-
Notifications
You must be signed in to change notification settings - Fork 14
/
textpro.py
851 lines (664 loc) · 33 KB
/
textpro.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
#!/usr/bin/python
# -*- coding: utf-8 -*-
'''
# Comparable text miner
# Description
Comparable document miner: Arabic-English morphological analysis, text processing, n-gram features extraction, POS tagging, dictionary translation, documents alignment, corpus information, text classification, tf-idf computation, text similarity computation, HTML documents cleaning, and others.
This code is implemented by Motaz SAAD ([email protected]) during his PhD work. The PhD thesis is available at: https://sites.google.com/site/motazsite/Home/publications/saad_phd.pdf
Motaz Saad. Mining Documents and Sentiments in Cross-lingual Context. PhD thesis, Université de Lorraine, January 2015.
This code processes Arabic and English text. To use this software, load it as follows:
import imp
tp = imp.load_source('textpro', 'textpro.py')
Then, you can use functions as follows:
clean_text = process_text(text)
# Dependencies
This software depends on the following python packages scipy, numpy, nltk, sklearn, bs4. Please make sure that they are installed before using this software.
# References
This software uses the following resources:
- Arabic stopwords: http://www.ranks.nl/stopwords/arabic
- Open Multilingual WordNet (OMW) dictionaries http://compling.hss.ntu.edu.sg/omw/ The references of OMW are listed below:
- Francis Bond and Kyonghee Paik (2012), A survey of wordnets and their licenses In Proceedings of the 6th Global WordNet Conference (GWC 2012). Matsue. 64–71.
- Francis Bond and Ryan Foster (2013), Linking and extending an open multilingual wordnet. In 51st Annual Meeting of the Association for Computational Linguistics: ACL-2013. Sofia. 1352–1362.
- ISRI Arabic Stemmer, which is a rooting algorithm for Arabic text. The reference of ISRI Arabic Stemmer is below:
- Taghva, K., Elkoury, R., and Coombs, J. 2005. Arabic Stemming without a root dictionary. Information Science Research Institute. University of Nevada, Las Vegas, USA.
- This software modifies the ISRI Arabic Stemmer to perform light stemming for Arabic words.
'''
import sys
import os.path
import string
import collections
import nltk
from nltk.corpus import stopwords
from nltk.stem.wordnet import WordNetLemmatizer
from nltk import word_tokenize, pos_tag
from nltk.util import ngrams
from nltk.corpus import wordnet as omw # open multilingual wordnet
from nltk.stem.isri import ISRIStemmer
from gensim import corpora, models, similarities, matutils
from joblib import Parallel, delayed
#Parallel(n_jobs=4)(delayed(func_name)(arg1, arg2, ...) for i in range(n))
import pyprind
import sqlite3
import sklearn
from sklearn.metrics import accuracy_score
from sklearn.metrics import precision_score
from sklearn.metrics import recall_score
from sklearn.metrics import f1_score
from random import shuffle
from scipy.spatial import distance
import math
from bs4 import BeautifulSoup
import logging
logging.basicConfig(format='%(levelname)s : %(asctime)s : %(message)s', level=logging.INFO)
import re
whiteSpace = re.compile(r'\s+')
#import imp
#tp = imp.load_source('textpro', 'textpro.py')
x_seperator = '\nXXXXXXX\n' # define document separator (7 Xs). This separator is used when all the docs are in one file (a corpus file)
##################################################################
# Arabic diacritics
arabic_punct = ''' ` ÷ × ؛ < > _ ( ) * & ^ % ] [ ـ ، / : " ؟ . , ' { } ~ ¦ + | ! ” … “ – ـ '''
