward.Ranking.rr_scores": {"tf": 1}, "fast_forward.Ranking.save": {"tf": 1}, "fast_forward.index.Index.encode_queries": {"tf": 1}, "fast_forward.index.Index.add": {"tf": 1}, "fast_forward.index.Index.batch_iter": {"tf": 1}, "fast_forward.index.OnDiskIndex.to_memory": {"tf": 1}, "fast_forward.index.InMemoryIndex.consolidate": {"tf": 1}, "fast_forward.quantizer.Quantizer.set_attached": {"tf": 1}, "fast_forward.quantizer.Quantizer.fit": {"tf": 1}, "fast_forward.quantizer.Quantizer.encode": {"tf": 1}, "fast_forward.quantizer.Quantizer.decode": {"tf": 1}, "fast_forward.quantizer.Quantizer.serialize": {"tf": 1}, "fast_forward.util.Indexer.from_dicts": {"tf": 1}, "fast_forward.util.Indexer.from_index": {"tf": 1}, "fast_forward.util.pyterrier.FFScore.transform": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.transform": {"tf": 1}}, "df": 20}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.index.Index.encode_queries": {"tf": 1}, "fast_forward.index.Index.add": {"tf": 1.4142135623730951}, "fast_forward.index.Index.batch_iter": {"tf": 1.4142135623730951}}, "df": 3}}}}}}}, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.index.Index.__init__": {"tf": 1}, "fast_forward.index.Index.batch_iter": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 2}, "fast_forward.index.OnDiskIndex.to_memory": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1.4142135623730951}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1.7320508075688772}, "fast_forward.util.Indexer.__init__": {"tf": 1.4142135623730951}, "fast_forward.util.create_coalesced_index": {"tf": 1}}, "df": 8}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.Ranking.__init__": {"tf": 1}, "fast_forward.Ranking.attach_queries": {"tf": 1}, "fast_forward.Ranking.from_run": {"tf": 1}, "fast_forward.Ranking.from_file": {"tf": 1}, "fast_forward.index.Index.encode_queries": {"tf": 1}}, "df": 5}}}, "y": {"docs": {"fast_forward.index.Index.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1}}, "df": 4}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.index.Index.__init__": {"tf": 1.7320508075688772}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1.7320508075688772}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1.7320508075688772}, "fast_forward.quantizer.Quantizer.deserialize": {"tf": 1.4142135623730951}, "fast_forward.util.Indexer.__init__": {"tf": 2}}, "df": 5}}}}}}}}}, "m": {"docs": {"fast_forward.quantizer.NanoPQ.__init__": {"tf": 1}, "fast_forward.quantizer.NanoOPQ.__init__": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_forward.Ranking.__init__": {"tf": 1}, "fast_forward.Ranking.attach_queries": {"tf": 1}, "fast_forward.Ranking.from_run": {"tf": 1.7320508075688772}, "fast_forward.Ranking.from_file": {"tf": 1}, "fast_forward.quantizer.Quantizer.serialize": {"tf": 1.7320508075688772}, "fast_forward.quantizer.Quantizer.deserialize": {"tf": 1.7320508075688772}}, "df": 6}}}}}, "x": {"docs": {"fast_forward.index.OnDiskIndex.__init__": {"tf": 1.4142135623730951}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}}, "df": 2, "p": {"docs": {"fast_forward.index.Index.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1}}, "df": 4}}}, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.index.Index.__init__": {"tf": 1.7320508075688772}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1.7320508075688772}, "fast_forward.index.OnDiskIndex.load": {"tf": 1.7320508075688772}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1.7320508075688772}}, "df": 4, "l": {"docs": {"fast_forward.encoder.TransformerEncoder.__init__": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}}, "df": 2}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"fast_forward.index.OnDiskIndex.to_memory": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {"fast_forward.quantizer.Quantizer.deserialize": {"tf": 1}}, "df": 1}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"fast_forward.quantizer.NanoPQ.__init__": {"tf": 1}, "fast_forward.quantizer.NanoOPQ.__init__": {"tf": 1}}, "df": 2}}}}}}, "b": {"docs": {"fast_forward.util.cos_dist": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"fast_forward.Ranking.__init__": {"tf": 1.4142135623730951}, "fast_forward.Ranking.interpolate": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.quantizer.Quantizer.serialize": {"tf": 1.4142135623730951}, "fast_forward.quantizer.Quantizer.deserialize": {"tf": 1.4142135623730951}, "fast_forward.quantizer.NanoPQ.__init__": {"tf": 1}, "fast_forward.quantizer.NanoOPQ.__init__": {"tf": 1}}, "df": 7}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.index.Index.__init__": {"tf": 1.7320508075688772}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1.7320508075688772}, "fast_forward.index.OnDiskIndex.load": {"tf": 1.4142135623730951}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1.7320508075688772}, "fast_forward.quantizer.Quantizer.deserialize": {"tf": 1}, "fast_forward.util.Indexer.__init__": {"tf": 1.7320508075688772}, "fast_forward.util.Indexer.from_index": {"tf": 1}, "fast_forward.util.create_coalesced_index": {"tf": 1.4142135623730951}, "fast_forward.util.pyterrier.FFScore.__init__": {"tf": 1}}, "df": 9}}, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"fast_forward.index.Index.__init__": {"tf": 1}, "fast_forward.index.Index.batch_iter": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.to_memory": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1}, "fast_forward.util.Indexer.__init__": {"tf": 1.4142135623730951}, "fast_forward.util.create_coalesced_index": {"tf": 1}}, "df": 8, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.util.Indexer.__init__": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.Ranking.__init__": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.Ranking.save": {"tf": 1}, "fast_forward.util.create_coalesced_index": {"tf": 1}}, "df": 2}}}}}, "o": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.encoder.TransformerEncoder.__init__": {"tf": 1}}, "df": 1}}}}}}}}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.index.Index.batch_iter": {"tf": 1}, "fast_forward.quantizer.Quantizer.serialize": {"tf": 1}}, "df": 2}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.Ranking.__init__": {"tf": 1}}, "df": 1}, "n": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.Ranking.cut": {"tf": 1}, "fast_forward.Ranking.rr_scores": {"tf": 1}, "fast_forward.index.Index.__init__": {"tf": 1}, "fast_forward.index.Index.batch_iter": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 2.449489742783178}, "fast_forward.index.OnDiskIndex.to_memory": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1.7320508075688772}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1.7320508075688772}, "fast_forward.quantizer.NanoPQ.__init__": {"tf": 1.4142135623730951}, "fast_forward.quantizer.NanoOPQ.__init__": {"tf": 1.4142135623730951}, "fast_forward.util.Indexer.__init__": {"tf": 1.7320508075688772}, "fast_forward.util.create_coalesced_index": {"tf": 1}}, "df": 12}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {"fast_forward.index.Index.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1.4142135623730951}, "fast_forward.index.OnDiskIndex.to_memory": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1.7320508075688772}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1}, "fast_forward.util.Indexer.__init__": {"tf": 1.7320508075688772}, "fast_forward.util.Indexer.from_index": {"tf": 1.7320508075688772}, "fast_forward.util.create_coalesced_index": {"tf": 2.449489742783178}, "fast_forward.util.pyterrier.FFScore.__init__": {"tf": 1.7320508075688772}}, "df": 9, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}}, "df": 2, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.util.Indexer.from_dicts": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.util.Indexer.from_dicts": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1}}, "df": 2}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {"fast_forward.index.OnDiskIndex.to_memory": {"tf": 1}}, "df": 1}}}}}}}}}}}, "p": {"docs": {"fast_forward.util.pyterrier.FFScore.transform": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.transform": {"tf": 1}}, "df": 2}}, "d": {"docs": {"fast_forward.index.OnDiskIndex.__init__": {"tf": 1}}, "df": 1, "s": {"docs": {"fast_forward.index.Index.add": {"tf": 1.4142135623730951}}, "df": 1}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.index.Index.batch_iter": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.util.Indexer.from_dicts": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_forward.Ranking.attach_queries": {"tf": 1.4142135623730951}, "fast_forward.Ranking.normalize": {"tf": 1.4142135623730951}, "fast_forward.Ranking.cut": {"tf": 1.4142135623730951}, "fast_forward.Ranking.interpolate": {"tf": 2}, "fast_forward.Ranking.rr_scores": {"tf": 1.4142135623730951}, "fast_forward.Ranking.from_run": {"tf": 1.4142135623730951}, "fast_forward.Ranking.from_file": {"tf": 1.4142135623730951}, "fast_forward.util.to_ir_measures": {"tf": 1.7320508075688772}}, "df": 8}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {"fast_forward.Ranking.from_run": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}}, "df": 2}}}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.Ranking.interpolate": {"tf": 1}}, "df": 1}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.index.OnDiskIndex.__init__": {"tf": 1}}, "df": 1}}}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {"fast_forward.index.OnDiskIndex.load": {"tf": 1}}, "df": 1}}}}}}}}}}}, "a": {"docs": {"fast_forward.util.cos_dist": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {"fast_forward.Ranking.interpolate": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.__init__": {"tf": 1}}, "df": 2}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {"fast_forward.index.InMemoryIndex.__init__": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.encoder.TransformerEncoder.__init__": {"tf": 1}}, "df": 1}}}, "n": {"docs": {}, "df": 0, "y": {"docs": {"fast_forward.encoder.TransformerEncoder.__init__": {"tf": 1}, "fast_forward.quantizer.Quantizer.fit": {"tf": 1}}, "df": 2}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.quantizer.Quantizer.deserialize": {"tf": 1}}, "df": 1}}}}}}}}}}, "k": {"docs": {"fast_forward.Ranking.rr_scores": {"tf": 1}}, "df": 1, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.quantizer.Quantizer.fit": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {"fast_forward.quantizer.NanoPQ.__init__": {"tf": 1}, "fast_forward.quantizer.NanoOPQ.__init__": {"tf": 1}}, "df": 2}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.index.Index.__init__": {"tf": 2}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 2}, "fast_forward.index.OnDiskIndex.load": {"tf": 2}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 2}, "fast_forward.util.Indexer.__init__": {"tf": 2}}, "df": 5}}}}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.index.Index.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1}, "fast_forward.util.create_coalesced_index": {"tf": 1}}, "df": 5}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"fast_forward.index.OnDiskIndex.__init__": {"tf": 1}}, "df": 1}}}}}}, "g": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.index.Index.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1}, "fast_forward.util.create_coalesced_index": {"tf": 1}}, "df": 5}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.index.Index.add": {"tf": 1}, "fast_forward.quantizer.Quantizer.fit": {"tf": 1}, "fast_forward.quantizer.Quantizer.encode": {"tf": 1}}, "df": 3}}}}}, "r": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.quantizer.NanoPQ.__init__": {"tf": 1}, "fast_forward.quantizer.NanoOPQ.__init__": {"tf": 1}}, "df": 2}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}}, "df": 2}}}, "h": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "f": {"5": {"docs": {"fast_forward.index.OnDiskIndex.__init__": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"fast_forward.util.Indexer.from_dicts": {"tf": 1}}, "df": 1}}}}}}, "bases": {"root": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "c": {"docs": {"fast_forward.encoder.Encoder": {"tf": 1.4142135623730951}, "fast_forward.index.Index": {"tf": 1.4142135623730951}, "fast_forward.quantizer.Quantizer": {"tf": 1.4142135623730951}}, "df": 3}}}, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.encoder.LambdaEncoder": {"tf": 1}, "fast_forward.encoder.TransformerEncoder": {"tf": 1}, "fast_forward.encoder.TCTColBERTQueryEncoder": {"tf": 1}, "fast_forward.encoder.TCTColBERTDocumentEncoder": {"tf": 1}, "fast_forward.index.OnDiskIndex": {"tf": 1}, "fast_forward.index.InMemoryIndex": {"tf": 1}, "fast_forward.quantizer.NanoPQ": {"tf": 1}, "fast_forward.quantizer.NanoOPQ": {"tf": 1}}, "df": 8}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.encoder.LambdaEncoder": {"tf": 1}, "fast_forward.encoder.TransformerEncoder": {"tf": 1}, "fast_forward.encoder.TCTColBERTQueryEncoder": {"tf": 1}, "fast_forward.encoder.TCTColBERTDocumentEncoder": {"tf": 1}, "fast_forward.index.OnDiskIndex": {"tf": 1}, "fast_forward.index.InMemoryIndex": {"tf": 1}, "fast_forward.quantizer.NanoPQ": {"tf": 1}, "fast_forward.quantizer.NanoOPQ": {"tf": 1}}, "df": 8}}}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.encoder.LambdaEncoder": {"tf": 1.4142135623730951}, "fast_forward.encoder.TransformerEncoder": {"tf": 1.4142135623730951}, "fast_forward.encoder.TCTColBERTQueryEncoder": {"tf": 1}, "fast_forward.encoder.TCTColBERTDocumentEncoder": {"tf": 1}}, "df": 4}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {"fast_forward.index.Mode": {"tf": 1.4142135623730951}}, "df": 1}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.encoder.LambdaEncoder": {"tf": 1}, "fast_forward.encoder.TransformerEncoder": {"tf": 1}, "fast_forward.index.OnDiskIndex": {"tf": 1}, "fast_forward.index.InMemoryIndex": {"tf": 1}, "fast_forward.quantizer.NanoPQ": {"tf": 1}, "fast_forward.quantizer.NanoOPQ": {"tf": 1}}, "df": 6}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.encoder.TCTColBERTQueryEncoder": {"tf": 1}, "fast_forward.encoder.TCTColBERTDocumentEncoder": {"tf": 1}, "fast_forward.util.pyterrier.FFScore": {"tf": 1.4142135623730951}, "fast_forward.util.pyterrier.FFInterpolate": {"tf": 1.4142135623730951}}, "df": 4, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.encoder.TCTColBERTQueryEncoder": {"tf": 1}, "fast_forward.encoder.TCTColBERTDocumentEncoder": {"tf": 1}}, "df": 2}}}}}}}}}}}}}}}}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_forward.util.IndexingDict": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.util.IndexingDict": {"tf": 1}}, "df": 1}}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {"fast_forward.index.OnDiskIndex": {"tf": 1.4142135623730951}, "fast_forward.index.InMemoryIndex": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.quantizer.NanoPQ": {"tf": 1.4142135623730951}, "fast_forward.quantizer.NanoOPQ": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}}, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.util.pyterrier.FFScore": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate": {"tf": 1}}, "df": 2}}}}}}}}}}}, "doc": {"root": {"0": {"docs": {"fast_forward": {"tf": 2.449489742783178}, "fast_forward.Ranking.normalize": {"tf": 1.4142135623730951}, "fast_forward.index": {"tf": 1.4142135623730951}, "fast_forward.util": {"tf": 1}, "fast_forward.util.pyterrier": {"tf": 1}, "fast_forward.util.pyterrier.FFScore.transform": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.transform": {"tf": 1}}, "df": 7}, "1": {"0": {"0": {"0": {"0": {"0": {"0": {"docs": {"fast_forward.util": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"fast_forward.index": {"tf": 1}, "fast_forward.quantizer": {"tf": 1}}, "df": 2}, "6": {"docs": {"fast_forward.index": {"tf": 1.4142135623730951}, "fast_forward.util": {"tf": 1}}, "df": 2}, "docs": {"fast_forward": {"tf": 3}, "fast_forward.Ranking.normalize": {"tf": 1}, "fast_forward.Ranking.interpolate": {"tf": 1}, "fast_forward.Ranking.rr_scores": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.transform": {"tf": 1}}, "df": 5}, "2": {"5": {"6": {"docs": {"fast_forward.quantizer": {"tf": 1}, "fast_forward.util": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {"fast_forward": {"tf": 2}, "fast_forward.index": {"tf": 1.4142135623730951}, "fast_forward.quantizer": {"tf": 1}, "fast_forward.util": {"tf": 1.4142135623730951}, "fast_forward.util.pyterrier": {"tf": 1}}, "df": 5, "^": {"docs": {}, "df": 0, "{": {"1": {"6": {"docs": {"fast_forward.util": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "3": {"docs": {"fast_forward": {"tf": 1.4142135623730951}, "fast_forward.index": {"tf": 1.4142135623730951}, "fast_forward.util": {"tf": 1}}, "df": 3}, "4": {"0": {"0": {"docs": {"fast_forward.index": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"fast_forward": {"tf": 1}}, "df": 1}, "5": {"0": {"0": {"0": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.index": {"tf": 1.7320508075688772}, "fast_forward.util.pyterrier": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"fast_forward": {"tf": 1}, "fast_forward.index": {"tf": 1.4142135623730951}}, "df": 2}, "6": {"docs": {"fast_forward": {"tf": 1}}, "df": 1}, "7": {"6": {"8": {"docs": {"fast_forward.index": {"tf": 1.7320508075688772}, "fast_forward.quantizer": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"docs": {"fast_forward.quantizer": {"tf": 1}, "fast_forward.util": {"tf": 1.4142135623730951}}, "df": 2}, "9": {"docs": {"fast_forward": {"tf": 1}}, "df": 1}, "docs": {"fast_forward": {"tf": 30.116440692751194}, "fast_forward.Ranking": {"tf": 1.7320508075688772}, "fast_forward.Ranking.