forked from fieldtrip/fieldtrip
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathft_connectivitysimulation.m
293 lines (262 loc) · 10.5 KB
/
ft_connectivitysimulation.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
function [simulated] = ft_connectivitysimulation(cfg)
% FT_CONNECTIVITYSIMULATION simulates channel-level time-series data with a
% specified connectivity structure. This function returns an output data
% structure that resembles the output of FT_PREPROCESSING.
%
% Use as
% [data] = ft_connectivitysimulation(cfg)
%
% where the configuration structure should contain:
% cfg.method = string, can be 'linear_mix', 'mvnrnd', 'ar' (see below)
% cfg.nsignal = scalar, number of signals
% cfg.ntrials = scalar, number of trials
% cfg.triallength = in seconds
% cfg.fsample = in Hz
%
% Depending on the specific method that is selected, the configuration
% may also contain:
%
% Method 'linear_mix' implements a linear mixing with optional time shifts
% where the number of unobserved signals can be different from the number
% of observed signals
%
% Required cfg options:
% cfg.mix = matrix, [nsignal x number of unobserved signals]
% specifying the mixing from the unobserved signals to
% the observed signals, or
% = matrix, [nsignal x number of unobserved signals x number of
% samples] specifying the mixing from the
% unobserved signals to the observed signals which
% changes as a function of time within the trial
% = cell-arry, [1 x ntrials] with each cell a matrix as
% specified above, when a trial-specific mixing is
% required
% cfg.delay = matrix, [nsignal x number of unobserved signals]
% specifying the time shift (in samples) between the
% unobserved signals and the observed signals
%
% Optional cfg options:
% cfg.bpfilter = 'yes' (or 'no')
% cfg.bpfreq = [bplow bphigh] (default: [15 25])
% cfg.demean = 'yes' (or 'no')
% cfg.baselinewindow = [begin end] in seconds, the default is the complete trial
% cfg.absnoise = scalar (default: 1), specifying the standard deviation of
% white noise superimposed on top of the simulated signals
% cfg.randomseed = 'yes' or a number or vector with the seed value (default = 'yes')
%
% Method 'mvnrnd' implements a linear mixing with optional timeshifts in
% where the number of unobserved signals is equal to the number of observed
% signals. This method used the MATLAB function mvnrnd. The implementation
% is a bit ad-hoc and experimental, so users are discouraged to apply it.
% The time shift occurs only after the linear mixing, so the effect of the
% parameters on the simulation is not really clear. This method will be
% disabled in the future.
%
% Required cfg options:
% cfg.covmat = covariance matrix between the signals
% cfg.delay = delay vector between the signals in samples
%
% Optional cfg options:
% cfg.bpfilter = 'yes' (or 'no')
% cfg.bpfreq = [bplow bphigh] (default: [15 25])
% cfg.demean = 'yes' (or 'no')
% cfg.baselinewindow = [begin end] in seconds, the default is the complete trial
% cfg.absnoise = scalar (default: 1), specifying the standard
% deviation of white noise superimposed on top
% of the simulated signals
%
% Method 'ar' implements an multivariate autoregressive model to generate
% the data.
%
% Required cfg options:
% cfg.params = matrix, [nsignal x nsignal x number of lags] specifying the
% autoregressive coefficient parameters. A non-zero
% element at cfg.params(i,j,k) means a
% directional influence from signal j onto
% signal i (at lag k).
% cfg.noisecov = matrix, [nsignal x nsignal] specifying the covariance
% matrix of the innovation process
%
% See also FT_FREQSIMULATION, FT_DIPOLESIMULATION, FT_SPIKESIMULATION,
% FT_CONNECTIVITYANALYSIS
% Copyright (C) 2009-2015, Donders Institute for Brain, Cognition and Behaviour
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% these are used by the ft_preamble/ft_postamble function and scripts
ft_revision = '$Id$';
ft_nargin = nargin;
ft_nargout = nargout;
% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble debug
ft_preamble provenance
ft_preamble randomseed
ft_preamble trackconfig
% the ft_abort variable is set to true or false in ft_preamble_init
if ft_abort
return
end
% check input configuration for the generally applicable options
cfg = ft_checkconfig(cfg, 'required', {'nsignal' 'ntrials' 'triallength' 'fsample' 'method'});
cfg = ft_checkconfig(cfg, 'rename', {'blc', 'demean'});
% method specific defaults
switch cfg.method
case {'ar'}
cfg.absnoise = ft_getopt(cfg, 'absnoise', zeros(cfg.nsignal,1));
cfg = ft_checkconfig(cfg, 'required', {'params' 'noisecov'});
case {'linear_mix'}
cfg.bpfilter = ft_getopt(cfg, 'bpfilter', 'yes');
cfg.bpfreq = ft_getopt(cfg, 'bpfreq', [15 25]);
cfg.demean = ft_getopt(cfg, 'demean', 'yes');
cfg.absnoise = ft_getopt(cfg, 'absnoise', 1);
cfg = ft_checkconfig(cfg, 'required', {'mix' 'delay'});
case {'mvnrnd'}
cfg.bpfilter = ft_getopt(cfg, 'bpfilter', 'yes');
cfg.bpfreq = ft_getopt(cfg, 'bpfreq', [15 25]);
cfg.demean = ft_getopt(cfg, 'demean', 'yes');
cfg.absnoise = ft_getopt(cfg, 'absnoise', 1);
cfg = ft_checkconfig(cfg, 'required', {'covmat' 'delay'});
otherwise
end
trial = cell(1, cfg.ntrials);
time = cell(1, cfg.ntrials);
nsmp = round(cfg.triallength*cfg.fsample);
tim = (0:nsmp-1)./cfg.fsample;
% create the labels
for k = 1:cfg.nsignal
label{k,1} = ['signal',num2str(k,'%03d')];
end
switch cfg.method
case {'ar'}
nlag = size(cfg.params,3);
nsignal = cfg.nsignal;
params = zeros(nlag*nsignal, nsignal);
for k = 1:nlag
%params(((k-1)*nsignal+1):k*nsignal,:) = cfg.params(:,:,k);
params(((k-1)*nsignal+1):k*nsignal,:) = cfg.params(:,:,k)';
% Use the transposition to make the implementation consistent with what
% comes out of ft_mvaranalysis. The transposition is introduced on May
% 13, 2011. This swaps the directional influence for existing scripts.
