diff --git a/python/subprojects/testbed/tests/res/out/boomer/feature-binning-equal-frequency_binary-features-dense.txt b/python/subprojects/testbed/tests/res/out/boomer/feature-binning-equal-frequency_binary-features-dense.txt index 6b545ff8e0..db6fe9a443 100644 --- a/python/subprojects/testbed/tests/res/out/boomer/feature-binning-equal-frequency_binary-features-dense.txt +++ b/python/subprojects/testbed/tests/res/out/boomer/feature-binning-equal-frequency_binary-features-dense.txt @@ -12,20 +12,20 @@ DEBUG A sparse matrix is used to store the predicted labels INFO Successfully predicted in INFO Evaluation result for test data: -Example-wise F1 62.02 -Example-wise Jaccard 29.62 +Example-wise F1 62.64 +Example-wise Jaccard 31.28 Example-wise Precision 61.51 -Example-wise Recall 33.49 -Hamming Accuracy 94.62 -Hamming Loss 5.38 -Macro F1 12.52 -Macro Jaccard 6.73 -Macro Precision 92.05 -Macro Recall 8.11 -Micro F1 45.02 -Micro Jaccard 29.05 -Micro Precision 64.19 -Micro Recall 34.67 +Example-wise Recall 36.12 +Hamming Accuracy 94.68 +Hamming Loss 5.32 +Macro F1 14.35 +Macro Jaccard 7.81 +Macro Precision 88.88 +Macro Recall 9.27 +Micro F1 47.2 +Micro Jaccard 30.89 +Micro Precision 63.9 +Micro Recall 37.42 Subset 0/1 Loss 96.98 Subset Accuracy 3.02 diff --git a/python/subprojects/testbed/tests/res/out/boomer/feature-binning-equal-frequency_binary-features-sparse.txt b/python/subprojects/testbed/tests/res/out/boomer/feature-binning-equal-frequency_binary-features-sparse.txt index 7a6d9a3ac0..ace0681ecc 100644 --- a/python/subprojects/testbed/tests/res/out/boomer/feature-binning-equal-frequency_binary-features-sparse.txt +++ b/python/subprojects/testbed/tests/res/out/boomer/feature-binning-equal-frequency_binary-features-sparse.txt @@ -12,20 +12,20 @@ DEBUG A sparse matrix is used to store the predicted labels INFO Successfully predicted in INFO Evaluation result for test data: -Example-wise F1 61.06 -Example-wise Jaccard 29.58 -Example-wise Precision 62.75 -Example-wise Recall 33.2 -Hamming Accuracy 94.62 -Hamming Loss 5.38 -Macro F1 9.81 -Macro Jaccard 6.25 -Macro Precision 94.94 -Macro Recall 7.58 -Micro F1 44.85 -Micro Jaccard 28.91 -Micro Precision 64.39 -Micro Recall 34.41 +Example-wise F1 62.64 +Example-wise Jaccard 31.28 +Example-wise Precision 61.51 +Example-wise Recall 36.12 +Hamming Accuracy 94.68 +Hamming Loss 5.32 +Macro F1 14.35 +Macro Jaccard 7.81 +Macro Precision 88.88 +Macro Recall 9.27 +Micro F1 47.2 +Micro Jaccard 30.89 +Micro Precision 63.9 +Micro Recall 37.42 Subset 0/1 Loss 96.98 Subset Accuracy 3.02 diff --git a/python/subprojects/testbed/tests/res/out/boomer/feature-binning-equal-frequency_nominal-features-dense.txt b/python/subprojects/testbed/tests/res/out/boomer/feature-binning-equal-frequency_nominal-features-dense.txt index 21c06a8213..75fc6f45cd 100644 --- a/python/subprojects/testbed/tests/res/out/boomer/feature-binning-equal-frequency_nominal-features-dense.txt +++ b/python/subprojects/testbed/tests/res/out/boomer/feature-binning-equal-frequency_nominal-features-dense.txt @@ -12,21 +12,21 @@ DEBUG A dense matrix is used to store the predicted labels INFO Successfully predicted in INFO Evaluation result for test data: -Example-wise F1 71.82 -Example-wise Jaccard 49.49 -Example-wise Precision 71.85 -Example-wise Recall 57.74 -Hamming Accuracy 77.81 -Hamming Loss 22.19 -Macro F1 60.28 -Macro Jaccard 43.89 -Macro Precision 67.51 -Macro Recall 55.34 -Micro F1 62.01 -Micro Jaccard 44.94 -Micro Precision 68.27 -Micro Recall 56.8 -Subset 0/1 Loss 75 -Subset Accuracy 25 +Example-wise F1 71.67 +Example-wise Jaccard 49.15 +Example-wise Precision 73.64 +Example-wise Recall 56.8 +Hamming Accuracy 78.4 +Hamming Loss 21.6 +Macro F1 59.79 +Macro Jaccard 43.82 +Macro Precision 69.16 +Macro Recall 53.66 +Micro F1 62.09 +Micro Jaccard 45.02 +Micro Precision 70.51 +Micro Recall 55.47 +Subset 0/1 Loss 76.02 +Subset Accuracy 23.98 INFO Successfully finished after diff --git a/python/subprojects/testbed/tests/res/out/boomer/feature-binning-equal-frequency_nominal-features-sparse.txt b/python/subprojects/testbed/tests/res/out/boomer/feature-binning-equal-frequency_nominal-features-sparse.txt index e003954c4e..2e59815687 100644 --- a/python/subprojects/testbed/tests/res/out/boomer/feature-binning-equal-frequency_nominal-features-sparse.txt +++ b/python/subprojects/testbed/tests/res/out/boomer/feature-binning-equal-frequency_nominal-features-sparse.txt @@ -12,21 +12,21 @@ DEBUG A dense matrix is used to store the predicted labels INFO Successfully predicted in INFO Evaluation result for test data: -Example-wise F1 70.36 -Example-wise Jaccard 48.17 -Example-wise Precision 73.89 -Example-wise Recall 55.53 -Hamming Accuracy 77.72 -Hamming Loss 22.28 -Macro F1 58.29 -Macro Jaccard 42.16 -Macro Precision 68.8 -Macro Recall 51.65 -Micro F1 60.42 -Micro Jaccard 43.29 -Micro Precision 69.69 -Micro Recall 53.33 -Subset 0/1 Loss 75.51 -Subset Accuracy 24.49 +Example-wise F1 67.86 +Example-wise Jaccard 46.6 +Example-wise Precision 76.79 +Example-wise Recall 53.32 +Hamming Accuracy 78.74 +Hamming Loss 21.26 +Macro F1 58.93 +Macro Jaccard 42.71 +Macro Precision 73.26 +Macro Recall 51.04 +Micro F1 61.18 +Micro Jaccard 44.07 +Micro Precision 73.23 +Micro Recall 52.53 +Subset 0/1 Loss 77.55 +Subset Accuracy 22.45 INFO Successfully finished after diff --git a/python/subprojects/testbed/tests/res/out/boomer/feature-binning-equal-width_binary-features-dense.txt b/python/subprojects/testbed/tests/res/out/boomer/feature-binning-equal-width_binary-features-dense.txt index 6b545ff8e0..db6fe9a443 100644 --- a/python/subprojects/testbed/tests/res/out/boomer/feature-binning-equal-width_binary-features-dense.txt +++ b/python/subprojects/testbed/tests/res/out/boomer/feature-binning-equal-width_binary-features-dense.txt @@ -12,20 +12,20 @@ DEBUG A sparse matrix is used to store the predicted labels INFO Successfully predicted in INFO Evaluation result for test data: -Example-wise F1 62.02 -Example-wise Jaccard 29.62 +Example-wise F1 62.64 +Example-wise Jaccard 31.28 Example-wise Precision 61.51 -Example-wise Recall 33.49 -Hamming Accuracy 94.62 -Hamming Loss 5.38 -Macro F1 12.52 -Macro Jaccard 6.73 -Macro Precision 92.05 -Macro Recall 8.11 -Micro F1 45.02 -Micro Jaccard 29.05 -Micro Precision 64.19 -Micro Recall 34.67 +Example-wise Recall 36.12 +Hamming Accuracy 94.68 +Hamming Loss 5.32 +Macro F1 14.35 +Macro Jaccard 7.81 +Macro Precision 88.88 +Macro Recall 9.27 +Micro F1 47.2 +Micro Jaccard 30.89 +Micro Precision 63.9 +Micro Recall 37.42 Subset 0/1 Loss 96.98 Subset Accuracy 3.02 diff --git a/python/subprojects/testbed/tests/res/out/boomer/feature-binning-equal-width_binary-features-sparse.txt b/python/subprojects/testbed/tests/res/out/boomer/feature-binning-equal-width_binary-features-sparse.txt index 7a6d9a3ac0..ace0681ecc 100644 --- a/python/subprojects/testbed/tests/res/out/boomer/feature-binning-equal-width_binary-features-sparse.txt +++ b/python/subprojects/testbed/tests/res/out/boomer/feature-binning-equal-width_binary-features-sparse.txt @@ -12,20 +12,20 @@ DEBUG A sparse matrix is used to store the predicted labels INFO Successfully predicted in INFO Evaluation result for test data: -Example-wise F1 61.06 -Example-wise Jaccard 29.58 -Example-wise Precision 62.75 -Example-wise Recall 33.2 -Hamming Accuracy 94.62 -Hamming Loss 5.38 -Macro F1 9.81 -Macro Jaccard 6.25 -Macro Precision 94.94 -Macro Recall 7.58 -Micro F1 44.85 -Micro Jaccard 28.91 -Micro Precision 64.39 -Micro Recall 34.41 +Example-wise F1 62.64 +Example-wise Jaccard 31.28 +Example-wise Precision 61.51 +Example-wise Recall 36.12 +Hamming Accuracy 94.68 +Hamming Loss 5.32 +Macro F1 14.35 +Macro Jaccard 7.81 +Macro Precision 88.88 +Macro Recall 9.27 +Micro F1 47.2 +Micro Jaccard 30.89 +Micro Precision 63.9 +Micro Recall 37.42 Subset 0/1 Loss 96.98 Subset Accuracy 3.02 diff --git a/python/subprojects/testbed/tests/res/out/boomer/feature-binning-equal-width_nominal-features-dense.txt b/python/subprojects/testbed/tests/res/out/boomer/feature-binning-equal-width_nominal-features-dense.txt index 21c06a8213..75fc6f45cd 100644 --- a/python/subprojects/testbed/tests/res/out/boomer/feature-binning-equal-width_nominal-features-dense.txt +++ b/python/subprojects/testbed/tests/res/out/boomer/feature-binning-equal-width_nominal-features-dense.txt @@ -12,21 +12,21 @@ DEBUG A dense matrix is used to store the predicted labels INFO Successfully predicted in INFO Evaluation result for test data: -Example-wise F1 71.82 -Example-wise Jaccard 49.49 -Example-wise Precision 71.85 -Example-wise Recall 57.74 -Hamming Accuracy 77.81 -Hamming Loss 22.19 -Macro F1 60.28 -Macro Jaccard 43.89 -Macro Precision 67.51 -Macro Recall 55.34 -Micro F1 62.01 -Micro Jaccard 44.94 -Micro Precision 68.27 -Micro Recall 56.8 -Subset 0/1 Loss 75 -Subset Accuracy 25 +Example-wise F1 71.67 +Example-wise Jaccard 49.15 +Example-wise Precision 73.64 +Example-wise Recall 56.8 +Hamming Accuracy 78.4 +Hamming Loss 21.6 +Macro F1 59.79 +Macro Jaccard 43.82 +Macro Precision 69.16 +Macro Recall 53.66 +Micro F1 62.09 +Micro Jaccard 45.02 +Micro Precision 70.51 +Micro Recall 55.47 +Subset 0/1 Loss 76.02 +Subset Accuracy 23.98 INFO Successfully finished after diff --git a/python/subprojects/testbed/tests/res/out/boomer/feature-binning-equal-width_nominal-features-sparse.txt b/python/subprojects/testbed/tests/res/out/boomer/feature-binning-equal-width_nominal-features-sparse.txt index e003954c4e..2e59815687 100644 --- a/python/subprojects/testbed/tests/res/out/boomer/feature-binning-equal-width_nominal-features-sparse.txt +++ b/python/subprojects/testbed/tests/res/out/boomer/feature-binning-equal-width_nominal-features-sparse.txt @@ -12,21 +12,21 @@ DEBUG A dense matrix is used to store the predicted labels INFO Successfully predicted in INFO Evaluation result for test data: -Example-wise F1 70.36 -Example-wise Jaccard 48.17 -Example-wise Precision 73.89 -Example-wise Recall 55.53 -Hamming Accuracy 77.72 -Hamming Loss 22.28 -Macro F1 58.29 -Macro Jaccard 42.16 -Macro Precision 68.8 -Macro Recall 51.65 -Micro F1 60.42 -Micro Jaccard 43.29 -Micro Precision 69.69 -Micro Recall 53.33 -Subset 0/1 Loss 75.51 -Subset Accuracy 24.49 +Example-wise F1 67.86 +Example-wise Jaccard 46.6 +Example-wise Precision 76.79 +Example-wise Recall 53.32 +Hamming Accuracy 78.74 +Hamming Loss 21.26 +Macro F1 58.93 +Macro Jaccard 42.71 +Macro Precision 73.26 +Macro Recall 51.04 +Micro F1 61.18 +Micro Jaccard 44.07 +Micro Precision 73.23 +Micro Recall 52.53 +Subset 0/1 Loss 77.55 +Subset Accuracy 22.45 INFO Successfully finished after