__init__": {"tf": 7.0710678118654755}, "fast_forward.Ranking.name": {"tf": 1.7320508075688772}, "fast_forward.Ranking.has_queries": {"tf": 3.4641016151377544}, "fast_forward.Ranking.q_ids": {"tf": 3.872983346207417}, "fast_forward.Ranking.attach_queries": {"tf": 5.830951894845301}, "fast_forward.Ranking.normalize": {"tf": 4.358898943540674}, "fast_forward.Ranking.cut": {"tf": 5.196152422706632}, "fast_forward.Ranking.interpolate": {"tf": 6.48074069840786}, "fast_forward.Ranking.rr_scores": {"tf": 6}, "fast_forward.Ranking.save": {"tf": 3.7416573867739413}, "fast_forward.Ranking.from_run": {"tf": 6.164414002968976}, "fast_forward.Ranking.from_file": {"tf": 5.744562646538029}, "fast_forward.encoder": {"tf": 8.602325267042627}, "fast_forward.encoder.Encoder": {"tf": 1.7320508075688772}, "fast_forward.encoder.LambdaEncoder": {"tf": 1.7320508075688772}, "fast_forward.encoder.LambdaEncoder.__init__": {"tf": 3.7416573867739413}, "fast_forward.encoder.TransformerEncoder": {"tf": 1.7320508075688772}, "fast_forward.encoder.TransformerEncoder.__init__": {"tf": 4.898979485566356}, "fast_forward.encoder.TCTColBERTQueryEncoder": {"tf": 2.6457513110645907}, "fast_forward.encoder.TCTColBERTDocumentEncoder": {"tf": 2.6457513110645907}, "fast_forward.index": {"tf": 21.142374511865974}, "fast_forward.index.Index": {"tf": 1.7320508075688772}, "fast_forward.index.Index.__init__": {"tf": 5.385164807134504}, "fast_forward.index.Index.mode": {"tf": 3.4641016151377544}, "fast_forward.index.Index.encode_queries": {"tf": 5.830951894845301}, "fast_forward.index.Index.query_encoder": {"tf": 3.4641016151377544}, "fast_forward.index.Index.quantizer": {"tf": 3.4641016151377544}, "fast_forward.index.Index.dim": {"tf": 4.123105625617661}, "fast_forward.index.Index.doc_ids": {"tf": 3.4641016151377544}, "fast_forward.index.Index.psg_ids": {"tf": 3.4641016151377544}, "fast_forward.index.Index.add": {"tf": 8.06225774829855}, "fast_forward.index.Index.batch_iter": {"tf": 4.358898943540674}, "fast_forward.index.Mode": {"tf": 1.7320508075688772}, "fast_forward.index.Mode.PASSAGE": {"tf": 1.7320508075688772}, "fast_forward.index.Mode.MAXP": {"tf": 1.7320508075688772}, "fast_forward.index.Mode.FIRSTP": {"tf": 1.7320508075688772}, "fast_forward.index.Mode.AVEP": {"tf": 1.7320508075688772}, "fast_forward.index.OnDiskIndex": {"tf": 3.1622776601683795}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 8.774964387392123}, "fast_forward.index.OnDiskIndex.to_memory": {"tf": 4.795831523312719}, "fast_forward.index.OnDiskIndex.load": {"tf": 6.928203230275509}, "fast_forward.index.InMemoryIndex": {"tf": 1.7320508075688772}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 6.244997998398398}, "fast_forward.index.InMemoryIndex.consolidate": {"tf": 1.7320508075688772}, "fast_forward.quantizer": {"tf": 14.071247279470288}, "fast_forward.quantizer.Quantizer": {"tf": 1.7320508075688772}, "fast_forward.quantizer.Quantizer.set_attached": {"tf": 4}, "fast_forward.quantizer.Quantizer.fit": {"tf": 5.744562646538029}, "fast_forward.quantizer.Quantizer.dtype": {"tf": 3.4641016151377544}, "fast_forward.quantizer.Quantizer.dims": {"tf": 4.123105625617661}, "fast_forward.quantizer.Quantizer.encode": {"tf": 4.795831523312719}, "fast_forward.quantizer.Quantizer.decode": {"tf": 5.830951894845301}, "fast_forward.quantizer.Quantizer.serialize": {"tf": 3.872983346207417}, "fast_forward.quantizer.Quantizer.deserialize": {"tf": 5.744562646538029}, "fast_forward.quantizer.NanoPQ": {"tf": 2.8284271247461903}, "fast_forward.quantizer.NanoPQ.__init__": {"tf": 5.385164807134504}, "fast_forward.quantizer.NanoOPQ": {"tf": 2.8284271247461903}, "fast_forward.quantizer.NanoOPQ.__init__": {"tf": 5.385164807134504}, "fast_forward.util": {"tf": 20.396078054371138}, "fast_forward.util.Indexer": {"tf": 1.7320508075688772}, "fast_forward.util.Indexer.__init__": {"tf": 7.615773105863909}, "fast_forward.util.Indexer.from_dicts": {"tf": 3.7416573867739413}, "fast_forward.util.Indexer.from_index": {"tf": 4.123105625617661}, "fast_forward.util.IndexingDict": {"tf": 2.8284271247461903}, "fast_forward.util.IndexingDict.text": {"tf": 1.7320508075688772}, "fast_forward.util.IndexingDict.doc_id": {"tf": 1.7320508075688772}, "fast_forward.util.IndexingDict.psg_id": {"tf": 1.7320508075688772}, "fast_forward.util.to_ir_measures": {"tf": 4.795831523312719}, "fast_forward.util.cos_dist": {"tf": 5.291502622129181}, "fast_forward.util.create_coalesced_index": {"tf": 6.708203932499369}, "fast_forward.util.pyterrier": {"tf": 10.44030650891055}, "fast_forward.util.pyterrier.FFScore": {"tf": 1.7320508075688772}, "fast_forward.util.pyterrier.FFScore.__init__": {"tf": 3.7416573867739413}, "fast_forward.util.pyterrier.FFScore.transform": {"tf": 5.0990195135927845}, "fast_forward.util.pyterrier.FFInterpolate": {"tf": 2.23606797749979}, "fast_forward.util.pyterrier.FFInterpolate.__init__": {"tf": 3.7416573867739413}, "fast_forward.util.pyterrier.FFInterpolate.alpha": {"tf": 1.7320508075688772}, "fast_forward.util.pyterrier.FFInterpolate.transform": {"tf": 5.291502622129181}}, "df": 80, "t": {"docs": {"fast_forward.Ranking": {"tf": 1}, "fast_forward.index.Index.add": {"tf": 1}}, "df": 2, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward": {"tf": 1.7320508075688772}, "fast_forward.Ranking.q_ids": {"tf": 1}, "fast_forward.encoder": {"tf": 2}, "fast_forward.index": {"tf": 1.4142135623730951}, "fast_forward.quantizer.Quantizer.dtype": {"tf": 1}, "fast_forward.quantizer.Quantizer.serialize": {"tf": 1}, "fast_forward.util": {"tf": 1}, "fast_forward.util.Indexer.__init__": {"tf": 1}, "fast_forward.util.pyterrier": {"tf": 1}}, "df": 9}, "r": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"fast_forward": {"tf": 3.1622776601683795}, "fast_forward.Ranking.__init__": {"tf": 2.23606797749979}, "fast_forward.Ranking.has_queries": {"tf": 1}, "fast_forward.Ranking.q_ids": {"tf": 1.4142135623730951}, "fast_forward.Ranking.attach_queries": {"tf": 1.7320508075688772}, "fast_forward.Ranking.normalize": {"tf": 1}, "fast_forward.Ranking.cut": {"tf": 1.4142135623730951}, "fast_forward.Ranking.interpolate": {"tf": 1}, "fast_forward.Ranking.save": {"tf": 1}, "fast_forward.Ranking.from_run": {"tf": 1.7320508075688772}, "fast_forward.Ranking.from_file": {"tf": 1.7320508075688772}, "fast_forward.encoder": {"tf": 2.449489742783178}, "fast_forward.encoder.TransformerEncoder": {"tf": 1}, "fast_forward.index": {"tf": 6.6332495807108}, "fast_forward.index.Index.__init__": {"tf": 2}, "fast_forward.index.Index.mode": {"tf": 1.4142135623730951}, "fast_forward.index.Index.encode_queries": {"tf": 1.4142135623730951}, "fast_forward.index.Index.query_encoder": {"tf": 1.4142135623730951}, "fast_forward.index.Index.quantizer": {"tf": 1.4142135623730951}, "fast_forward.index.Index.dim": {"tf": 2.23606797749979}, "fast_forward.index.Index.doc_ids": {"tf": 1}, "fast_forward.index.Index.psg_ids": {"tf": 1}, "fast_forward.index.Index.add": {"tf": 3}, "fast_forward.index.Mode": {"tf": 1}, "fast_forward.index.OnDiskIndex": {"tf": 1.4142135623730951}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 2.6457513110645907}, "fast_forward.index.OnDiskIndex.to_memory": {"tf": 1.4142135623730951}, "fast_forward.index.OnDiskIndex.load": {"tf": 2.449489742783178}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 2}, "fast_forward.index.InMemoryIndex.consolidate": {"tf": 1.4142135623730951}, "fast_forward.quantizer": {"tf": 2.8284271247461903}, "fast_forward.quantizer.Quantizer.set_attached": {"tf": 1.4142135623730951}, "fast_forward.quantizer.Quantizer.fit": {"tf": 2}, "fast_forward.quantizer.Quantizer.dtype": {"tf": 2}, "fast_forward.quantizer.Quantizer.dims": {"tf": 2}, "fast_forward.quantizer.Quantizer.encode": {"tf": 1.7320508075688772}, "fast_forward.quantizer.Quantizer.decode": {"tf": 1.7320508075688772}, "fast_forward.quantizer.Quantizer.serialize": {"tf": 1.7320508075688772}, "fast_forward.quantizer.Quantizer.deserialize": {"tf": 2}, "fast_forward.quantizer.NanoPQ": {"tf": 1}, "fast_forward.quantizer.NanoPQ.__init__": {"tf": 1.7320508075688772}, "fast_forward.quantizer.NanoOPQ": {"tf": 1}, "fast_forward.quantizer.NanoOPQ.__init__": {"tf": 1.7320508075688772}, "fast_forward.util": {"tf": 3}, "fast_forward.util.Indexer.__init__": {"tf": 3}, "fast_forward.util.Indexer.from_dicts": {"tf": 1}, "fast_forward.util.Indexer.from_index": {"tf": 1.7320508075688772}, "fast_forward.util.to_ir_measures": {"tf": 1.7320508075688772}, "fast_forward.util.create_coalesced_index": {"tf": 2}, "fast_forward.util.pyterrier": {"tf": 1.4142135623730951}, "fast_forward.util.pyterrier.FFScore.__init__": {"tf": 1}, "fast_forward.util.pyterrier.FFScore.transform": {"tf": 2.449489742783178}, "fast_forward.util.pyterrier.FFInterpolate.__init__": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.transform": {"tf": 1.7320508075688772}}, "df": 54, "y": {"docs": {"fast_forward.Ranking.normalize": {"tf": 1}, "fast_forward.quantizer": {"tf": 1}}, "df": 2}, "n": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}, "m": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "n": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.encoder": {"tf": 1}}, "df": 2}, "t": {"docs": {"fast_forward.encoder": {"tf": 1.4142135623730951}, "fast_forward.index": {"tf": 1.7320508075688772}, "fast_forward.index.OnDiskIndex": {"tf": 1}, "fast_forward.index.InMemoryIndex": {"tf": 1}, "fast_forward.quantizer.NanoPQ": {"tf": 1}, "fast_forward.quantizer.NanoOPQ": {"tf": 1}, "fast_forward.util": {"tf": 1}, "fast_forward.util.Indexer.__init__": {"tf": 1}, "fast_forward.util.IndexingDict": {"tf": 1}, "fast_forward.util.pyterrier": {"tf": 1}, "fast_forward.util.pyterrier.FFScore": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate": {"tf": 1}}, "df": 12}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.util.create_coalesced_index": {"tf": 1}}, "df": 1}}}}}}}}, "o": {"docs": {"fast_forward": {"tf": 2.449489742783178}, "fast_forward.Ranking.__init__": {"tf": 1.4142135623730951}, "fast_forward.Ranking.attach_queries": {"tf": 1.4142135623730951}, "fast_forward.Ranking.normalize": {"tf": 1.4142135623730951}, "fast_forward.Ranking.cut": {"tf": 1}, "fast_forward.Ranking.interpolate": {"tf": 1}, "fast_forward.Ranking.from_run": {"tf": 1}, "fast_forward.Ranking.from_file": {"tf": 1.4142135623730951}, "fast_forward.encoder": {"tf": 1.7320508075688772}, "fast_forward.encoder.LambdaEncoder.__init__": {"tf": 1}, "fast_forward.index": {"tf": 3.7416573867739413}, "fast_forward.index.Index.__init__": {"tf": 1.4142135623730951}, "fast_forward.index.Index.encode_queries": {"tf": 1}, "fast_forward.index.Index.add": {"tf": 1.4142135623730951}, "fast_forward.index.Mode": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 2.23606797749979}, "fast_forward.index.OnDiskIndex.load": {"tf": 1.7320508075688772}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1.4142135623730951}, "fast_forward.quantizer": {"tf": 1}, "fast_forward.quantizer.Quantizer.set_attached": {"tf": 1}, "fast_forward.quantizer.Quantizer.fit": {"tf": 2}, "fast_forward.quantizer.Quantizer.encode": {"tf": 1.4142135623730951}, "fast_forward.quantizer.Quantizer.decode": {"tf": 1.4142135623730951}, "fast_forward.quantizer.Quantizer.serialize": {"tf": 1}, "fast_forward.quantizer.NanoPQ.__init__": {"tf": 1}, "fast_forward.quantizer.NanoOPQ.__init__": {"tf": 1}, "fast_forward.util": {"tf": 2.23606797749979}, "fast_forward.util.Indexer.__init__": {"tf": 3}, "fast_forward.util.pyterrier.FFScore.transform": {"tf": 1}}, "df": 29, "p": {"docs": {"fast_forward.Ranking.cut": {"tf": 1}, "fast_forward.index": {"tf": 1.4142135623730951}}, "df": 2}, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.encoder.TransformerEncoder.__init__": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"fast_forward.util": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {"fast_forward": {"tf": 2.23606797749979}, "fast_forward.Ranking.save": {"tf": 1}, "fast_forward.Ranking.from_run": {"tf": 1.4142135623730951}, "fast_forward.Ranking.from_file": {"tf": 1.4142135623730951}}, "df": 4}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.Ranking.interpolate": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"fast_forward.quantizer.Quantizer.fit": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.encoder.TransformerEncoder": {"tf": 1}, "fast_forward.encoder.TransformerEncoder.__init__": {"tf": 1}, "fast_forward.encoder.TCTColBERTQueryEncoder": {"tf": 1}, "fast_forward.encoder.TCTColBERTDocumentEncoder": {"tf": 1}, "fast_forward.quantizer": {"tf": 1}, "fast_forward.quantizer.Quantizer.fit": {"tf": 1}, "fast_forward.quantizer.Quantizer.dims": {"tf": 1}}, "df": 8}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_forward.quantizer": {"tf": 1.7320508075688772}, "fast_forward.quantizer.Quantizer.fit": {"tf": 1}}, "df": 2}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.encoder.TransformerEncoder": {"tf": 1}, "fast_forward.encoder.TransformerEncoder.__init__": {"tf": 1.4142135623730951}, "fast_forward.util.pyterrier.FFScore": {"tf": 1}, "fast_forward.util.pyterrier.FFScore.__init__": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.__init__": {"tf": 1}}, "df": 6, "s": {"docs": {"fast_forward.util.pyterrier": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.util.Indexer.from_index": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.encoder.TCTColBERTQueryEncoder": {"tf": 1.4142135623730951}, "fast_forward.encoder.TCTColBERTDocumentEncoder": {"tf": 1.4142135623730951}}, "df": 2, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.util": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}}}}, "s": {"docs": {}, "df": 0, "v": {"docs": {"fast_forward": {"tf": 2.23606797749979}, "fast_forward.index": {"tf": 1}}, "df": 2}}, "w": {"docs": {}, "df": 0, "o": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.index": {"tf": 1.7320508075688772}, "fast_forward.util": {"tf": 1}, "fast_forward.util.cos_dist": {"tf": 1}}, "df": 4}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.Ranking.save": {"tf": 1}, "fast_forward.util": {"tf": 1.4142135623730951}, "fast_forward.util.Indexer.__init__": {"tf": 1}, "fast_forward.util.create_coalesced_index": {"tf": 1.7320508075688772}}, "df": 4}}}}}, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.encoder": {"tf": 1}, "fast_forward.encoder.LambdaEncoder.__init__": {"tf": 1}, "fast_forward.util": {"tf": 1.4142135623730951}}, "df": 3, "s": {"docs": {"fast_forward.encoder": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.index": {"tf": 1}, "fast_forward.util": {"tf": 1}}, "df": 2}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.util.pyterrier": {"tf": 1}}, "df": 1}}}}}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.quantizer.Quantizer.dtype": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"fast_forward.index": {"tf": 1.4142135623730951}}, "df": 1}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"fast_forward.quantizer": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}}}}}}}}, "i": {"docs": {"fast_forward": {"tf": 1}}, "df": 1, "s": {"docs": {"fast_forward": {"tf": 2}, "fast_forward.Ranking.__init__": {"tf": 1.4142135623730951}, "fast_forward.Ranking.rr_scores": {"tf": 1}, "fast_forward.encoder": {"tf": 1.4142135623730951}, "fast_forward.index": {"tf": 3}, "fast_forward.index.Index.dim": {"tf": 1}, "fast_forward.index.OnDiskIndex": {"tf": 1}, "fast_forward.index.InMemoryIndex": {"tf": 1}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1}, "fast_forward.quantizer": {"tf": 1}, "fast_forward.quantizer.Quantizer.fit": {"tf": 1}, "fast_forward.quantizer.Quantizer.dims": {"tf": 1}, "fast_forward.quantizer.Quantizer.serialize": {"tf": 1}, "fast_forward.quantizer.NanoPQ": {"tf": 1}, "fast_forward.quantizer.NanoOPQ": {"tf": 1}, "fast_forward.util": {"tf": 2.8284271247461903}, "fast_forward.util.Indexer.