arabic_diacritics = ''' َ ُ ِ ّ ً ٌ ٍ ْ '''
arabic_punctUnicode = arabic_punct.decode('utf-8')
arabic_punct = arabic_punct.split()
arabic_punctUnicode = arabic_punctUnicode.split()
arabic_diacritics_unicode = arabic_diacritics.decode('utf-8')
arabic_diacritics = arabic_diacritics.split()
arabic_diacritics_unicode = arabic_diacritics_unicode.split()
english_punt = list(string.punctuation)
english_puntUnicode = list(string.punctuation.decode('utf-8'))
# Arabic punctuations and dicritis + English and Arabic
punctuations = set( english_punt + english_puntUnicode + arabic_punct + arabic_punctUnicode + arabic_diacritics + arabic_diacritics_unicode)
englishStopWords = stopwords.words('english')
englishStopWords_unicode = ' '.join(englishStopWords).decode('utf-8').split()
# Arabic stopwords. This list are obtained from http://www.ranks.nl/stopwords/arabic
asw = open('stopwords.txt').read()
aswUinicode = asw.decode('utf-8')
arabicStopWords = asw.split() + aswUinicode.split()
# Arabic stopwords. This list are obtained from https://code.google.com/p/stop-words/
asw2 = ''
# Arabic and English stopwords
all_stopwords = set(englishStopWords + englishStopWords_unicode + arabicStopWords)
###################################################################################
###################################################################################
# remove punctcutions
def remove_punct(word):
for c in word: return ''.join(ch for ch in word if not ch in punctuations) # remove punctuation
###################################################################################
# takes a string of text and returns the word list (tonkized words)
# processing includes: removing diacritics and punctcutions, removing stopwords, and tokenizing
def process_text(text, removePunct=True, removeSW=True, removeNum=False):
text = remove_diacritics(text)# remove arabic diacritics
word_list = nltk.tokenize.wordpunct_tokenize(text.lower())
if removePunct:
word_list = [ w for w in word_list if not w in punctuations ]
word_list = [ remove_punct(w) for w in word_list ]
if removeSW: word_list = [ w for w in word_list if not w in all_stopwords ]
if removeNum: word_list = [ w for w in word_list if not w.isdigit() ]
word_list = [ w for w in word_list if w]# remove empty words
return word_list
###################################################################################
# remove arabic diacritics
def remove_diacritics(text):
arstemmer = ISRIStemmer()
result = arstemmer.norm(text, num=1) # remove diacritics which representing Arabic short vowels
return result
###################################################################################
"""
ISRI Arabic Stemmer
The algorithm for this stemmer is described in:
Taghva, K., Elkoury, R., and Coombs, J. 2005. Arabic Stemming without a root dictionary.
Information Science Research Institute. University of Nevada, Las Vegas, USA.
The Information Science Research Institute’s (ISRI) Arabic stemmer shares many features
with the Khoja stemmer. However, the main difference is that ISRI stemmer does not use root
dictionary. Also, if a root is not found, ISRI stemmer returned normalized form, rather than
returning the original unmodified word.
Additional adjustments were made to improve the algorithm:
1- Adding 60 stop words.
2- Adding the pattern (تفاعيل) to ISRI pattern set.
3- The step 2 in the original algorithm was normalizing all hamza. This step is discarded because it
increases the word ambiguities and changes the original root.
