forked from fieldtrip/fieldtrip
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ft_crossfrequencyanalysis.m
287 lines (239 loc) · 9.17 KB
/
ft_crossfrequencyanalysis.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
function crossfreq = ft_crossfrequencyanalysis(cfg,freqlow,freqhigh)
% FT_CROSSFREQUENCYANALYSIS performs cross-frequency analysis using various algorithms
%
% Use as
% crossfreq = ft_crossfrequencyanalysis(cfg, freqlo, freqhi)
% where freq is frequency decomposed data structure as obtained from FT_FREQANALYSIS
% and cfg is a configuration structure that should contain
%
% cfg.freqlow scalar or vector, selection of frequencies for the low frequency data
% cfg.freqhigh scalar or vector, selection of frequencies for the high frequency data
% cfg.chanlow selection of channels for the low frequency, see FT_CHANNELSELECTION
% cfg.chanhigh selection of channels for the high frequency, see FT_CHANNELSELECTION
% cfg.method 'plv' - phase locking value
% 'mvl' - mean vector length
% 'mi' - modulation index
% cfg.keeptrials string, can be 'yes' or 'no'
%
% To facilitate data-handling and distributed computing you can use
% cfg.inputfile = ...
% cfg.outputfile = ...
% If you specify one of these (or both) the input data will be read from a *.mat
% file on disk and/or the output data will be written to a *.mat file. These mat
% files should contain only a single variable, corresponding with the
% input/output structure.
%
% See also FT_FREQANALYSIS
% Copyright (C) 2014, Donders Centre for Cognitive Neuroimaging
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% these are used by the ft_preamble/ft_postamble function and scripts
ft_revision = '$Id$';
ft_nargin = nargin;
ft_nargout = nargout;
% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble debug
ft_preamble loadvar freqlow freqhigh
ft_preamble provenance freqlow freqhi
ft_preamble trackconfig
% the ft_abort variable is set to true or false in ft_preamble_init
if ft_abort
% do not continue function execution in case the outputfile is present and the user indicated to keep it
return
end
% ensure that the input data is valid for this function, this will also do
% backward-compatibility conversions of old data that for example was
% read from an old *.mat file
freqlow = ft_checkdata(freqlow, 'datatype', 'freq', 'feedback', 'yes');
freqhigh = ft_checkdata(freqhigh, 'datatype', 'freq', 'feedback', 'yes');
cfg.chanlow = ft_getopt(cfg, 'chanlow', 'all');
cfg.chanhigh = ft_getopt(cfg, 'chanhigh', 'all');
cfg.freqlow = ft_getopt(cfg, 'freqlow');
cfg.freqhigh = ft_getopt(cfg, 'freqhigh');
cfg.keeptrials = ft_getopt(cfg, 'keeptrials');
% make selection of frequencies and channels
tmpcfg = [];
tmpcfg.channel = cfg.chanlow;
tmpcfg.frequency = cfg.freqlow;
freqlow = ft_selectdata(tmpcfg, freqlow);
[tmpcfg, freqlow] = rollback_provenance(cfg, freqlow);
try, cfg.chanlow = tmpcfg.channel; end
try, cfg.freqlow = tmpcfg.frequency; end
tmpcfg = [];
tmpcfg.channel = cfg.chanhigh;
tmpcfg.foi = cfg.freqhigh;
freqhigh = ft_selectdata(tmpcfg, freqhigh);
[tmpcfg, freqhigh] = rollback_provenance(cfg, freqhigh);
try, cfg.chanhigh = tmpcfg.channel; end
try, cfg.freqhigh = tmpcfg.frequency; end
LF = freqlow.freq;
HF = freqhigh.freq;
ntrial = size(freqlow.fourierspctrm,1); % FIXME the dimord might be different
nchan = size(freqlow.fourierspctrm,2); % FIXME the dimord might be different
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% prepare the data
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
switch cfg.method
case 'plv' % phase locking value
plvdatas = zeros(ntrial,nchan,numel(LF),numel(HF)) ;
for i =1:nchan
chandataLF = freqlow.fourierspctrm(:,i,:,:);
chandataHF = freqhigh.fourierspctrm(:,i,:,:);
for j = 1:ntrial
plvdatas(j,i,:,:) = data2plv(squeeze(chandataLF(j,:,:,:)),squeeze(chandataHF(j,:,:,:)));
end
end
cfcdata = plvdatas;
case 'mvl' % mean vector length