__init__": {"tf": 2}, "fast_forward.util.create_coalesced_index": {"tf": 1}, "fast_forward.util.pyterrier": {"tf": 1}}, "df": 19}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.quantizer": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.index": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.encoder": {"tf": 1}, "fast_forward.util": {"tf": 1}}, "df": 2}}}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward": {"tf": 2.449489742783178}, "fast_forward.quantizer": {"tf": 2}, "fast_forward.util": {"tf": 1}}, "df": 3, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward": {"tf": 1}}, "df": 1}}}}}}}}, "n": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.Ranking.__init__": {"tf": 1}, "fast_forward.Ranking.q_ids": {"tf": 1}, "fast_forward.Ranking.normalize": {"tf": 1}, "fast_forward.Ranking.interpolate": {"tf": 1}, "fast_forward.Ranking.save": {"tf": 1}, "fast_forward.Ranking.from_run": {"tf": 1}, "fast_forward.Ranking.from_file": {"tf": 1.4142135623730951}, "fast_forward.encoder": {"tf": 1}, "fast_forward.index": {"tf": 2.6457513110645907}, "fast_forward.index.Index.add": {"tf": 1}, "fast_forward.index.Index.batch_iter": {"tf": 1}, "fast_forward.index.InMemoryIndex": {"tf": 1}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1}, "fast_forward.index.InMemoryIndex.consolidate": {"tf": 1.4142135623730951}, "fast_forward.quantizer": {"tf": 1}, "fast_forward.quantizer.Quantizer.fit": {"tf": 1}, "fast_forward.quantizer.Quantizer.serialize": {"tf": 1}, "fast_forward.util": {"tf": 2.449489742783178}, "fast_forward.util.pyterrier": {"tf": 1}, "fast_forward.util.pyterrier.FFScore.transform": {"tf": 1}}, "df": 21, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {"fast_forward": {"tf": 3.1622776601683795}, "fast_forward.index": {"tf": 4.123105625617661}, "fast_forward.index.Index.__init__": {"tf": 1}, "fast_forward.index.Index.dim": {"tf": 1}, "fast_forward.index.Index.add": {"tf": 1.7320508075688772}, "fast_forward.index.Mode": {"tf": 1}, "fast_forward.index.OnDiskIndex": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 2.23606797749979}, "fast_forward.index.OnDiskIndex.to_memory": {"tf": 1.4142135623730951}, "fast_forward.index.OnDiskIndex.load": {"tf": 2.23606797749979}, "fast_forward.index.InMemoryIndex": {"tf": 1}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1.7320508075688772}, "fast_forward.index.InMemoryIndex.consolidate": {"tf": 1}, "fast_forward.quantizer": {"tf": 2.23606797749979}, "fast_forward.quantizer.Quantizer.fit": {"tf": 1.4142135623730951}, "fast_forward.quantizer.Quantizer.serialize": {"tf": 1}, "fast_forward.util": {"tf": 4.242640687119285}, "fast_forward.util.Indexer.__init__": {"tf": 2.449489742783178}, "fast_forward.util.Indexer.from_dicts": {"tf": 1}, "fast_forward.util.Indexer.from_index": {"tf": 2}, "fast_forward.util.create_coalesced_index": {"tf": 2.449489742783178}, "fast_forward.util.pyterrier": {"tf": 1.7320508075688772}, "fast_forward.util.pyterrier.FFScore": {"tf": 1}, "fast_forward.util.pyterrier.FFScore.__init__": {"tf": 1.4142135623730951}}, "df": 24, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward": {"tf": 2.449489742783178}, "fast_forward.index": {"tf": 2}, "fast_forward.index.Index": {"tf": 1}, "fast_forward.quantizer": {"tf": 1}, "fast_forward.util": {"tf": 1}, "fast_forward.util.pyterrier": {"tf": 1}}, "df": 6}, "r": {"docs": {"fast_forward.util": {"tf": 2.6457513110645907}, "fast_forward.util.Indexer.__init__": {"tf": 1}, "fast_forward.util.IndexingDict": {"tf": 1}}, "df": 3, "s": {"docs": {"fast_forward.util": {"tf": 1}}, "df": 1}}, "d": {"docs": {"fast_forward.util.Indexer.__init__": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_forward.index.OnDiskIndex": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}, "fast_forward.util": {"tf": 1.7320508075688772}, "fast_forward.util.Indexer": {"tf": 1}}, "df": 5}}}}}, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"fast_forward.index.Index.add": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.Ranking.interpolate": {"tf": 1}, "fast_forward.index": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.__init__": {"tf": 1}}, "df": 4}}}, "e": {"docs": {"fast_forward": {"tf": 2.23606797749979}, "fast_forward.Ranking.interpolate": {"tf": 1.4142135623730951}, "fast_forward.util.pyterrier.FFInterpolate.transform": {"tf": 1}}, "df": 3, "d": {"docs": {"fast_forward": {"tf": 2}, "fast_forward.util.pyterrier.FFInterpolate.transform": {"tf": 1}}, "df": 2}, "s": {"docs": {"fast_forward.util.pyterrier.FFInterpolate": {"tf": 1}}, "df": 1}}}}}}}, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.quantizer": {"tf": 1}}, "df": 1}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.util.pyterrier": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {"fast_forward.index": {"tf": 1}, "fast_forward.index.OnDiskIndex.to_memory": {"tf": 1}, "fast_forward.util.pyterrier": {"tf": 1}}, "df": 3}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_forward": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.Ranking.__init__": {"tf": 1}, "fast_forward.Ranking.attach_queries": {"tf": 1}}, "df": 2}}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.quantizer.Quantizer.fit": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}}, "df": 2}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"fast_forward": {"tf": 1.7320508075688772}}, "df": 1, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_forward": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_forward": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.quantizer.NanoPQ.__init__": {"tf": 1}, "fast_forward.quantizer.NanoOPQ.__init__": {"tf": 1}}, "df": 2, "d": {"docs": {"fast_forward": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.index.OnDiskIndex.to_memory": {"tf": 1}, "fast_forward.util.create_coalesced_index": {"tf": 1}}, "df": 2}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.index": {"tf": 1}, "fast_forward.quantizer.NanoPQ": {"tf": 1}, "fast_forward.quantizer.NanoOPQ": {"tf": 1}, "fast_forward.util": {"tf": 1}}, "df": 5}}}}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {"fast_forward.index": {"tf": 1}, "fast_forward.util": {"tf": 1}}, "df": 2}}}}}}}}}}}, "p": {"docs": {"fast_forward.util.pyterrier.FFScore.transform": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.transform": {"tf": 1}}, "df": 2, "u": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.index": {"tf": 1.4142135623730951}, "fast_forward.index.Index.add": {"tf": 1}, "fast_forward.util.to_ir_measures": {"tf": 1}}, "df": 3}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1}, "fast_forward.util": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1}}, "df": 2}}}}}}, "t": {"docs": {"fast_forward.index": {"tf": 2}, "fast_forward.index.Index.query_encoder": {"tf": 1}, "fast_forward.index.Index.quantizer": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.util": {"tf": 1.4142135623730951}}, "df": 5, "s": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.index": {"tf": 1.7320508075688772}}, "df": 2}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.index.Index.add": {"tf": 1}}, "df": 1}}, "r": {"docs": {"fast_forward.util": {"tf": 1.4142135623730951}}, "df": 1, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.index.Index.batch_iter": {"tf": 1}}, "df": 1}, "o": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.util": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.util.Indexer.from_dicts": {"tf": 1}}, "df": 1}}}}}}}, "d": {"docs": {"fast_forward.index.Index.add": {"tf": 1.4142135623730951}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.util": {"tf": 1.4142135623730951}}, "df": 3, "s": {"docs": {"fast_forward": {"tf": 1.4142135623730951}, "fast_forward.Ranking.__init__": {"tf": 1.4142135623730951}, "fast_forward.Ranking.q_ids": {"tf": 1.4142135623730951}, "fast_forward.Ranking.attach_queries": {"tf": 1}, "fast_forward.Ranking.from_run": {"tf": 1}, "fast_forward.Ranking.from_file": {"tf": 1}, "fast_forward.index": {"tf": 2.6457513110645907}, "fast_forward.index.Index.doc_ids": {"tf": 1.4142135623730951}, "fast_forward.index.Index.psg_ids": {"tf": 1.4142135623730951}, "fast_forward.index.Index.add": {"tf": 3.3166247903554}, "fast_forward.index.Index.batch_iter": {"tf": 2.23606797749979}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.util.Indexer.from_index": {"tf": 1}}, "df": 13}}, "f": {"docs": {"fast_forward.Ranking.normalize": {"tf": 1}, "fast_forward.index": {"tf": 1}, "fast_forward.index.Index.query_encoder": {"tf": 1.4142135623730951}, "fast_forward.index.Index.quantizer": {"tf": 1.4142135623730951}, "fast_forward.index.Index.dim": {"tf": 1.7320508075688772}, "fast_forward.index.Index.batch_iter": {"tf": 1.4142135623730951}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.util": {"tf": 1.4142135623730951}, "fast_forward.util.Indexer.__init__": {"tf": 1}, "fast_forward.util.Indexer.from_index": {"tf": 1}}, "df": 10}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}}}}}}}}}, "r": {"docs": {"fast_forward.util.to_ir_measures": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "f": {"docs": {"fast_forward": {"tf": 2}, "fast_forward.Ranking": {"tf": 1}, "fast_forward.Ranking.q_ids": {"tf": 1}, "fast_forward.Ranking.cut": {"tf": 1}, "fast_forward.encoder": {"tf": 1.4142135623730951}, "fast_forward.encoder.LambdaEncoder.__init__": {"tf": 1}, "fast_forward.index": {"tf": 3.7416573867739413}, "fast_forward.index.Index.dim": {"tf": 1.4142135623730951}, "fast_forward.index.Index.add": {"tf": 1.7320508075688772}, "fast_forward.index.Index.batch_iter": {"tf": 1}, "fast_forward.index.Mode": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 2.23606797749979}, "fast_forward.index.OnDiskIndex.to_memory": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1.4142135623730951}, "fast_forward.index.InMemoryIndex.consolidate": {"tf": 1}, "fast_forward.quantizer": {"tf": 1.4142135623730951}, "fast_forward.quantizer.Quantizer.dtype": {"tf": 1.4142135623730951}, "fast_forward.quantizer.Quantizer.dims": {"tf": 1.4142135623730951}, "fast_forward.quantizer.Quantizer.encode": {"tf": 1}, "fast_forward.quantizer.Quantizer.decode": {"tf": 1}, "fast_forward.quantizer.Quantizer.serialize": {"tf": 1}, "fast_forward.quantizer.NanoPQ.__init__": {"tf": 1.4142135623730951}, "fast_forward.quantizer.NanoOPQ.__init__": {"tf": 1.4142135623730951}, "fast_forward.util": {"tf": 1.7320508075688772}, "fast_forward.util.Indexer.from_dicts": {"tf": 1}, "fast_forward.util.cos_dist": {"tf": 1}, "fast_forward.util.create_coalesced_index": {"tf": 1}, "fast_forward.util.pyterrier": {"tf": 1}}, "df": 29, "f": {"docs": {"fast_forward.index": {"tf": 1.4142135623730951}}, "df": 1}}, "n": {"docs": {"fast_forward": {"tf": 1.4142135623730951}, "fast_forward.index": {"tf": 1.7320508075688772}, "fast_forward.index.OnDiskIndex": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}, "fast_forward.quantizer": {"tf": 1.4142135623730951}, "fast_forward.util.Indexer.__init__": {"tf": 1}}, "df": 7, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {"fast_forward": {"tf": 1.4142135623730951}, "fast_forward.index": {"tf": 2.23606797749979}, "fast_forward.quantizer": {"tf": 1.4142135623730951}, "fast_forward.util": {"tf": 1.4142135623730951}}, "df": 4, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.index": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "y": {"docs": {"fast_forward.Ranking.q_ids": {"tf": 1}, "fast_forward.index": {"tf": 2.23606797749979}, "fast_forward.index.Index.add": {"tf": 1}, "fast_forward.quantizer.Quantizer.fit": {"tf": 1}}, "df": 4}}, "e": {"docs": {"fast_forward.Ranking.q_ids": {"tf": 1}, "fast_forward.encoder": {"tf": 1.7320508075688772}, "fast_forward.index": {"tf": 1}, "fast_forward.index.Index.add": {"tf": 1.4142135623730951}, "fast_forward.index.InMemoryIndex.consolidate": {"tf": 1}}, "df": 5}, "c": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.to_memory": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}, "fast_forward.util.Indexer.__init__": {"tf": 1}}, "df": 4}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward": {"tf": 1.4142135623730951}}, "df": 1, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.Ranking.save": {"tf": 1}, "fast_forward.encoder.TransformerEncoder": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.encoder.TransformerEncoder.__init__": {"tf": 1}, "fast_forward.index": {"tf": 1.7320508075688772}, "fast_forward.index.Index.batch_iter": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.util": {"tf": 1}}, "df": 6, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.quantizer.Quantizer.fit": {"tf": 1}, "fast_forward.util": {"tf": 1.4142135623730951}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"fast_forward.quantizer.Quantizer.dims": {"tf": 1}}, "df": 1}}}}}}}, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.util.Indexer.__init__": {"tf": 1}}, "df": 2}}}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.quantizer": {"tf": 1}, "fast_forward.quantizer.NanoOPQ": {"tf": 1}, "fast_forward.quantizer.NanoOPQ.__init__": {"tf": 1}}, "df": 3}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.util": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {"fast_forward.index.OnDiskIndex.load": {"tf": 1.4142135623730951}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.Ranking.interpolate": {"tf": 1.4142135623730951}}, "df": 1}}}}, "b": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.Ranking.from_run": {"tf": 1}, "fast_forward.Ranking.from_file": {"tf": 1}, "fast_forward.index": {"tf": 1}}, "df": 3}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"fast_forward.quantizer.Quantizer.decode": {"tf": 1}}, "df": 1}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.index.Index.batch_iter": {"tf": 1}}, "df": 1, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_forward.encoder": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"fast_forward.index.OnDiskIndex.__init__": {"tf": 1}}, "df": 1}}}}, "w": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.index.OnDiskIndex.__init__": {"tf": 2}}, "df": 1}}}}}}}}}, "f": {"docs": {"fast_forward.Ranking.from_file": {"tf": 1}, "fast_forward.encoder.LambdaEncoder.__init__": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward": {"tf": 3.3166247903554}, "fast_forward.encoder": {"tf": 1}, "fast_forward.index": {"tf": 1.7320508075688772}, "fast_forward.index.Index": {"tf": 1}, "fast_forward.index.OnDiskIndex": {"tf": 1}, "fast_forward.index.InMemoryIndex": {"tf": 1}, "fast_forward.quantizer": {"tf": 2}, "fast_forward.util": {"tf": 1.4142135623730951}, "fast_forward.util.pyterrier": {"tf": 1.7320508075688772}, "fast_forward.util.pyterrier.FFScore": {"tf": 1}, "fast_forward.util.pyterrier.FFScore.__init__": {"tf": 1}}, "df": 11}}, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.index.OnDiskIndex.__init__": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward": {"tf": 1.7320508075688772}, "fast_forward.Ranking.cut": {"tf": 1}, "fast_forward.encoder.Encoder": {"tf": 1}, "fast_forward.encoder.LambdaEncoder": {"tf": 1}, "fast_forward.encoder.TransformerEncoder": {"tf": 1}, "fast_forward.encoder.TCTColBERTQueryEncoder": {"tf": 1}, "fast_forward.encoder.TCTColBERTDocumentEncoder": {"tf": 1}, "fast_forward.index": {"tf": 2.6457513110645907}, "fast_forward.index.Index": {"tf": 1}, "fast_forward.index.Index.add": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1}, "fast_forward.quantizer": {"tf": 1}, "fast_forward.quantizer.Quantizer": {"tf": 1}, "fast_forward.util": {"tf": 2}, "fast_forward.util.Indexer": {"tf": 1}, "fast_forward.util.to_ir_measures": {"tf": 1}, "fast_forward.util.create_coalesced_index": {"tf": 1}, "fast_forward.util.pyterrier.FFScore.transform": {"tf": 1}}, "df": 20, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward": {"tf": 3.4641016151377544}, "fast_forward.encoder": {"tf": 1}, "fast_forward.index": {"tf": 1.7320508075688772}, "fast_forward.index.Index": {"tf": 1}, "fast_forward.index.OnDiskIndex": {"tf": 1}, "fast_forward.index.InMemoryIndex": {"tf": 1}, "fast_forward.quantizer": {"tf": 2}, "fast_forward.util": {"tf": 1.4142135623730951}, "fast_forward.util.pyterrier": {"tf": 1.7320508075688772}, "fast_forward.util.pyterrier.FFScore": {"tf": 1}, "fast_forward.util.pyterrier.FFScore.