"""
# takes a word list and returns the root for each Arabic words
def getRootAr(word_list):
result = []
arstemmer = ISRIStemmer()
for word in word_list: result.append(arstemmer.stem(word))
return ' '.join(result)
###################################################################################
# Arabic light stemming for Arabic text
# takes a word list and perform light stemming for each Arabic words
def lightStemAr(word_list):
result = []
arstemmer = ISRIStemmer()
for word in word_list:
word = arstemmer.norm(word, num=1) # remove diacritics which representing Arabic short vowels
if not word in arstemmer.stop_words: # exclude stop words from being processed
word = arstemmer.pre32(word) # remove length three and length two prefixes in this order
word = arstemmer.suf32(word) # remove length three and length two suffixes in this order
word = arstemmer.waw(word) # remove connective ‘و’ if it precedes a word beginning with ‘و’
word = arstemmer.norm(word, num=2) # normalize initial hamza to bare alif
result.append(word)
return ' '.join(result)
###################################################################################
# combine rooting and light stemming: if light stemming alogrithm manage to reduce word form, then the light stem is returned, else, the root is returned
def arMorph(text_list):
result = []
for word in word_list:
sol = None
root = getRootAr(word)
lightStem = lightStemAr(word)
if t == lightStem: sol = root
else: sol = lightStem
result.append(sol)
return ' '.join(result)
###################################################################################
# execlude stopwords from a list of words
def exclude_stopwords(word_list):
return [ w for w in word_list if not w in all_stopwords ]
###################################################################################
# return lemma for english text
def getLemma(text, contextFlag=False):
lemmatizer = WordNetLemmatizer()
#'NN':wordnet.NOUN,'JJ':wordnet.ADJ,'VB':wordnet.VERB,'RB':wordnet.ADV
wordnet_tag ={'NN':'n','JJ':'a','VB':'v','RB':'r'}
result = None
if text.split() == 1: # on word
tokenized = word_tokenize(t)
tagged = pos_tag(tokenized)[0]
lemma = ''
try: lemma = lemmatizer.lemmatize(tagged[0],wordnet_tag[tagged[1][:2]])
except: lemma = lemmatizer.lemmatize(tagged[0])
result = lemma
elif text.split() > 1 and contextFlag == True: # mutiple words i.e. text and without considering the context
resultList = []
for t in text.split():
tokenized = word_tokenize(t)
tagged = pos_tag(tokenized)[0]
lemma = ''
try: lemma = lemmatizer.lemmatize(tagged[0],wordnet_tag[tagged[1][:2]])
except: lemma = lemmatizer.lemmatize(tagged[0])
resultList.append(lemma)
result = ' '.join(resultList)
else: # mutiple words i.e. text and consider the context
resultList = []
tokens = word_tokenize(text)
tagged = pos_tag(tokens)
for t in tagged:
try: resultList.append(lemmatizer.lemmatize(t[0],wordnet_tag[t[1][:2]]))
except: resultList.append(lemmatizer.lemmatize(t[0]))
result = ' '.join(resultList)
return result
###################################################################################
# Given a Naive Bayes classifier, classify a text with a given certaintaity
def classify_text(text, classifier, certainity, g, unicodeFlag):
#1. process text
if unicodeFlag: text = text.decode('utf-8')
word_list = process_text(text, removePunct=True, removeSW=False, removeNum=False)
#2. generate ngrams
mygrams = generate_ngrams(word_list, g)
#3. generate features from ngrams
feats = generate_features(mygrams)
#4. classify
probs = classifier.prob_classify(feats)
label = probs.max()
if probs.prob(label) >= certainity: return label, probs.prob(label)
else: return 'none', probs.prob(label)
###################################################################################
# generates n-gram (g = num of grams)
# for example, if g=3, then the fuction will generate unigrams, bigrams, and tri-grams from the text.
def generate_ngrams(word_list, g):
mygrams = []
unigrams = [word for word in word_list]
mygrams += unigrams
for i in range(2,g+1): mygrams += ngrams(word_list, i)
return mygrams
###################################################################################
# generate n-gram features in the form (n-gram, True), i.e., binary feature. In other words, the n-gram exists
def generate_features(mygrams):
feats = dict([(word, True) for word in mygrams])
return feats
###################################################################################
# generate features for a doc from selected features grams (selected from a corpus)
# taks 2 parameters:
# 1. document feature grams
# 2. corpus selected feature grams
def build_features(doc_feat_grams, corpus_feat_grams):
doc_grams = set(doc_feat_grams)
feats = dict([(word, True) for word in doc_grams if word in corpus_feat_grams])
return feats
###################################################################################