end
for k = 1:cfg.ntrials
tmp = zeros(nsignal, nsmp+nlag);
noise = mvnrnd(zeros(nsignal,1), cfg.noisecov, nsmp+nlag)';
state0 = zeros(nsignal*nlag, 1);
for m = 1:nlag
indx = ((m-1)*nsignal+1):m*nsignal;
state0(indx) = params(indx,:)'*noise(:,m);
end
tmp(:,1:nlag) = fliplr(reshape(state0, [nsignal nlag]));
for m = (nlag+1):(nsmp+nlag)
state0 = reshape(fliplr(tmp(:,(m-nlag):(m-1))), [nlag*nsignal 1]);
tmp(:, m) = params'*state0 + noise(:,m);
end
trial{k} = tmp(:,nlag+1:end);
if any(cfg.absnoise>0)
trial{k} = trial{k} + diag(cfg.absnoise)*randn(size(trial{k}));
end
time{k} = tim;
end
case {'linear_mix'}
fltpad = 50; %hard coded to avoid filtering artifacts
delay = cfg.delay;
delay = delay - min(delay(:)); %make explicitly >= 0
maxdelay = max(delay(:));
if iscell(cfg.mix),
%each trial has different mix
mix = cfg.mix;
else
%make cell-array out of mix
tmpmix = cfg.mix;
mix = cell(1,cfg.ntrials);
for tr = 1:cfg.ntrials
mix{1,tr} = tmpmix;
end
end
nmixsignal = size(mix{1}, 2); %number of "mixing signals"
nsignal = size(mix{1}, 1);
if numel(size(mix{1}))==2,
%mix is static, no function of time
for tr = 1:cfg.ntrials
mix{tr} = mix{tr}(:,:,ones(1,nsmp+maxdelay));
end
elseif numel(size(mix{1}))==3 && size(mix{1},3)==nsmp,
%mix changes with time
for tr = 1:cfg.ntrials
mix{tr} = cat(3,mix{tr},mix{tr}(:,:,nsmp*ones(1,maxdelay)));
end
%FIXME think about this
%due to the delay the mix cannot be defined instantaneously with respect to all signals
end
for tr = 1:cfg.ntrials
mixsignal = randn(nmixsignal, nsmp + 2*fltpad + maxdelay);
mixsignal = preproc(mixsignal, label, offset2time(-fltpad, cfg.fsample, size(mixsignal,2)), cfg, fltpad, fltpad);
tmp = zeros(cfg.nsignal, nsmp);
for i=1:cfg.nsignal
for j=1:nmixsignal
begsmp = 1 + delay(i,j);
endsmp = nsmp + delay(i,j);
tmpmix = reshape(mix{tr}(i,j,:),[1 nsmp+maxdelay]) .* mixsignal(j,:);
tmp(i,:) = tmp(i,:) + tmpmix(begsmp:endsmp);
end
end
trial{tr} = tmp;
% add some noise
trial{tr} = ft_preproc_baselinecorrect(trial{tr} + cfg.absnoise*randn(size(trial{tr})));
% define time axis for this trial
time{tr} = tim;
end
case {'mvnrnd'}
fltpad = 100; %hard coded
shift = max(cfg.delay(:,1)) - cfg.delay(:,1);
for k = 1:cfg.ntrials
% create the multivariate time series plus some padding
tmp = mvnrnd(zeros(1,cfg.nsignal), cfg.covmat, nsmp+2*fltpad+max(shift))';
% add the delays
newtmp = zeros(cfg.nsignal, nsmp+2*fltpad);
for kk = 1:cfg.nsignal
begsmp = + shift(kk) + 1;
endsmp = nsmp + 2*fltpad + shift(kk);
newtmp(kk,:) = ft_preproc_baselinecorrect(tmp(kk,begsmp:endsmp));
end
% apply preproc
newtmp = preproc(newtmp, label, offset2time(-fltpad, cfg.fsample, size(newtmp,2)), cfg, fltpad, fltpad);
trial{k} = newtmp;
% add some noise
trial{k} = ft_preproc_baselinecorrect(trial{k} + cfg.absnoise*randn(size(trial{k})));
% define time axis for this trial
time{k} = tim;
end
otherwise
error('unknown method');
end
% create the output data
simulated = [];
simulated.trial = trial;
simulated.time = time;
simulated.fsample = cfg.fsample;
simulated.label = label;
% do the general cleanup and bookkeeping at the end of the function
ft_postamble debug
ft_postamble trackconfig
ft_postamble randomseed
ft_postamble provenance
ft_postamble history simulated
ft_postamble savevar simulated