__init__": {"tf": 1}}, "df": 11}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.Ranking.from_file": {"tf": 1}}, "df": 2}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.quantizer": {"tf": 1}, "fast_forward.util": {"tf": 1}}, "df": 3}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_forward.encoder": {"tf": 1}, "fast_forward.index": {"tf": 2}, "fast_forward.quantizer": {"tf": 1}}, "df": 3}}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.index": {"tf": 1}, "fast_forward.util": {"tf": 1}}, "df": 3}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward": {"tf": 2.8284271247461903}, "fast_forward.index": {"tf": 1.7320508075688772}, "fast_forward.util": {"tf": 1}, "fast_forward.util.Indexer.__init__": {"tf": 1.4142135623730951}, "fast_forward.util.Indexer.from_index": {"tf": 1}, "fast_forward.util.cos_dist": {"tf": 1}}, "df": 6, "p": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.index": {"tf": 1}}, "df": 2}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward": {"tf": 2}, "fast_forward.Ranking.save": {"tf": 1}, "fast_forward.index": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 2}, "fast_forward.index.OnDiskIndex.load": {"tf": 1.4142135623730951}}, "df": 5}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"fast_forward": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}, "t": {"docs": {"fast_forward.quantizer": {"tf": 1}, "fast_forward.quantizer.Quantizer.set_attached": {"tf": 1.4142135623730951}, "fast_forward.quantizer.Quantizer.fit": {"tf": 1}, "fast_forward.quantizer.Quantizer.decode": {"tf": 1}, "fast_forward.util": {"tf": 1.7320508075688772}, "fast_forward.util.Indexer.__init__": {"tf": 2.449489742783178}}, "df": 6}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"fast_forward": {"tf": 3.605551275463989}, "fast_forward.Ranking.__init__": {"tf": 1}, "fast_forward.Ranking.from_run": {"tf": 1}, "fast_forward.Ranking.from_file": {"tf": 1}, "fast_forward.encoder.TCTColBERTQueryEncoder": {"tf": 1}, "fast_forward.encoder.TCTColBERTDocumentEncoder": {"tf": 1}, "fast_forward.index": {"tf": 2}, "fast_forward.index.OnDiskIndex": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}, "fast_forward.quantizer": {"tf": 1.7320508075688772}, "fast_forward.util": {"tf": 2}, "fast_forward.util.Indexer.from_dicts": {"tf": 1}, "fast_forward.util.Indexer.from_index": {"tf": 1}, "fast_forward.util.IndexingDict": {"tf": 1}, "fast_forward.util.pyterrier": {"tf": 1}}, "df": 16}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.Ranking.__init__": {"tf": 2.23606797749979}, "fast_forward.Ranking.from_run": {"tf": 1}, "fast_forward.Ranking.from_file": {"tf": 1}, "fast_forward.util.to_ir_measures": {"tf": 1.4142135623730951}, "fast_forward.util.pyterrier.FFScore.transform": {"tf": 1.7320508075688772}, "fast_forward.util.pyterrier.FFInterpolate.transform": {"tf": 1.4142135623730951}}, "df": 6}}}}, "f": {"docs": {"fast_forward": {"tf": 1.4142135623730951}, "fast_forward.util.pyterrier": {"tf": 1}}, "df": 2, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.util.pyterrier": {"tf": 1}, "fast_forward.util.pyterrier.FFScore.__init__": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate": {"tf": 1}}, "df": 3}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.util.pyterrier": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.__init__": {"tf": 1}}, "df": 2}}}}}}}}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_forward": {"tf": 1.4142135623730951}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_forward.encoder": {"tf": 1}, "fast_forward.encoder.LambdaEncoder.__init__": {"tf": 1}, "fast_forward.util.create_coalesced_index": {"tf": 1.4142135623730951}}, "df": 3, "s": {"docs": {"fast_forward.encoder.LambdaEncoder": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"fast_forward.index.InMemoryIndex.__init__": {"tf": 1}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"3": {"2": {"docs": {"fast_forward.quantizer": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}}}, "a": {"docs": {"fast_forward": {"tf": 3.1622776601683795}, "fast_forward.Ranking.__init__": {"tf": 1}, "fast_forward.Ranking.normalize": {"tf": 1}, "fast_forward.Ranking.rr_scores": {"tf": 1.4142135623730951}, "fast_forward.Ranking.save": {"tf": 1}, "fast_forward.Ranking.from_run": {"tf": 1.4142135623730951}, "fast_forward.Ranking.from_file": {"tf": 1.4142135623730951}, "fast_forward.encoder": {"tf": 1.7320508075688772}, "fast_forward.encoder.LambdaEncoder.__init__": {"tf": 1.4142135623730951}, "fast_forward.encoder.TransformerEncoder": {"tf": 1}, "fast_forward.encoder.TransformerEncoder.__init__": {"tf": 1}, "fast_forward.index": {"tf": 3.605551275463989}, "fast_forward.index.Index.dim": {"tf": 1}, "fast_forward.index.Index.add": {"tf": 1.7320508075688772}, "fast_forward.index.OnDiskIndex": {"tf": 1}, "fast_forward.quantizer": {"tf": 1.4142135623730951}, "fast_forward.quantizer.Quantizer.encode": {"tf": 1}, "fast_forward.quantizer.Quantizer.decode": {"tf": 1}, "fast_forward.quantizer.Quantizer.serialize": {"tf": 1}, "fast_forward.quantizer.Quantizer.deserialize": {"tf": 1}, "fast_forward.quantizer.NanoPQ.__init__": {"tf": 1}, "fast_forward.quantizer.NanoOPQ.__init__": {"tf": 1}, "fast_forward.util": {"tf": 2.449489742783178}, "fast_forward.util.Indexer.__init__": {"tf": 2.23606797749979}, "fast_forward.util.IndexingDict": {"tf": 1}, "fast_forward.util.to_ir_measures": {"tf": 1.4142135623730951}, "fast_forward.util.cos_dist": {"tf": 1}, "fast_forward.util.create_coalesced_index": {"tf": 1}, "fast_forward.util.pyterrier": {"tf": 1.4142135623730951}, "fast_forward.util.pyterrier.FFScore": {"tf": 1}, "fast_forward.util.pyterrier.FFScore.transform": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.transform": {"tf": 1}}, "df": 32, "s": {"docs": {"fast_forward": {"tf": 2.23606797749979}, "fast_forward.Ranking.interpolate": {"tf": 1.4142135623730951}, "fast_forward.Ranking.rr_scores": {"tf": 1}, "fast_forward.encoder": {"tf": 1}, "fast_forward.index": {"tf": 1.4142135623730951}, "fast_forward.quantizer": {"tf": 2}, "fast_forward.quantizer.Quantizer.set_attached": {"tf": 1}, "fast_forward.util": {"tf": 1.4142135623730951}, "fast_forward.util.to_ir_measures": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.transform": {"tf": 1}}, "df": 10, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.index.Index.add": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.quantizer": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {"fast_forward": {"tf": 1}}, "df": 1}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.quantizer.Quantizer.decode": {"tf": 1}}, "df": 1, "d": {"docs": {"fast_forward.quantizer.Quantizer.decode": {"tf": 1}}, "df": 1}}}}}}}}}}}, "n": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.Ranking.__init__": {"tf": 1}, "fast_forward.index": {"tf": 2}, "fast_forward.index.Index.__init__": {"tf": 1}, "fast_forward.index.Mode": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1}, "fast_forward.quantizer": {"tf": 1}, "fast_forward.quantizer.Quantizer.fit": {"tf": 1.4142135623730951}, "fast_forward.util": {"tf": 1.7320508075688772}, "fast_forward.util.Indexer.__init__": {"tf": 1}, "fast_forward.util.Indexer.from_dicts": {"tf": 1}, "fast_forward.util.pyterrier.FFScore.__init__": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.__init__": {"tf": 1}}, "df": 15, "d": {"docs": {"fast_forward": {"tf": 3.4641016151377544}, "fast_forward.Ranking.__init__": {"tf": 1}, "fast_forward.encoder": {"tf": 1}, "fast_forward.index": {"tf": 2.6457513110645907}, "fast_forward.index.Index.add": {"tf": 1.7320508075688772}, "fast_forward.index.Index.batch_iter": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1.4142135623730951}, "fast_forward.quantizer.Quantizer.dims": {"tf": 1.4142135623730951}, "fast_forward.util": {"tf": 1.4142135623730951}, "fast_forward.util.Indexer.__init__": {"tf": 1.7320508075688772}, "fast_forward.util.Indexer.from_index": {"tf": 1}}, "df": 11}, "c": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.encoder": {"tf": 1}}, "df": 1, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.encoder": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "y": {"docs": {"fast_forward.index.Index.query_encoder": {"tf": 1}, "fast_forward.index.Index.quantizer": {"tf": 1}, "fast_forward.index.Index.dim": {"tf": 1}, "fast_forward.index.Index.add": {"tf": 1}, "fast_forward.index.Index.batch_iter": {"tf": 1.4142135623730951}}, "df": 5}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.util.Indexer.from_index": {"tf": 1}}, "df": 1}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1, "p": {"docs": {"fast_forward": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.index": {"tf": 1}, "fast_forward.quantizer": {"tf": 1}, "fast_forward.quantizer.NanoPQ": {"tf": 1}, "fast_forward.quantizer.NanoOPQ": {"tf": 1}, "fast_forward.util": {"tf": 1}}, "df": 5}}}}}}}, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.quantizer.Quantizer.fit": {"tf": 1}, "fast_forward.util": {"tf": 1}}, "df": 2}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"fast_forward": {"tf": 1.4142135623730951}, "fast_forward.encoder": {"tf": 1}}, "df": 2}}}}}}}}}}}, "l": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.Ranking.normalize": {"tf": 1}, "fast_forward.Ranking.cut": {"tf": 1}, "fast_forward.index": {"tf": 1}, "fast_forward.index.Index.doc_ids": {"tf": 1}, "fast_forward.index.Index.psg_ids": {"tf": 1}, "fast_forward.index.Index.batch_iter": {"tf": 1}, "fast_forward.index.OnDiskIndex.to_memory": {"tf": 1}, "fast_forward.index.InMemoryIndex.consolidate": {"tf": 1}, "fast_forward.util.create_coalesced_index": {"tf": 1}, "fast_forward.util.pyterrier.FFScore.transform": {"tf": 1}}, "df": 11, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward": {"tf": 1.4142135623730951}, "fast_forward.encoder": {"tf": 1}}, "df": 2}}, "c": {"docs": {"fast_forward.index.InMemoryIndex.__init__": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.index.OnDiskIndex.__init__": {"tf": 1}}, "df": 1, "d": {"docs": {"fast_forward.index.InMemoryIndex.__init__": {"tf": 1}}, "df": 1}}}}}}}, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.Ranking.interpolate": {"tf": 1.7320508075688772}, "fast_forward.index": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.__init__": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.transform": {"tf": 1.4142135623730951}}, "df": 5}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "y": {"docs": {"fast_forward.Ranking.__init__": {"tf": 1}, "fast_forward.util.Indexer.__init__": {"tf": 1}}, "df": 2}}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {"fast_forward.index": {"tf": 1}, "fast_forward.index.Index.add": {"tf": 1}}, "df": 2}}, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"docs": {"fast_forward.index": {"tf": 1}, "fast_forward.util": {"tf": 1}}, "df": 2}}}}}}}}, "f": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.quantizer.Quantizer.dims": {"tf": 1}}, "df": 2, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.index": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}, "t": {"docs": {"fast_forward.Ranking.q_ids": {"tf": 1}, "fast_forward.index": {"tf": 1}, "fast_forward.index.Index.add": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.to_memory": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}, "fast_forward.util.Indexer.__init__": {"tf": 1}, "fast_forward.util.create_coalesced_index": {"tf": 1}}, "df": 8, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"fast_forward": {"tf": 2}, "fast_forward.Ranking.attach_queries": {"tf": 1}, "fast_forward.util": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.Ranking.has_queries": {"tf": 1}, "fast_forward.Ranking.attach_queries": {"tf": 1}, "fast_forward.quantizer.Quantizer.set_attached": {"tf": 1}, "fast_forward.quantizer.Quantizer.fit": {"tf": 1.4142135623730951}, "fast_forward.util.Indexer.__init__": {"tf": 1}}, "df": 6}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.quantizer.Quantizer.deserialize": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.Ranking.__init__": {"tf": 1}, "fast_forward.Ranking.q_ids": {"tf": 1}, "fast_forward.Ranking.attach_queries": {"tf": 1}, "fast_forward.Ranking.normalize": {"tf": 1.4142135623730951}, "fast_forward.Ranking.interpolate": {"tf": 1}, "fast_forward.encoder": {"tf": 1}, "fast_forward.index": {"tf": 2.8284271247461903}, "fast_forward.quantizer": {"tf": 1.4142135623730951}, "fast_forward.util": {"tf": 1}, "fast_forward.util.Indexer.from_index": {"tf": 1}, "fast_forward.util.pyterrier.FFScore.transform": {"tf": 1}}, "df": 12, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "y": {"docs": {"fast_forward.quantizer.Quantizer.fit": {"tf": 1}}, "df": 1}}}}, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"fast_forward.encoder.LambdaEncoder": {"tf": 1}}, "df": 1}}}}}}}, "g": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.encoder.TransformerEncoder.__init__": {"tf": 1}}, "df": 1}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.index.OnDiskIndex": {"tf": 1}}, "df": 1, "s": {"docs": {"fast_forward.encoder.TransformerEncoder.__init__": {"tf": 1}, "fast_forward.quantizer.Quantizer.fit": {"tf": 1}}, "df": 2}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.index.OnDiskIndex": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.index": {"tf": 1.4142135623730951}, "fast_forward.index.Index.add": {"tf": 1}, "fast_forward.util.Indexer.__init__": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_forward": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "l": {"docs": {"fast_forward.encoder.TransformerEncoder.__init__": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.util": {"tf": 1}}, "df": 2}}}}}}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_forward.index.OnDiskIndex.to_memory": {"tf": 1}, "fast_forward.util": {"tf": 1}, "fast_forward.util.create_coalesced_index": {"tf": 1}}, "df": 3}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.index.Index.add": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.encoder.LambdaEncoder": {"tf": 1}}, "df": 1}, "d": {"docs": {"fast_forward.encoder.TCTColBERTQueryEncoder": {"tf": 1}, "fast_forward.encoder.TCTColBERTDocumentEncoder": {"tf": 1}}, "df": 2}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.util": {"tf": 1}}, "df": 1}}}}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.index.Index": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"fast_forward.util": {"tf": 1}, "fast_forward.util.Indexer.__init__": {"tf": 1}}, "df": 2}}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"fast_forward": {"tf": 1.4142135623730951}, "fast_forward.index": {"tf": 1}, "fast_forward.quantizer": {"tf": 1.4142135623730951}, "fast_forward.quantizer.NanoPQ": {"tf": 1}, "fast_forward.quantizer.NanoOPQ": {"tf": 1}, "fast_forward.util.to_ir_measures": {"tf": 1}}, "df": 6}}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_forward": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_forward.index.OnDiskIndex": {"tf": 1}}, "df": 1}}}}}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.util.pyterrier": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "k": {"docs": {"fast_forward": {"tf": 1.4142135623730951}, "fast_forward.index": {"tf": 1}, "fast_forward.util.pyterrier": {"tf": 1}}, "df": 3}}, "a": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward": {"tf": 1.7320508075688772}, "fast_forward.index": {"tf": 1}, "fast_forward.index.OnDiskIndex.to_memory": {"tf": 1}, "fast_forward.util": {"tf": 1}}, "df": 4, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.index": {"tf": 1.4142135623730951}, "fast_forward.index.OnDiskIndex.to_memory": {"tf": 1}, "fast_forward.quantizer.Quantizer.deserialize": {"tf": 1}}, "df": 3}}}}}, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"fast_forward": {"tf": 1}}, "df": 1}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.index": {"tf": 1}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.Ranking.q_ids": {"tf": 1}, "fast_forward.index.Index.add": {"tf": 1}}, "df": 2}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.encoder": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"fast_forward.index.OnDiskIndex.__init__": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {"fast_forward.encoder.LambdaEncoder.