mvldatas = zeros(ntrial,nchan,numel(LF),numel(HF));
for i =1:nchan
chandataLF = freqlow.fourierspctrm(:,i,:,:);
chandataHF = freqhigh.fourierspctrm(:,i,:,:);
for j = 1:ntrial
mvldatas(j,i,:,:) = data2mvl(squeeze(chandataLF(j,:,:,:)),squeeze(chandataHF(j,:,:,:)));
end
end
cfcdata = mvldatas;
case 'mi' % modulation index
nbin = 20; % number of phase bin
pacdatas = zeros(ntrial,nchan,numel(LF),numel(HF),nbin) ;
for i =1:nchan
chandataLF = freqlow.fourierspctrm(:,i,:,:);
chandataHF = freqhigh.fourierspctrm(:,i,:,:);
for j = 1:ntrial
pacdatas(j,i,:,:,:) = data2pac(squeeze(chandataLF(j,:,:,:)),squeeze(chandataHF(j,:,:,:)),nbin);
end
end
cfcdata = pacdatas;
end % switch method for data preparation
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% do the actual computation
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
switch cfg.method
case 'plv'
if strcmp(cfg.keeptrials,'no')
crsspctrm = squeeze(abs(mean(cfcdata,1)));
dimord = 'chan_freqlow_freqhigh' ;
else
crsspctrm = abs(cfcdata);
dimord = 'rpt_chan_freqlow_freqhigh' ;
end
case 'mvl'
if strcmp(cfg.keeptrials,'no')
crsspctrm = squeeze(abs(mean(cfcdata,1)));
dimord = 'chan_freqlow_freqhigh' ;
else
crsspctrm = abs(cfcdata);
dimord = 'rpt_chan_freqlow_freqhigh' ;
end
case 'mi'
[ntrial,nchan,nlf,nhf,nbin] = size(cfcdata);
if strcmp(cfg.keeptrials,'yes')
dimord = 'rpt_chan_freqlow_freqhigh' ;
crsspctrm = zeros(ntrial,nchan,nlf,nhf);
for k =1:ntrial
for n=1:nchan
pac = squeeze(cfcdata(k,n,:,:,:));
Q =ones(nbin,1)/nbin; % uniform distribution
mi = zeros(nlf,nhf);
for i=1:nlf
for j=1:nhf
P = squeeze(pac(i,j,:))/ nansum(pac(i,j,:)); % normalized distribution
% KL distance
mi(i,j) = nansum(P.* (log2(P)-log2(Q)))/log2(pha);
end
end
crsspctrm(k,n,:,:) = mi;
end
end
else
dimord = 'chan_freqlow_freqhigh' ;
crsspctrm = zeros(nchan,nlf,nhf);
cfcdatamean = squeeze(mean(cfcdata,1));
for k =1:nchan
pac = squeeze(cfcdatamean(k,:,:,:));
Q =ones(nbin,1)/nbin; % uniform distribution
mi = zeros(nlf,nhf);
for i=1:nlf
for j=1:nhf
P = squeeze(pac(i,j,:))/ nansum(pac(i,j,:)); % normalized distribution
% KL distance
mi(i,j) = nansum(P.* (log2(P)-log2(Q)))/log2(nbin);
end
end
crsspctrm(k,:,:) = mi;
end
end % if keeptrials
end % switch method for actual computation
crossfreq.crsspctrm = crsspctrm;
crossfreq.dimord = dimord;
crossfreq.freqlow = LF;
crossfreq.freqhigh = HF;
ft_postamble debug
ft_postamble trackconfig
ft_postamble previous freqlow freqhigh
ft_postamble provenance crossfreq
ft_postamble history crossfreq
ft_postamble savevar crossfreq
end % function
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTIONS
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [plvdata] =data2plv(LFsigtemp,HFsigtemp)
LFphas = angle(LFsigtemp);
HFamp = abs(HFsigtemp);
HFamp(isnan(HFamp(:))) = 0; % replace nan with 0
HFphas = angle(hilbert(HFamp'))';
plvdata = zeros(size(LFsigtemp,1),size(HFsigtemp,1)); % phase lokcing value
for i = 1:size(LFsigtemp)
for j = 1:size(HFsigtemp)
plvdata(i,j) = nanmean(exp(1i*(LFphas(i,:)-HFphas(j,:))));
end
end
end % function
function [mvldata] =data2mvl(LFsigtemp,HFsigtemp)
% calculate mean vector length (complex value) per trial
% mvldata dim: LF*HF
LFphas = angle(LFsigtemp);
HFamp = abs(HFsigtemp);
mvldata = zeros(size(LFsigtemp,1),size(HFsigtemp,1)); % mean vector length
for i = 1:size(LFsigtemp)
for j = 1:size(HFsigtemp)
mvldata(i,j) = nanmean(HFamp(j,:).*exp(1i*LFphas(i,:)));
end
end
end % function
function pacdata =data2pac(LFsigtemp,HFsigtemp,nbin)
% calculate phase amplitude distribution per trial
% pacdata dim: LF*HF*Phasebin
pacdata = zeros(size(LFsigtemp,1),size(HFsigtemp,1),nbin);
Ang = angle(LFsigtemp);
Amp = abs(HFsigtemp);
[~,bin] = histc(Ang, linspace(-pi,pi,nbin)); % binned low frequency phase
binamp = zeros (size(HFsigtemp,1),nbin); % binned amplitude
for i= 1:size(Ang,1)
for k =1:nbin
idx = bin(i,:)==k;
binamp(:,k) = mean(Amp(:,idx),2);
end
pacdata(i,:,:) = binamp;
end
end % function