__init__": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.encoder": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.index": {"tf": 1.4142135623730951}}, "df": 1}}}}, "l": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}, "s": {"docs": {"fast_forward": {"tf": 1}}, "df": 1, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"fast_forward": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward": {"tf": 2.8284271247461903}}, "df": 1, "s": {"docs": {"fast_forward": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.index": {"tf": 3.1622776601683795}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.index": {"tf": 1}, "fast_forward.quantizer.Quantizer.serialize": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "p": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.util.pyterrier": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.index.Index.batch_iter": {"tf": 1}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_forward.encoder": {"tf": 1}}, "df": 1}}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.util": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {"fast_forward.quantizer": {"tf": 1}}, "df": 1}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.quantizer.NanoPQ.__init__": {"tf": 1}, "fast_forward.quantizer.NanoOPQ.__init__": {"tf": 1}}, "df": 2, "s": {"docs": {"fast_forward.quantizer.NanoPQ.__init__": {"tf": 1}, "fast_forward.quantizer.NanoOPQ.__init__": {"tf": 1}}, "df": 2}}}}}}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.quantizer": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.util.to_ir_measures": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"fast_forward": {"tf": 2.6457513110645907}, "fast_forward.index": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.util": {"tf": 1.4142135623730951}, "fast_forward.util.create_coalesced_index": {"tf": 1}}, "df": 3}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.index.Index.add": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.Ranking.q_ids": {"tf": 1}, "fast_forward.Ranking.normalize": {"tf": 1}, "fast_forward.index.Mode": {"tf": 1}, "fast_forward.quantizer.Quantizer.set_attached": {"tf": 1}}, "df": 5, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "f": {"docs": {"fast_forward.Ranking.interpolate": {"tf": 1}}, "df": 1}}, "e": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_forward.index.InMemoryIndex.consolidate": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.util.cos_dist": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.quantizer.Quantizer.serialize": {"tf": 1.4142135623730951}, "fast_forward.quantizer.Quantizer.deserialize": {"tf": 1}}, "df": 2}}}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"fast_forward.util.pyterrier": {"tf": 1}}, "df": 1}}}}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.Ranking.__init__": {"tf": 1}, "fast_forward.Ranking.interpolate": {"tf": 1.7320508075688772}, "fast_forward.Ranking.rr_scores": {"tf": 1.4142135623730951}, "fast_forward.Ranking.from_run": {"tf": 1}, "fast_forward.Ranking.from_file": {"tf": 1}, "fast_forward.index": {"tf": 2}, "fast_forward.util.pyterrier.FFScore.transform": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.transform": {"tf": 1.4142135623730951}}, "df": 8, "s": {"docs": {"fast_forward": {"tf": 3.872983346207417}, "fast_forward.Ranking.__init__": {"tf": 1.7320508075688772}, "fast_forward.Ranking.normalize": {"tf": 1.7320508075688772}, "fast_forward.Ranking.cut": {"tf": 1}, "fast_forward.Ranking.interpolate": {"tf": 1}, "fast_forward.Ranking.rr_scores": {"tf": 1}, "fast_forward.index": {"tf": 2.23606797749979}, "fast_forward.util.pyterrier.FFScore": {"tf": 1}, "fast_forward.util.pyterrier.FFScore.transform": {"tf": 1.7320508075688772}, "fast_forward.util.pyterrier.FFInterpolate": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.transform": {"tf": 1.4142135623730951}}, "df": 11}, "d": {"docs": {"fast_forward.Ranking.q_ids": {"tf": 1}, "fast_forward.index": {"tf": 1.4142135623730951}}, "df": 2}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_forward.Ranking.cut": {"tf": 1}, "fast_forward.Ranking.rr_scores": {"tf": 1}}, "df": 2}}}}}}, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.index": {"tf": 1.4142135623730951}, "fast_forward.index.Index.__init__": {"tf": 1.4142135623730951}, "fast_forward.index.Index.batch_iter": {"tf": 1.4142135623730951}, "fast_forward.index.OnDiskIndex": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 2.8284271247461903}, "fast_forward.index.OnDiskIndex.to_memory": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 2}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 2.449489742783178}, "fast_forward.quantizer": {"tf": 1}, "fast_forward.util": {"tf": 2.23606797749979}, "fast_forward.util.Indexer.__init__": {"tf": 1.7320508075688772}, "fast_forward.util.create_coalesced_index": {"tf": 1}}, "df": 13}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"fast_forward": {"tf": 1}}, "df": 1}, "e": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.index": {"tf": 1}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.encoder": {"tf": 1}, "fast_forward.encoder.LambdaEncoder.__init__": {"tf": 1}, "fast_forward.index": {"tf": 1}}, "df": 3}}}}}, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward": {"tf": 1.7320508075688772}, "fast_forward.Ranking.save": {"tf": 1}}, "df": 2, "d": {"docs": {"fast_forward": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.util": {"tf": 1.4142135623730951}, "fast_forward.util.Indexer.from_index": {"tf": 1.4142135623730951}, "fast_forward.util.create_coalesced_index": {"tf": 1.4142135623730951}}, "df": 4}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.Ranking.__init__": {"tf": 1.4142135623730951}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.index": {"tf": 1.4142135623730951}}, "df": 1}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.index": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.index": {"tf": 1}, "fast_forward.util": {"tf": 1}}, "df": 2}}, "c": {"docs": {"fast_forward.quantizer.Quantizer.fit": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"fast_forward.index": {"tf": 1}, "fast_forward.util.pyterrier": {"tf": 1}}, "df": 2}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.index": {"tf": 1}}, "df": 2}}}}}}, "o": {"docs": {}, "df": 0, "w": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.Ranking.__init__": {"tf": 1}, "fast_forward.Ranking.from_run": {"tf": 1}, "fast_forward.Ranking.from_file": {"tf": 1}, "fast_forward.quantizer": {"tf": 1}}, "df": 4}}}, "w": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.encoder": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.index": {"tf": 1.4142135623730951}, "fast_forward.index.Index.add": {"tf": 1}}, "df": 2}}, "r": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.index.InMemoryIndex.__init__": {"tf": 1}}, "df": 1, "s": {"docs": {"fast_forward.index.InMemoryIndex.consolidate": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.index": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.index": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"fast_forward": {"tf": 1.4142135623730951}, "fast_forward.index": {"tf": 3.1622776601683795}}, "df": 2}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.Ranking.cut": {"tf": 1}, "fast_forward.index": {"tf": 1.7320508075688772}, "fast_forward.index.Index.add": {"tf": 1}, "fast_forward.util.create_coalesced_index": {"tf": 1}}, "df": 5}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"fast_forward.encoder": {"tf": 1}}, "df": 1}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward": {"tf": 1.4142135623730951}, "fast_forward.encoder": {"tf": 1}}, "df": 2}}}}}}}}, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.encoder": {"tf": 1.7320508075688772}, "fast_forward.encoder.LambdaEncoder.__init__": {"tf": 1}, "fast_forward.index.Index.encode_queries": {"tf": 1.4142135623730951}, "fast_forward.quantizer.Quantizer.encode": {"tf": 1}}, "df": 4, "r": {"docs": {"fast_forward": {"tf": 2}, "fast_forward.encoder": {"tf": 2.6457513110645907}, "fast_forward.encoder.LambdaEncoder": {"tf": 1}, "fast_forward.encoder.LambdaEncoder.__init__": {"tf": 1}, "fast_forward.encoder.TransformerEncoder.__init__": {"tf": 1}, "fast_forward.encoder.TCTColBERTQueryEncoder": {"tf": 1}, "fast_forward.encoder.TCTColBERTDocumentEncoder": {"tf": 1}, "fast_forward.index": {"tf": 2}, "fast_forward.index.Index.__init__": {"tf": 2}, "fast_forward.index.Index.encode_queries": {"tf": 1}, "fast_forward.index.Index.query_encoder": {"tf": 1.4142135623730951}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 2}, "fast_forward.index.OnDiskIndex.load": {"tf": 2}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 2}, "fast_forward.util": {"tf": 2}, "fast_forward.util.Indexer.__init__": {"tf": 2}}, "df": 16, "s": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.encoder": {"tf": 1.4142135623730951}, "fast_forward.encoder.Encoder": {"tf": 1}}, "df": 3}}, "s": {"docs": {"fast_forward.encoder": {"tf": 1}}, "df": 1}, "d": {"docs": {"fast_forward.encoder": {"tf": 1}, "fast_forward.index": {"tf": 1}, "fast_forward.quantizer": {"tf": 1}, "fast_forward.quantizer.Quantizer.encode": {"tf": 1}}, "df": 4}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_forward.encoder": {"tf": 1}, "fast_forward.encoder.LambdaEncoder": {"tf": 1}, "fast_forward.encoder.TransformerEncoder": {"tf": 1}}, "df": 3}}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"fast_forward.index": {"tf": 1}, "fast_forward.index.OnDiskIndex.to_memory": {"tf": 1}, "fast_forward.index.InMemoryIndex": {"tf": 1}}, "df": 3}}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {"fast_forward.index.Mode": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.quantizer.NanoPQ.__init__": {"tf": 1}, "fast_forward.quantizer.NanoOPQ.__init__": {"tf": 1}}, "df": 2}}}}, "d": {"docs": {"fast_forward.util.create_coalesced_index": {"tf": 1}}, "df": 1}}, "x": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward": {"tf": 1.4142135623730951}, "fast_forward.encoder": {"tf": 1}, "fast_forward.index": {"tf": 1.7320508075688772}, "fast_forward.util": {"tf": 1.7320508075688772}}, "df": 4}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.Ranking.has_queries": {"tf": 1}, "fast_forward.index.Index.dim": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_forward.Ranking.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}, "fast_forward.util": {"tf": 1}}, "df": 3}}}, "s": {"docs": {"fast_forward.index.Index.encode_queries": {"tf": 1}, "fast_forward.index.Index.query_encoder": {"tf": 1}, "fast_forward.index.Index.quantizer": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1.4142135623730951}}, "df": 4}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"fast_forward.Ranking.normalize": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.Ranking.interpolate": {"tf": 1}, "fast_forward.index": {"tf": 1}, "fast_forward.index.Index.batch_iter": {"tf": 1}}, "df": 3}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}}}}}}}}, "s": {"docs": {"fast_forward.util.Indexer.__init__": {"tf": 1.4142135623730951}}, "df": 1, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}}}}}}}}, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.util": {"tf": 1}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"fast_forward.util.Indexer.__init__": {"tf": 1.4142135623730951}, "fast_forward.util.create_coalesced_index": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.index.OnDiskIndex.__init__": {"tf": 1}}, "df": 1}}}}}}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {"fast_forward.index.OnDiskIndex.__init__": {"tf": 1.4142135623730951}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_forward": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.index": {"tf": 1.4142135623730951}, "fast_forward.util.pyterrier.FFScore.transform": {"tf": 1}}, "df": 3, "d": {"docs": {"fast_forward.Ranking.rr_scores": {"tf": 1}, "fast_forward.index": {"tf": 1.4142135623730951}, "fast_forward.util": {"tf": 1}, "fast_forward.util.pyterrier.FFScore.transform": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate": {"tf": 1}}, "df": 5}, "s": {"docs": {"fast_forward.index": {"tf": 1}, "fast_forward.util.pyterrier.FFScore": {"tf": 1}}, "df": 2}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.util": {"tf": 1}}, "df": 2}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_forward.quantizer": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.util.create_coalesced_index": {"tf": 1}}, "df": 1}}}}}}}, "/": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward": {"tf": 1}}, "df": 1}}}}}}}}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "/": {"3": {"1": {"0": {"docs": {}, "df": 0, "c": {"8": {"2": {"8": {"2": {"1": {"1": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "b": {"3": {"docs": {}, "df": 0, "b": {"9": {"5": {"2": {"8": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "d": {"5": {"9": {"6": {"9": {"5": {"1": {"8": {"4": {"docs": {}, "df": 0, "c": {"8": {"0": {"8": {"2": {"5": {"6": {"8": {"4": {"docs": {}, "df": 0, "a": {"2": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.encoder.TCTColBERTQueryEncoder": {"tf": 1}, "fast_forward.encoder.TCTColBERTDocumentEncoder": {"tf": 1}}, "df": 2}}}}}}}}}}}}}}}}}, "docs": {}, "df": 0}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}}}}}}}}}}}}}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.index.InMemoryIndex.consolidate": {"tf": 1}}, "df": 1, "d": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.util": {"tf": 1.4142135623730951}, "fast_forward.util.create_coalesced_index": {"tf": 1.4142135623730951}}, "df": 3}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.util": {"tf": 2}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.util": {"tf": 1}}, "df": 2, "s": {"docs": {"fast_forward.util": {"tf": 1}, "fast_forward.util.Indexer": {"tf": 1}}, "df": 2}}}}}}}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.encoder.TCTColBERTQueryEncoder": {"tf": 1.4142135623730951}, "fast_forward.encoder.TCTColBERTDocumentEncoder": {"tf": 1.4142135623730951}, "fast_forward.util": {"tf": 1}}, "df": 4}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "n": {"docs": {"fast_forward.util.pyterrier.FFScore.transform": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_forward": {"tf": 1.4142135623730951}, "fast_forward.index": {"tf": 1}, "fast_forward.index.Index.add": {"tf": 1.7320508075688772}, "fast_forward.quantizer": {"tf": 1}, "fast_forward.quantizer.Quantizer.encode": {"tf": 1}}, "df": 5}}}, "s": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}}}}}}}, "e": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.quantizer": {"tf": 1}, "fast_forward.util": {"tf": 1.4142135623730951}, "fast_forward.util.pyterrier": {"tf": 1}}, "df": 3}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_forward.Ranking.__init__": {"tf": 1}, "fast_forward.util.create_coalesced_index": {"tf": 1}}, "df": 2}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.index.InMemoryIndex.consolidate": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.Ranking.q_ids": {"tf": 1}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.util": {"tf": 1}}, "df": 1}, "d": {"docs": {"fast_forward.util.IndexingDict": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "y": {"docs": {"fast_forward.Ranking.__init__": {"tf": 1.4142135623730951}}, "df": 1}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.index.Index.dim": {"tf": 1}, "fast_forward.quantizer.Quantizer.dtype": {"tf": 1.4142135623730951}, "fast_forward.quantizer.Quantizer.dims": {"tf": 1}, "fast_forward.quantizer.Quantizer.encode": {"tf": 1}, "fast_forward.quantizer.Quantizer.decode": {"tf": 1.7320508075688772}}, "df": 5}, "w": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.quantizer.NanoPQ.__init__": {"tf": 1}, "fast_forward.quantizer.NanoOPQ.__init__": {"tf": 1}}, "df": 2}}}}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.util.cos_dist": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward": {"tf": 1.7320508075688772}, "fast_forward.Ranking.__init__": {"tf": 1}, "fast_forward.Ranking.from_run": {"tf": 1}, "fast_forward.Ranking.from_file": {"tf": 1}, "fast_forward.encoder.LambdaEncoder.__init__": {"tf": 1}, "fast_forward.encoder.TransformerEncoder.__init__": {"tf": 1}, "fast_forward.index": {"tf": 1.4142135623730951}, "fast_forward.index.Index.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1.4142135623730951}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1}, "fast_forward.util": {"tf": 1.4142135623730951}, "fast_forward.util.Indexer.__init__": {"tf": 1}, "fast_forward.util.create_coalesced_index": {"tf": 1}, "fast_forward.util.pyterrier.FFScore.__init__": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.__init__": {"tf": 1}}, "df": 15, "d": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.util": {"tf": 1.7320508075688772}}, "df": 2}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_forward.index": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.encoder": {"tf": 1.4142135623730951}}, "df": 2}}}}, "t": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.index": {"tf": 1.4142135623730951}}, "df": 2, "o": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {"fast_forward.Ranking.cut": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"fast_forward.index": {"tf": 1}, "fast_forward.quantizer": {"tf": 1}}, "df": 2}}}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {"fast_forward.util": {"tf": 1}}, "df": 1, ":": {"0": {"docs": {"fast_forward.util": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {"fast_forward": {"tf": 2.23606797749979}, "fast_forward.encoder": {"tf": 1.4142135623730951}, "fast_forward.index": {"tf": 2.6457513110645907}, "fast_forward.index.Index.add": {"tf": 1}, "fast_forward.quantizer.Quantizer.fit": {"tf": 1}, "fast_forward.util": {"tf": 2}, "fast_forward.util.Indexer.__init__": {"tf": 1}, "fast_forward.util.pyterrier": {"tf": 1}}, "df": 8, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.util": {"tf": 1}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.encoder": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"fast_forward.quantizer.Quantizer.set_attached": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.encoder": {"tf": 1}, "fast_forward.encoder.Encoder": {"tf": 1}, "fast_forward.encoder.LambdaEncoder": {"tf": 1}, "fast_forward.index.Index": {"tf": 1}, "fast_forward.quantizer": {"tf": 1}, "fast_forward.quantizer.Quantizer": {"tf": 1}, "fast_forward.util": {"tf": 1}, "fast_forward.util.Indexer": {"tf": 1}}, "df": 9}}}}, "d": {"docs": {"fast_forward": {"tf": 1}}, "df": 1}, "p": {"docs": {}, "df": 0, "u": {"docs": {"fast_forward.util": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "p": {"docs": {"fast_forward": {"tf": 1}}, "df": 1, "s": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.index": {"tf": 1}}, "df": 2}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward": {"tf": 1.7320508075688772}, "fast_forward.encoder": {"tf": 1.4142135623730951}, "fast_forward.index": {"tf": 1.4142135623730951}, "fast_forward.index.Index.__init__": {"tf": 1.4142135623730951}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.to_memory": {"tf": 1}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1.4142135623730951}, "fast_forward.quantizer.NanoPQ.__init__": {"tf": 1}, "fast_forward.quantizer.NanoOPQ.__init__": {"tf": 1}, "fast_forward.util.Indexer.__init__": {"tf": 1}, "fast_forward.util.create_coalesced_index": {"tf": 1}}, "df": 11, "d": {"docs": {"fast_forward.Ranking.rr_scores": {"tf": 1}, "fast_forward.index": {"tf": 1}, "fast_forward.index.Index.dim": {"tf": 1}, "fast_forward.index.Mode": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.quantizer": {"tf": 1.4142135623730951}, "fast_forward.quantizer.Quantizer.serialize": {"tf": 1}, "fast_forward.util": {"tf": 1.4142135623730951}, "fast_forward.util.Indexer.__init__": {"tf": 1}}, "df": 9}, "s": {"docs": {"fast_forward.encoder.TransformerEncoder": {"tf": 1}, "fast_forward.index.OnDiskIndex": {"tf": 1}, "fast_forward.quantizer.NanoPQ": {"tf": 1}, "fast_forward.quantizer.NanoOPQ": {"tf": 1}, "fast_forward.util.Indexer.from_index": {"tf": 1}}, "df": 5}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_forward": {"tf": 2.23606797749979}, "fast_forward.Ranking.rr_scores": {"tf": 1}, "fast_forward.index": {"tf": 1.7320508075688772}, "fast_forward.util.create_coalesced_index": {"tf": 1}, "fast_forward.util.pyterrier": {"tf": 1}, "fast_forward.util.pyterrier.FFScore": {"tf": 1}}, "df": 6}}}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"fast_forward.encoder": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.util": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.Ranking.q_ids": {"tf": 1}, "fast_forward.index.Index.doc_ids": {"tf": 1}, "fast_forward.index.Index.psg_ids": {"tf": 1}, "fast_forward.index.Index.add": {"tf": 1.4142135623730951}}, "df": 4}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.index.OnDiskIndex": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"fast_forward.util": {"tf": 1}, "fast_forward.util.pyterrier": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"fast_forward.util": {"tf": 1}, "fast_forward.util.Indexer": {"tf": 1}}, "df": 2}}}}}}}, "b": {"docs": {"fast_forward.util.cos_dist": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.encoder": {"tf": 1}, "fast_forward.encoder.Encoder": {"tf": 1}, "fast_forward.index.Index": {"tf": 1}, "fast_forward.quantizer.Quantizer": {"tf": 1}}, "df": 4, "d": {"docs": {"fast_forward": {"tf": 1.4142135623730951}, "fast_forward.quantizer": {"tf": 1.4142135623730951}}, "df": 2}}}, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"fast_forward.encoder": {"tf": 1}, "fast_forward.index": {"tf": 1.4142135623730951}, "fast_forward.index.Index.__init__": {"tf": 1.4142135623730951}, "fast_forward.index.Index.batch_iter": {"tf": 1.4142135623730951}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1.4142135623730951}, "fast_forward.index.OnDiskIndex.to_memory": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1.4142135623730951}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1.4142135623730951}, "fast_forward.quantizer.Quantizer.encode": {"tf": 1}, "fast_forward.quantizer.Quantizer.decode": {"tf": 1}, "fast_forward.util": {"tf": 1.4142135623730951}, "fast_forward.util.Indexer.__init__": {"tf": 2.23606797749979}, "fast_forward.util.create_coalesced_index": {"tf": 1}}, "df": 13, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.encoder": {"tf": 1}, "fast_forward.index": {"tf": 1}, "fast_forward.index.Index.batch_iter": {"tf": 1.4142135623730951}, "fast_forward.index.OnDiskIndex.to_memory": {"tf": 1}, "fast_forward.util": {"tf": 1.4142135623730951}, "fast_forward.util.Indexer.__init__": {"tf": 1.4142135623730951}, "fast_forward.util.create_coalesced_index": {"tf": 1}}, "df": 7}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.util.pyterrier": {"tf": 1}}, "df": 1}}}}}}}}}}}, "c": {"docs": {}, "df": 0, "k": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"fast_forward": {"tf": 2.23606797749979}, "fast_forward.Ranking.__init__": {"tf": 1}, "fast_forward.Ranking.normalize": {"tf": 1}, "fast_forward.Ranking.from_run": {"tf": 1}, "fast_forward.Ranking.from_file": {"tf": 1}, "fast_forward.encoder": {"tf": 1}, "fast_forward.index": {"tf": 2.8284271247461903}, "fast_forward.index.Index.add": {"tf": 2.449489742783178}, "fast_forward.index.Index.batch_iter": {"tf": 1}, "fast_forward.quantizer": {"tf": 1.4142135623730951}, "fast_forward.quantizer.Quantizer.fit": {"tf": 1}, "fast_forward.quantizer.Quantizer.encode": {"tf": 1}, "fast_forward.quantizer.Quantizer.decode": {"tf": 1}, "fast_forward.quantizer.Quantizer.serialize": {"tf": 1}, "fast_forward.util": {"tf": 2}, "fast_forward.util.Indexer.__init__": {"tf": 2.23606797749979}, "fast_forward.util.create_coalesced_index": {"tf": 1}, "fast_forward.util.pyterrier": {"tf": 1}}, "df": 18, "s": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.Ranking.cut": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_forward.index": {"tf": 1}, "fast_forward.quantizer.Quantizer.fit": {"tf": 1}}, "df": 2}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}}}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.quantizer": {"tf": 1}, "fast_forward.quantizer.Quantizer.fit": {"tf": 1}, "fast_forward.quantizer.Quantizer.dims": {"tf": 1.4142135623730951}}, "df": 3}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {"fast_forward.quantizer.Quantizer.set_attached": {"tf": 1}, "fast_forward.quantizer.Quantizer.decode": {"tf": 1}, "fast_forward.util.Indexer.__init__": {"tf": 1}}, "df": 3}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.Ranking.cut": {"tf": 1}, "fast_forward.index.Index.add": {"tf": 1}}, "df": 3}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.util": {"tf": 1}, "fast_forward.util.Indexer.__init__": {"tf": 1}}, "df": 2}}}}}}}, "y": {"docs": {"fast_forward.Ranking.__init__": {"tf": 1}, "fast_forward.Ranking.rr_scores": {"tf": 1}, "fast_forward.encoder": {"tf": 1.4142135623730951}, "fast_forward.index": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1.4142135623730951}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}, "fast_forward.quantizer.Quantizer.dtype": {"tf": 1}, "fast_forward.util.IndexingDict": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate": {"tf": 1}}, "df": 9}, "m": {"2": {"5": {"docs": {"fast_forward.util.pyterrier": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}, "r": {"docs": {"fast_forward": {"tf": 2}, "fast_forward.Ranking": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {"fast_forward": {"tf": 1.7320508075688772}, "fast_forward.Ranking.rr_scores": {"tf": 1.4142135623730951}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_forward": {"tf": 5.830951894845301}, "fast_forward.Ranking.__init__": {"tf": 1}, "fast_forward.Ranking.has_queries": {"tf": 1}, "fast_forward.Ranking.q_ids": {"tf": 1}, "fast_forward.Ranking.attach_queries": {"tf": 1.4142135623730951}, "fast_forward.Ranking.normalize": {"tf": 1}, "fast_forward.Ranking.cut": {"tf": 1}, "fast_forward.Ranking.interpolate": {"tf": 1.7320508075688772}, "fast_forward.Ranking.rr_scores": {"tf": 1}, "fast_forward.Ranking.save": {"tf": 1}, "fast_forward.Ranking.from_run": {"tf": 1.4142135623730951}, "fast_forward.Ranking.from_file": {"tf": 1.4142135623730951}, "fast_forward.index": {"tf": 3.7416573867739413}, "fast_forward.index.Index.__init__": {"tf": 1}, "fast_forward.index.Index.mode": {"tf": 1.4142135623730951}, "fast_forward.index.Mode": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1}, "fast_forward.util.to_ir_measures": {"tf": 1.7320508075688772}, "fast_forward.util.pyterrier": {"tf": 1}}, "df": 21, "s": {"docs": {"fast_forward": {"tf": 2.8284271247461903}, "fast_forward.Ranking": {"tf": 1}, "fast_forward.index": {"tf": 1}}, "df": 3}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"fast_forward.quantizer": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.Ranking.__init__": {"tf": 1}, "fast_forward.Ranking.attach_queries": {"tf": 1}, "fast_forward.index.Index.encode_queries": {"tf": 1}, "fast_forward.index.Index.add": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.quantizer.Quantizer.set_attached": {"tf": 1}, "fast_forward.quantizer.Quantizer.fit": {"tf": 1}, "fast_forward.quantizer.Quantizer.decode": {"tf": 1}, "fast_forward.util.Indexer.__init__": {"tf": 1}, "fast_forward.util.create_coalesced_index": {"tf": 1}}, "df": 10}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.encoder": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {"fast_forward": {"tf": 1.4142135623730951}, "fast_forward.Ranking.rr_scores": {"tf": 1}, "fast_forward.index": {"tf": 1.7320508075688772}, "fast_forward.util.pyterrier": {"tf": 1}}, "df": 4, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"fast_forward": {"tf": 1.4142135623730951}, "fast_forward.index": {"tf": 1}}, "df": 2}}, "e": {"docs": {"fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}}, "df": 2, "r": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"fast_forward.index": {"tf": 1}, "fast_forward.index.Index.mode": {"tf": 1}, "fast_forward.index.Index.query_encoder": {"tf": 1}, "fast_forward.index.Index.quantizer": {"tf": 1}, "fast_forward.index.Index.dim": {"tf": 1.7320508075688772}, "fast_forward.index.Index.doc_ids": {"tf": 1}, "fast_forward.index.Index.psg_ids": {"tf": 1}, "fast_forward.quantizer.Quantizer.dims": {"tf": 1}, "fast_forward.quantizer.Quantizer.serialize": {"tf": 1}, "fast_forward.util.to_ir_measures": {"tf": 1}}, "df": 10, "s": {"docs": {"fast_forward.Ranking.has_queries": {"tf": 1}, "fast_forward.Ranking.q_ids": {"tf": 1}, "fast_forward.Ranking.attach_queries": {"tf": 1}, "fast_forward.Ranking.normalize": {"tf": 1}, "fast_forward.Ranking.cut": {"tf": 1}, "fast_forward.Ranking.interpolate": {"tf": 1}, "fast_forward.Ranking.rr_scores": {"tf": 1}, "fast_forward.Ranking.from_run": {"tf": 1}, "fast_forward.Ranking.from_file": {"tf": 1}, "fast_forward.encoder.TransformerEncoder": {"tf": 1}, "fast_forward.index.Index.mode": {"tf": 1}, "fast_forward.index.Index.encode_queries": {"tf": 1}, "fast_forward.index.Index.query_encoder": {"tf": 1}, "fast_forward.index.Index.quantizer": {"tf": 1}, "fast_forward.index.Index.dim": {"tf": 1}, "fast_forward.index.Index.doc_ids": {"tf": 1}, "fast_forward.index.Index.psg_ids": {"tf": 1}, "fast_forward.index.OnDiskIndex.to_memory": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}, "fast_forward.quantizer.Quantizer.dtype": {"tf": 1}, "fast_forward.quantizer.Quantizer.dims": {"tf": 1}, "fast_forward.quantizer.Quantizer.encode": {"tf": 1}, "fast_forward.quantizer.Quantizer.decode": {"tf": 1}, "fast_forward.quantizer.Quantizer.serialize": {"tf": 1}, "fast_forward.quantizer.Quantizer.deserialize": {"tf": 1}, "fast_forward.util.to_ir_measures": {"tf": 1}, "fast_forward.util.cos_dist": {"tf": 1}, "fast_forward.util.pyterrier.FFScore.transform": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.transform": {"tf": 1}}, "df": 29}}}}}, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.Ranking.from_file": {"tf": 1}, "fast_forward.index.OnDiskIndex": {"tf": 1}}, "df": 3}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_forward.index.Index.add": {"tf": 1}}, "df": 1, "s": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.index": {"tf": 1}, "fast_forward.util": {"tf": 1}}, "df": 3}, "s": {"docs": {"fast_forward.index": {"tf": 1}, "fast_forward.util.Indexer.__init__": {"tf": 1}}, "df": 2}}}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.Ranking.__init__": {"tf": 1}, "fast_forward.Ranking.from_run": {"tf": 1}, "fast_forward.Ranking.from_file": {"tf": 1}}, "df": 4}}, "s": {"docs": {"fast_forward.Ranking": {"tf": 1}, "fast_forward.util.IndexingDict": {"tf": 1}}, "df": 2}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_forward.quantizer.Quantizer.serialize": {"tf": 1}}, "df": 1, "s": {"docs": {"fast_forward.index": {"tf": 1.4142135623730951}, "fast_forward.index.Index.encode_queries": {"tf": 1}, "fast_forward.index.Index.add": {"tf": 1.4142135623730951}, "fast_forward.quantizer.Quantizer.decode": {"tf": 1}, "fast_forward.quantizer.Quantizer.serialize": {"tf": 1}, "fast_forward.util": {"tf": 1}, "fast_forward.util.Indexer.from_index": {"tf": 1}}, "df": 7}}}}}}}}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.quantizer.Quantizer.deserialize": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.util.Indexer.from_index": {"tf": 1}}, "df": 1}}}}}}}}}}, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"fast_forward": {"tf": 1.4142135623730951}, "fast_forward.Ranking.rr_scores": {"tf": 1}}, "df": 2}}}}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.Ranking.cut": {"tf": 1}}, "df": 1, "s": {"docs": {"fast_forward.Ranking.__init__": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.index": {"tf": 2}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_forward.Ranking.cut": {"tf": 1}, "fast_forward.Ranking.interpolate": {"tf": 1}, "fast_forward.Ranking.from_run": {"tf": 1}, "fast_forward.Ranking.from_file": {"tf": 1}, "fast_forward.index": {"tf": 1}}, "df": 5}}}}}}, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}}, "df": 2}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_forward.util": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}}}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {"fast_forward": {"tf": 2.449489742783178}, "fast_forward.Ranking.from_run": {"tf": 1.7320508075688772}}, "df": 2, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward": {"tf": 1.4142135623730951}, "fast_forward.Ranking.save": {"tf": 1}, "fast_forward.Ranking.from_file": {"tf": 1.4142135623730951}}, "df": 3, "s": {"docs": {"fast_forward": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {"fast_forward": {"tf": 1}}, "df": 1}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.index.Index.encode_queries": {"tf": 1}, "fast_forward.index.Index.add": {"tf": 1}, "fast_forward.quantizer.Quantizer.set_attached": {"tf": 1}, "fast_forward.quantizer.Quantizer.fit": {"tf": 1}, "fast_forward.quantizer.Quantizer.decode": {"tf": 1}}, "df": 5}}}}}}}}}}}, "r": {"docs": {"fast_forward": {"tf": 1.7320508075688772}, "fast_forward.Ranking.rr_scores": {"tf": 1.4142135623730951}}, "df": 2, "f": {"docs": {"fast_forward": {"tf": 1.4142135623730951}, "fast_forward.Ranking.rr_scores": {"tf": 1}}, "df": 2}}, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.Ranking.__init__": {"tf": 1}}, "df": 1}}}}, "p": {"1": {"docs": {"fast_forward.index": {"tf": 1.4142135623730951}}, "df": 1}, "2": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.encoder": {"tf": 1}, "fast_forward.index": {"tf": 2.8284271247461903}, "fast_forward.index.Index.psg_ids": {"tf": 1.4142135623730951}, "fast_forward.index.Index.add": {"tf": 1.7320508075688772}, "fast_forward.index.Index.batch_iter": {"tf": 1.4142135623730951}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.util.pyterrier": {"tf": 1.4142135623730951}}, "df": 8, "s": {"docs": {"fast_forward.index": {"tf": 1.7320508075688772}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"fast_forward": {"tf": 2.6457513110645907}, "fast_forward.encoder.TransformerEncoder.__init__": {"tf": 1}, "fast_forward.index": {"tf": 1.4142135623730951}, "fast_forward.quantizer": {"tf": 1.4142135623730951}, "fast_forward.util": {"tf": 1.4142135623730951}}, "df": 5, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.quantizer": {"tf": 1}}, "df": 2}}}, "/": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.util": {"tf": 1}}, "df": 2}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {"fast_forward": {"tf": 1}}, "df": 1}}}}}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {"fast_forward": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {"fast_forward": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.Ranking.interpolate": {"tf": 1}, "fast_forward.Ranking.rr_scores": {"tf": 1}, "fast_forward.index": {"tf": 1.7320508075688772}, "fast_forward.util.pyterrier.FFInterpolate.__init__": {"tf": 1}}, "df": 4, "s": {"docs": {"fast_forward.Ranking.__init__": {"tf": 1}, "fast_forward.Ranking.attach_queries": {"tf": 1}, "fast_forward.Ranking.cut": {"tf": 1}, "fast_forward.Ranking.interpolate": {"tf": 1}, "fast_forward.Ranking.rr_scores": {"tf": 1}, "fast_forward.Ranking.save": {"tf": 1}, "fast_forward.Ranking.from_run": {"tf": 1}, "fast_forward.Ranking.from_file": {"tf": 1}, "fast_forward.encoder.LambdaEncoder.__init__": {"tf": 1}, "fast_forward.encoder.TransformerEncoder.__init__": {"tf": 1}, "fast_forward.index.Index.__init__": {"tf": 1}, "fast_forward.index.Index.encode_queries": {"tf": 1}, "fast_forward.index.Index.add": {"tf": 1}, "fast_forward.index.Index.batch_iter": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.to_memory": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1}, "fast_forward.quantizer.Quantizer.fit": {"tf": 1}, "fast_forward.quantizer.Quantizer.encode": {"tf": 1}, "fast_forward.quantizer.Quantizer.decode": {"tf": 1}, "fast_forward.quantizer.Quantizer.deserialize": {"tf": 1}, "fast_forward.quantizer.NanoPQ.__init__": {"tf": 1}, "fast_forward.quantizer.NanoOPQ.__init__": {"tf": 1}, "fast_forward.util.Indexer.__init__": {"tf": 1}, "fast_forward.util.Indexer.from_dicts": {"tf": 1}, "fast_forward.util.Indexer.from_index": {"tf": 1}, "fast_forward.util.to_ir_measures": {"tf": 1}, "fast_forward.util.cos_dist": {"tf": 1}, "fast_forward.util.create_coalesced_index": {"tf": 1}, "fast_forward.util.pyterrier.FFScore.__init__": {"tf": 1}, "fast_forward.util.pyterrier.FFScore.transform": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.__init__": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.transform": {"tf": 1}}, "df": 34}}}}}}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.index": {"tf": 1}, "fast_forward.util.pyterrier.FFScore.transform": {"tf": 1}}, "df": 2}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.index": {"tf": 1.4142135623730951}, "fast_forward.util": {"tf": 1}}, "df": 2}}}}, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.util.pyterrier": {"tf": 1.7320508075688772}, "fast_forward.util.pyterrier.FFScore": {"tf": 1}, "fast_forward.util.pyterrier.FFScore.transform": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.transform": {"tf": 1}}, "df": 6}}}}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_forward": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"fast_forward.encoder.TransformerEncoder.__init__": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {"fast_forward.encoder": {"tf": 2}, "fast_forward.encoder.TCTColBERTQueryEncoder": {"tf": 1}, "fast_forward.encoder.TCTColBERTDocumentEncoder": {"tf": 1}}, "df": 3}}}}}}, "#": {"docs": {}, "df": 0, "l": {"2": {"7": {"docs": {"fast_forward.encoder.TCTColBERTDocumentEncoder": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "7": {"2": {"docs": {"fast_forward.encoder.TCTColBERTQueryEncoder": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "i": {"docs": {}, "df": 0, "p": {"docs": {"fast_forward": {"tf": 1.7320508075688772}}, "df": 1, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.util.pyterrier": {"tf": 1}}, "df": 1, "s": {"docs": {"fast_forward.util.pyterrier": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.encoder": {"tf": 1}, "fast_forward.encoder.LambdaEncoder.__init__": {"tf": 1}}, "df": 2}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_forward": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1, "d": {"docs": {"fast_forward.util.Indexer.__init__": {"tf": 1.7320508075688772}, "fast_forward.util.pyterrier": {"tf": 1}}, "df": 2}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}}}}}, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.quantizer": {"tf": 1.7320508075688772}, "fast_forward.quantizer.NanoPQ": {"tf": 1}, "fast_forward.quantizer.NanoPQ.__init__": {"tf": 1}, "fast_forward.quantizer.NanoOPQ": {"tf": 1}, "fast_forward.quantizer.NanoOPQ.__init__": {"tf": 1}}, "df": 5}, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.quantizer.Quantizer.dtype": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.encoder.TransformerEncoder": {"tf": 1}, "fast_forward.encoder.TransformerEncoder.__init__": {"tf": 1}, "fast_forward.encoder.TCTColBERTQueryEncoder": {"tf": 1}, "fast_forward.encoder.TCTColBERTDocumentEncoder": {"tf": 1}, "fast_forward.util": {"tf": 1}}, "df": 6, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.encoder": {"tf": 1}}, "df": 1}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_forward.quantizer.Quantizer.set_attached": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.util.pyterrier.FFScore.transform": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.quantizer": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.Ranking.cut": {"tf": 1}, "fast_forward.quantizer.NanoPQ.__init__": {"tf": 1}, "fast_forward.quantizer.NanoOPQ.__init__": {"tf": 1}, "fast_forward.util": {"tf": 1}}, "df": 4, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.Ranking.interpolate": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}}}}}}}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.encoder.TransformerEncoder": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "g": {"docs": {"fast_forward.index": {"tf": 1}, "fast_forward.index.Index.add": {"tf": 1.4142135623730951}}, "df": 2}}, "t": {"docs": {"fast_forward.util.pyterrier": {"tf": 1}}, "df": 1}, "l": {"docs": {"fast_forward.util.pyterrier": {"tf": 1}}, "df": 1}}, "d": {"0": {"docs": {"fast_forward": {"tf": 1.4142135623730951}}, "df": 1}, "1": {"docs": {"fast_forward": {"tf": 1.4142135623730951}, "fast_forward.index": {"tf": 2.23606797749979}}, "df": 2}, "2": {"docs": {"fast_forward": {"tf": 1.4142135623730951}, "fast_forward.index": {"tf": 1.7320508075688772}}, "df": 2}, "docs": {}, "df": 0, "o": {"docs": {"fast_forward.encoder": {"tf": 1.4142135623730951}, "fast_forward.index": {"tf": 1}, "fast_forward.index.Index.add": {"tf": 1}}, "df": 3, "c": {"docs": {"fast_forward.index": {"tf": 1}, "fast_forward.index.Index.add": {"tf": 1.4142135623730951}, "fast_forward.util": {"tf": 2.6457513110645907}}, "df": 3, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.Ranking.q_ids": {"tf": 1}, "fast_forward.encoder.TCTColBERTDocumentEncoder": {"tf": 1}, "fast_forward.index": {"tf": 2.23606797749979}, "fast_forward.index.Index.doc_ids": {"tf": 1.4142135623730951}, "fast_forward.index.Index.add": {"tf": 1.7320508075688772}, "fast_forward.index.Index.batch_iter": {"tf": 1.4142135623730951}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.util": {"tf": 1}, "fast_forward.util.create_coalesced_index": {"tf": 1}, "fast_forward.util.pyterrier.FFScore.transform": {"tf": 1}}, "df": 11, "/": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.util": {"tf": 1}, "fast_forward.util.Indexer.__init__": {"tf": 1}, "fast_forward.util.IndexingDict": {"tf": 1}}, "df": 4}}}}}}}}, "s": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.Ranking": {"tf": 1}, "fast_forward.Ranking.cut": {"tf": 1}, "fast_forward.Ranking.rr_scores": {"tf": 1}, "fast_forward.index": {"tf": 1.4142135623730951}}, "df": 4}}}}}}}}}}}}}}}, "s": {"docs": {"fast_forward.util": {"tf": 1.4142135623730951}}, "df": 1}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.index.Index.add": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.index": {"tf": 1.4142135623730951}, "fast_forward.index.OnDiskIndex": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}}, "df": 5}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.util.cos_dist": {"tf": 1.4142135623730951}, "fast_forward.util.create_coalesced_index": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.util": {"tf": 1}, "fast_forward.util.Indexer.from_dicts": {"tf": 1.4142135623730951}}, "df": 3}}}, "y": {"docs": {"fast_forward.index": {"tf": 1}, "fast_forward.util.IndexingDict": {"tf": 1}}, "df": 2}}}}}}, "s": {"docs": {"fast_forward.util": {"tf": 1.4142135623730951}, "fast_forward.util.IndexingDict": {"tf": 1}}, "df": 2}}}, "m": {"docs": {"fast_forward.index.Index.add": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_forward.index.Index.dim": {"tf": 1}, "fast_forward.quantizer.Quantizer.dims": {"tf": 1.4142135623730951}}, "df": 2, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"fast_forward.index": {"tf": 1}, "fast_forward.index.Index.dim": {"tf": 1.4142135623730951}}, "df": 2}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.index.Index.add": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {"fast_forward.quantizer.Quantizer.dims": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"fast_forward.Ranking.__init__": {"tf": 2.23606797749979}, "fast_forward.Ranking.from_run": {"tf": 1}, "fast_forward.Ranking.from_file": {"tf": 1}, "fast_forward.quantizer.Quantizer.dtype": {"tf": 1.4142135623730951}, "fast_forward.quantizer.Quantizer.deserialize": {"tf": 1.4142135623730951}, "fast_forward.util.Indexer.from_dicts": {"tf": 1.4142135623730951}, "fast_forward.util.to_ir_measures": {"tf": 1.4142135623730951}, "fast_forward.util.pyterrier.FFScore.transform": {"tf": 1.7320508075688772}, "fast_forward.util.pyterrier.FFInterpolate.transform": {"tf": 1.4142135623730951}}, "df": 9, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}, "fast_forward.util.pyterrier": {"tf": 1}}, "df": 3}}}}}}, "f": {"docs": {"fast_forward.Ranking.__init__": {"tf": 1}}, "df": 1}, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.Ranking.__init__": {"tf": 1}, "fast_forward.Ranking.from_run": {"tf": 1}, "fast_forward.Ranking.from_file": {"tf": 1}}, "df": 3}}}}, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.encoder.TransformerEncoder.__init__": {"tf": 1.4142135623730951}, "fast_forward.util": {"tf": 1}}, "df": 2}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.index": {"tf": 1}, "fast_forward.index.OnDiskIndex": {"tf": 1}}, "df": 2}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}}}}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}}}}}}}, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"fast_forward.index": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"fast_forward.index": {"tf": 2}}, "df": 1}}}}, "f": {"docs": {"fast_forward.util": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.quantizer": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.quantizer.Quantizer.decode": {"tf": 1}}, "df": 1, "d": {"docs": {"fast_forward.quantizer.Quantizer.decode": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"fast_forward.util.create_coalesced_index": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.index.Index.add": {"tf": 1}}, "df": 1, "s": {"docs": {"fast_forward.index.Index.add": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_forward.util": {"tf": 1}}, "df": 1}}}}}}, "m": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.quantizer": {"tf": 1}, "fast_forward.quantizer.NanoPQ.__init__": {"tf": 1}, "fast_forward.quantizer.NanoOPQ.__init__": {"tf": 1}}, "df": 4, "a": {"docs": {}, "df": 0, "x": {"docs": {"fast_forward.Ranking.normalize": {"tf": 1}, "fast_forward.Ranking.interpolate": {"tf": 1}, "fast_forward.index.OnDiskIndex": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1.4142135623730951}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}}, "df": 5, "p": {"docs": {"fast_forward": {"tf": 1.4142135623730951}, "fast_forward.index": {"tf": 1}, "fast_forward.util": {"tf": 1}}, "df": 3}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"fast_forward.index.OnDiskIndex.__init__": {"tf": 1.4142135623730951}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}}, "df": 2}}}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward": {"tf": 1}}, "df": 1}}}}}}}, "y": {"docs": {"fast_forward.util.Indexer.__init__": {"tf": 1.4142135623730951}}, "df": 1}}, "y": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.index": {"tf": 1}, "fast_forward.index.Index.add": {"tf": 2}, "fast_forward.index.Index.batch_iter": {"tf": 1}, "fast_forward.quantizer.Quantizer.dims": {"tf": 1}}, "df": 5}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.Ranking.__init__": {"tf": 1}, "fast_forward.Ranking.attach_queries": {"tf": 1}, "fast_forward.Ranking.from_run": {"tf": 1}, "fast_forward.Ranking.from_file": {"tf": 1}}, "df": 4}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.encoder": {"tf": 1}}, "df": 1}}, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"fast_forward.index.Index.add": {"tf": 1.4142135623730951}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {"fast_forward.util.pyterrier": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward": {"tf": 1.7320508075688772}, "fast_forward.index": {"tf": 3.1622776601683795}, "fast_forward.index.Index.__init__": {"tf": 1.4142135623730951}, "fast_forward.index.Index.mode": {"tf": 1.4142135623730951}, "fast_forward.index.Mode": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1.4142135623730951}, "fast_forward.index.OnDiskIndex.load": {"tf": 1.4142135623730951}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1.4142135623730951}, "fast_forward.util": {"tf": 1.4142135623730951}}, "df": 9, "l": {"docs": {"fast_forward.encoder.TransformerEncoder": {"tf": 1}, "fast_forward.encoder.TransformerEncoder.__init__": {"tf": 1.4142135623730951}}, "df": 2, "s": {"docs": {"fast_forward.encoder.TCTColBERTQueryEncoder": {"tf": 1}, "fast_forward.encoder.TCTColBERTDocumentEncoder": {"tf": 1}}, "df": 2}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.index": {"tf": 1}, "fast_forward.quantizer.NanoPQ": {"tf": 1}, "fast_forward.quantizer.NanoOPQ": {"tf": 1}, "fast_forward.util": {"tf": 1}}, "df": 5}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.util.pyterrier.FFScore.transform": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {"fast_forward.util.pyterrier": {"tf": 1}}, "df": 1, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.encoder": {"tf": 1}, "fast_forward.util": {"tf": 1}, "fast_forward.util.pyterrier": {"tf": 1}}, "df": 4}}}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_forward": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {"fast_forward.util": {"tf": 1}, "fast_forward.util.create_coalesced_index": {"tf": 1}}, "df": 2}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.index.Index.add": {"tf": 1.7320508075688772}, "fast_forward.quantizer": {"tf": 1}, "fast_forward.util.create_coalesced_index": {"tf": 1}}, "df": 3}}}, "y": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.index": {"tf": 3.3166247903554}, "fast_forward.quantizer": {"tf": 1}, "fast_forward.util": {"tf": 2.449489742783178}, "fast_forward.util.pyterrier": {"tf": 1.4142135623730951}}, "df": 5}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.Ranking.__init__": {"tf": 1}, "fast_forward.Ranking.from_run": {"tf": 1}, "fast_forward.encoder": {"tf": 1.4142135623730951}}, "df": 3}}}, "a": {"docs": {"fast_forward.quantizer.Quantizer.deserialize": {"tf": 1}}, "df": 1, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"fast_forward.quantizer.Quantizer.deserialize": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"fast_forward.quantizer.NanoPQ.__init__": {"tf": 1.4142135623730951}, "fast_forward.quantizer.NanoOPQ.__init__": {"tf": 1.4142135623730951}}, "df": 2}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"fast_forward.index": {"tf": 1.7320508075688772}, "fast_forward.index.OnDiskIndex.to_memory": {"tf": 1}, "fast_forward.index.InMemoryIndex": {"tf": 1}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1}, "fast_forward.index.InMemoryIndex.consolidate": {"tf": 1}}, "df": 5}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.quantizer": {"tf": 1}}, "df": 1}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.util.to_ir_measures": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"fast_forward.Ranking.normalize": {"tf": 1}, "fast_forward.Ranking.interpolate": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}}, "df": 4, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}}, "df": 2}}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_forward.Ranking.interpolate": {"tf": 1}}, "df": 1}}}}}, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.util.pyterrier": {"tf": 1}}, "df": 1}}}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {"fast_forward": {"tf": 1.4142135623730951}, "fast_forward.index": {"tf": 1}, "fast_forward.index.OnDiskIndex": {"tf": 1}}, "df": 3}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}}, "df": 2, "u": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.index.OnDiskIndex.load": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.Ranking.__init__": {"tf": 1}, "fast_forward.Ranking.attach_queries": {"tf": 1}, "fast_forward.index.Index.add": {"tf": 1.7320508075688772}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.util.Indexer.__init__": {"tf": 1.4142135623730951}, "fast_forward.util.create_coalesced_index": {"tf": 1}}, "df": 6}}}}}, "s": {"docs": {"fast_forward.quantizer.Quantizer.dims": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.util.pyterrier": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.index": {"tf": 1.7320508075688772}, "fast_forward.index.Index.dim": {"tf": 1}, "fast_forward.index.Index.add": {"tf": 2}, "fast_forward.quantizer.Quantizer.decode": {"tf": 1}, "fast_forward.util.cos_dist": {"tf": 1.4142135623730951}}, "df": 5, "s": {"docs": {"fast_forward.index": {"tf": 2}, "fast_forward.index.Index.dim": {"tf": 1}, "fast_forward.index.Index.add": {"tf": 1.7320508075688772}, "fast_forward.index.Index.batch_iter": {"tf": 1.4142135623730951}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1.7320508075688772}, "fast_forward.index.OnDiskIndex.to_memory": {"tf": 1}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1.4142135623730951}, "fast_forward.quantizer": {"tf": 1.7320508075688772}, "fast_forward.quantizer.Quantizer.fit": {"tf": 1.4142135623730951}, "fast_forward.quantizer.Quantizer.dims": {"tf": 1}, "fast_forward.quantizer.Quantizer.encode": {"tf": 2}, "fast_forward.quantizer.Quantizer.decode": {"tf": 1}, "fast_forward.util": {"tf": 1}, "fast_forward.util.Indexer.__init__": {"tf": 1}, "fast_forward.util.Indexer.from_index": {"tf": 1.4142135623730951}, "fast_forward.util.cos_dist": {"tf": 1}, "fast_forward.util.create_coalesced_index": {"tf": 1.4142135623730951}}, "df": 18}}}}}, "r": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.quantizer.NanoPQ.__init__": {"tf": 1}, "fast_forward.quantizer.NanoOPQ.__init__": {"tf": 1}}, "df": 2}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"fast_forward.quantizer.NanoPQ.__init__": {"tf": 1}, "fast_forward.quantizer.NanoOPQ.__init__": {"tf": 1}}, "df": 2}}}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_forward.util": {"tf": 1}}, "df": 1}}}}}}}, "q": {"1": {"docs": {"fast_forward": {"tf": 1.7320508075688772}}, "df": 1}, "2": {"docs": {"fast_forward": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_forward": {"tf": 1.4142135623730951}, "fast_forward.quantizer": {"tf": 2}, "fast_forward.quantizer.Quantizer.dims": {"tf": 1}}, "df": 3}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.index.Index.__init__": {"tf": 1.4142135623730951}, "fast_forward.index.Index.quantizer": {"tf": 1.4142135623730951}, "fast_forward.index.Index.dim": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1.4142135623730951}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1.4142135623730951}, "fast_forward.quantizer": {"tf": 2.449489742783178}, "fast_forward.quantizer.Quantizer.set_attached": {"tf": 1.7320508075688772}, "fast_forward.quantizer.Quantizer.fit": {"tf": 1.7320508075688772}, "fast_forward.quantizer.Quantizer.dtype": {"tf": 1}, "fast_forward.quantizer.Quantizer.dims": {"tf": 1}, "fast_forward.quantizer.Quantizer.decode": {"tf": 1}, "fast_forward.quantizer.Quantizer.serialize": {"tf": 1.4142135623730951}, "fast_forward.quantizer.Quantizer.deserialize": {"tf": 2.23606797749979}, "fast_forward.quantizer.NanoPQ": {"tf": 1}, "fast_forward.quantizer.NanoPQ.__init__": {"tf": 1}, "fast_forward.quantizer.NanoOPQ": {"tf": 1}, "fast_forward.quantizer.NanoOPQ.__init__": {"tf": 1}, "fast_forward.util": {"tf": 2.23606797749979}, "fast_forward.util.Indexer.__init__": {"tf": 3}}, "df": 19, "s": {"docs": {"fast_forward.quantizer": {"tf": 1.7320508075688772}, "fast_forward.quantizer.Quantizer": {"tf": 1}, "fast_forward.quantizer.Quantizer.fit": {"tf": 1}}, "df": 3}}, "d": {"docs": {"fast_forward.util": {"tf": 1}, "fast_forward.util.Indexer.from_index": {"tf": 1}}, "df": 2}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"fast_forward": {"tf": 2.8284271247461903}, "fast_forward.Ranking.__init__": {"tf": 1}, "fast_forward.Ranking.q_ids": {"tf": 1.4142135623730951}, "fast_forward.Ranking.attach_queries": {"tf": 1}, "fast_forward.Ranking.cut": {"tf": 1.4142135623730951}, "fast_forward.Ranking.from_run": {"tf": 1}, "fast_forward.Ranking.from_file": {"tf": 1}, "fast_forward.encoder": {"tf": 1}, "fast_forward.encoder.TCTColBERTQueryEncoder": {"tf": 1}, "fast_forward.index": {"tf": 2.449489742783178}, "fast_forward.index.Index.__init__": {"tf": 1.4142135623730951}, "fast_forward.index.Index.encode_queries": {"tf": 1.4142135623730951}, "fast_forward.index.Index.query_encoder": {"tf": 1.4142135623730951}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1.7320508075688772}, "fast_forward.index.OnDiskIndex.load": {"tf": 1.7320508075688772}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1.7320508075688772}, "fast_forward.util.pyterrier.FFScore.transform": {"tf": 1}}, "df": 17}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward": {"tf": 2.23606797749979}, "fast_forward.Ranking": {"tf": 1}, "fast_forward.Ranking.__init__": {"tf": 1.7320508075688772}, "fast_forward.Ranking.has_queries": {"tf": 1.4142135623730951}, "fast_forward.Ranking.q_ids": {"tf": 1}, "fast_forward.Ranking.attach_queries": {"tf": 2.23606797749979}, "fast_forward.Ranking.from_run": {"tf": 1.4142135623730951}, "fast_forward.Ranking.from_file": {"tf": 1.4142135623730951}, "fast_forward.index": {"tf": 2.6457513110645907}, "fast_forward.index.Index.encode_queries": {"tf": 1.7320508075688772}}, "df": 10}}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward": {"tf": 7.483314773547883}, "fast_forward.encoder": {"tf": 1.4142135623730951}, "fast_forward.index": {"tf": 4}, "fast_forward.quantizer": {"tf": 1.4142135623730951}, "fast_forward.util": {"tf": 3.7416573867739413}, "fast_forward.util.pyterrier": {"tf": 2.449489742783178}}, "df": 6}}}, "n": {"docs": {"fast_forward": {"tf": 1.4142135623730951}}, "df": 1}}, "h": {"5": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.index": {"tf": 1}, "fast_forward.quantizer": {"tf": 1}, "fast_forward.util": {"tf": 1.4142135623730951}}, "df": 4, "p": {"docs": {}, "df": 0, "y": {"docs": {"fast_forward.index.OnDiskIndex": {"tf": 1.4142135623730951}}, "df": 1}}}, "docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.Ranking.__init__": {"tf": 1}, "fast_forward.Ranking.from_run": {"tf": 1}, "fast_forward.Ranking.from_file": {"tf": 1}, "fast_forward.encoder": {"tf": 1}, "fast_forward.index": {"tf": 1.4142135623730951}, "fast_forward.util.Indexer.__init__": {"tf": 1.4142135623730951}}, "df": 7}, "o": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.index.OnDiskIndex": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, ":": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "b": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.encoder.TCTColBERTQueryEncoder": {"tf": 1}, "fast_forward.encoder.TCTColBERTDocumentEncoder": {"tf": 1}}, "df": 3}}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward": {"tf": 1.4142135623730951}, "fast_forward.index.Index.add": {"tf": 1.4142135623730951}}, "df": 2}}, "s": {"docs": {"fast_forward.Ranking.has_queries": {"tf": 1}, "fast_forward.index": {"tf": 2}, "fast_forward.index.Index.add": {"tf": 1}, "fast_forward.quantizer.Quantizer.set_attached": {"tf": 1}, "fast_forward.quantizer.Quantizer.decode": {"tf": 1}, "fast_forward.util.Indexer.__init__": {"tf": 1}}, "df": 6}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.index": {"tf": 1.7320508075688772}, "fast_forward.quantizer.NanoPQ": {"tf": 1}, "fast_forward.quantizer.NanoOPQ": {"tf": 1}, "fast_forward.util": {"tf": 1}}, "df": 5}}, "l": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.index": {"tf": 1}, "fast_forward.index.InMemoryIndex": {"tf": 1}}, "df": 2}, "p": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}}}}}, "d": {"docs": {}, "df": 0, "f": {"5": {"docs": {"fast_forward.index.OnDiskIndex": {"tf": 1}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1.7320508075688772}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}}}, "w": {"docs": {"fast_forward.Ranking": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"fast_forward": {"tf": 1.4142135623730951}, "fast_forward.Ranking.__init__": {"tf": 1}, "fast_forward.Ranking.q_ids": {"tf": 1}, "fast_forward.Ranking.attach_queries": {"tf": 1}, "fast_forward.Ranking.normalize": {"tf": 1}, "fast_forward.Ranking.interpolate": {"tf": 1}, "fast_forward.Ranking.rr_scores": {"tf": 1}, "fast_forward.encoder": {"tf": 1}, "fast_forward.index": {"tf": 1.4142135623730951}, "fast_forward.quantizer": {"tf": 1}, "fast_forward.util": {"tf": 1}, "fast_forward.util.pyterrier.FFScore.transform": {"tf": 1}, "fast_forward.util.pyterrier.FFInterpolate.transform": {"tf": 1}}, "df": 13}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"fast_forward.util.Indexer.__init__": {"tf": 1}}, "df": 1}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.Ranking.__init__": {"tf": 1.4142135623730951}, "fast_forward.Ranking.has_queries": {"tf": 1.4142135623730951}}, "df": 2}}}}, "n": {"docs": {"fast_forward.Ranking.__init__": {"tf": 1}, "fast_forward.Ranking.attach_queries": {"tf": 1}, "fast_forward.index": {"tf": 1.4142135623730951}, "fast_forward.index.Index.encode_queries": {"tf": 1}, "fast_forward.index.Index.add": {"tf": 2}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 1}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1}, "fast_forward.quantizer.Quantizer.set_attached": {"tf": 1}, "fast_forward.quantizer.Quantizer.fit": {"tf": 1}, "fast_forward.quantizer.Quantizer.decode": {"tf": 1}, "fast_forward.util": {"tf": 1}, "fast_forward.util.Indexer.__init__": {"tf": 1.4142135623730951}, "fast_forward.util.create_coalesced_index": {"tf": 1}}, "df": 13}, "r": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"fast_forward.encoder": {"tf": 1}, "fast_forward.index": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "y": {"docs": {"fast_forward.encoder": {"tf": 1}, "fast_forward.index": {"tf": 1}}, "df": 2}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.encoder": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.index.OnDiskIndex": {"tf": 1}}, "df": 1}, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"fast_forward.quantizer": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"fast_forward.util.pyterrier": {"tf": 1}}, "df": 1}}}}}}, "g": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward": {"tf": 1.4142135623730951}}, "df": 1}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"fast_forward.index": {"tf": 1}, "fast_forward.util.pyterrier": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.util": {"tf": 1.4142135623730951}}, "df": 1, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_forward": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {"fast_forward.util.pyterrier": {"tf": 2}}, "df": 1}}, "n": {"docs": {"fast_forward": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {}, "df": 0, "w": {"docs": {"fast_forward": {"tf": 1}, "fast_forward.encoder": {"tf": 1}}, "df": 2}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.index.Index.add": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward": {"tf": 1.4142135623730951}, "fast_forward.Ranking.__init__": {"tf": 1.4142135623730951}, "fast_forward.Ranking.from_run": {"tf": 1.4142135623730951}, "fast_forward.encoder.TransformerEncoder.__init__": {"tf": 1}}, "df": 4}}, "n": {"docs": {"fast_forward.Ranking.__init__": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "q": {"docs": {"fast_forward.quantizer": {"tf": 2.23606797749979}, "fast_forward.quantizer.NanoPQ": {"tf": 1}, "fast_forward.quantizer.NanoPQ.__init__": {"tf": 1}, "fast_forward.quantizer.NanoOPQ": {"tf": 1}, "fast_forward.quantizer.NanoOPQ.__init__": {"tf": 1}, "fast_forward.util": {"tf": 1.4142135623730951}}, "df": 6}}, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "q": {"docs": {"fast_forward.quantizer": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {"fast_forward.index.Index.encode_queries": {"tf": 1}, "fast_forward.index.Index.dim": {"tf": 1}}, "df": 2, "r": {"docs": {"fast_forward.index.Index.add": {"tf": 1}}, "df": 1, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"fast_forward.quantizer": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.Ranking.normalize": {"tf": 1}, "fast_forward.Ranking.interpolate": {"tf": 1}}, "df": 2, "d": {"docs": {"fast_forward.Ranking.normalize": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_forward.Ranking.interpolate": {"tf": 1}}, "df": 1}}}}}}}}}}}, "t": {"docs": {"fast_forward.index": {"tf": 1}, "fast_forward.index.Index.add": {"tf": 1.4142135623730951}, "fast_forward.quantizer.Quantizer.set_attached": {"tf": 1}, "fast_forward.quantizer.Quantizer.decode": {"tf": 1}, "fast_forward.util.Indexer.__init__": {"tf": 1}, "fast_forward.util.create_coalesced_index": {"tf": 1}}, "df": 6, "e": {"docs": {"fast_forward.encoder": {"tf": 1}, "fast_forward.index": {"tf": 1}}, "df": 2}}, "n": {"docs": {}, "df": 0, "e": {"docs": {"fast_forward.index.Index.dim": {"tf": 1}, "fast_forward.index.Index.add": {"tf": 1.4142135623730951}, "fast_forward.index.Index.batch_iter": {"tf": 1}, "fast_forward.quantizer.Quantizer.dims": {"tf": 1}}, "df": 4}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {"fast_forward.index.Index.add": {"tf": 1}}, "df": 1, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_forward.Ranking.cut": {"tf": 1}, "fast_forward.index": {"tf": 1.7320508075688772}, "fast_forward.index.Index.add": {"tf": 1.4142135623730951}, "fast_forward.index.OnDiskIndex.__init__": {"tf": 2}, "fast_forward.index.OnDiskIndex.load": {"tf": 1}, "fast_forward.index.InMemoryIndex.__init__": {"tf": 1.4142135623730951}, "fast_forward.quantizer.NanoPQ.__init__": {"tf": 1.4142135623730951}, "fast_forward.quantizer.NanoOPQ.__init__": {"tf": 1.4142135623730951}}, "df": 8}}}, "p": {"docs": {}, "df": 0, "y": {"docs": {"fast_forward.index": {"tf": 1}, "fast_forward.quantizer": {"tf": 1}}, "df": 2}}}}, "p": {"docs": {"fast_forward.quantizer": {"tf": 1.7320508075688772}}, "df": 1}}, "k": {"docs": {"fast_forward.Ranking.cut": {"tf": 1.4142135623730951}, "fast_forward.Ranking.rr_scores": {"tf": 1.4142135623730951}}, "df": 2, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {"fast_forward.Ranking.cut": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"fast_forward.quantizer": {"tf": 1}, "fast_forward.quantizer.NanoPQ.__init__": {"tf": 1}, "fast_forward.quantizer.NanoOPQ.__init__": {"tf": 1}}, "df": 3}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"fast_forward.quantizer.Quantizer.fit": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "n": {"docs": {"fast_forward.util": {"tf": 1}}, "df": 1}}}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"fast_forward.Ranking.interpolate": {"tf": 1}}, "df": 1}}}}, "y": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"fast_forward.index": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"fast_forward.index.Index.batch_iter": {"tf": 1}, "fast_forward.util": {"tf": 1}}, "df": 2, "s": {"docs": {"fast_forward.util": {"tf": 1}}, "df": 1}}}}}}}}}, "pipeline": ["trimmer"], "_isPrebuiltIndex": true}; // mirrored in build-search-index.js (part 1) // Also split on html tags. this is a cheap heuristic, but good enough.