# evaluate predicted results using true values.
# evaluation metrics are acccuracy, precicion, recall and f-measure.
def evaluate(trueValues, predicted, decimals, note):
print note
label = 1
avg = 'weighted'
a = accuracy_score(trueValues, predicted)
p = precision_score(trueValues, predicted, pos_label=label, average=avg)
r = recall_score(trueValues, predicted, pos_label=label, average=avg)
avg_f1 = f1_score(trueValues, predicted, pos_label=label, average=avg)
fclasses = f1_score(trueValues, predicted, average=None)
f1c1 = fclasses[0]; f1c2 = fclasses[1]
fw = (f1c1 + f1c2)/2.0
print 'accuracy:\t', str(round(a,decimals))
print 'precision:\t', str(round(p,decimals))
print 'recall:\t', str(round(r,decimals))
print 'avg f1:\t', str(round(avg_f1,decimals))
print 'c1 f1:\t', str(round(f1c1,decimals))
print 'c2 f1:\t', str(round(f1c2,decimals))
print 'avg(c1,c2):\t', str(round(fw,decimals))
print '------------'
###################################################################################
# split a parallel or comparable corpus into two parts
def split_corpus(source_corpus, target_corpus, percentage):
print 'len(source_corpus) == len(target_corpus)', len(source_corpus), '==' , len(target_corpus) , len(source_corpus) == len(target_corpus)
if len(source_corpus) != len(target_corpus): print 'FAILED: the corpus is not aligned correclty'; return None
size = len(source_corpus)
p1 = int (len(source_corpus) * percentage )
p2 = len(source_corpus) - p1
print 'size, p1, p2: ', size, p1, p2
udoc = []
for e,a in zip(source_corpus,target_corpus): udoc.append( (e,a) )
shuffle(udoc)
source_p1 = [] ; source_p2 = []
target_p1 = [] ; target_p2 = []
for d in udoc[:p1]: source_p1.append( d[0] )
for d in udoc[:p1]: target_p1.append( d[1] )
for d in udoc[p1:]: source_p2.append( d[0] )
for d in udoc[p1:]: target_p2.append( d[1] )
return source_p1, target_p1, source_p2, target_p2
##################################################################################
##################################################################################
##################################################################################
# load WordNet (WN) dictionaries
# Dictionaries are obtained from Open Multilingual WordNet website: http://compling.hss.ntu.edu.sg/omw/
# To cite these dictionaries:
# Francis Bond and Kyonghee Paik (2012), A survey of wordnets and their licenses In Proceedings of the 6th Global WordNet Conference (GWC 2012). Matsue. 64–71.
# Francis Bond and Ryan Foster (2013), Linking and extending an open multilingual wordnet. In 51st Annual Meeting of the Association for Computational Linguistics: ACL-2013. Sofia. 1352–1362.
eng_dict_file = 'wordnet/wn-data-eng.tab'
arb_dict_file = 'wordnet/wn-data-arb.tab'
eng_dict_lines = open(eng_dict_file).readlines()
arb_dict_lines = open(arb_dict_file).readlines()
eng_dict_key = []; eng_dict_word = [];
arb_dict_key = []; arb_dict_word = [];
for l in eng_dict_lines:
tokens = l.split('\t')
key = tokens[0][:-2].strip()
eng_dict_key.append(key)
word = tokens[2].strip().decode('utf-8')
eng_dict_word.append(word)
for l in arb_dict_lines:
tokens = l.split('\t')
key = tokens[0][:-2].strip()
arb_dict_key.append(key)
word = tokens[2].strip().decode('utf-8')
arb_dict_word.append(word)
###################################################################################
# translation functions using WN bilingual dictionaries
def translate_en2ar(word):
translations = []
keys = []
for i in range(len(eng_dict_word)):
if word == eng_dict_word[i]: keys.append(eng_dict_key[i])
for i in range(len(arb_dict_key)):
for j in range(len(keys)):
if keys[j] == arb_dict_key[i]: translations.append(arb_dict_word[i])
return set(translations)
###################################################################################
def translate_ar2en(word):
translations = []
keys = []
for i in range(len(arb_dict_word)):
if word == arb_dict_word[i]: keys.append(arb_dict_key[i])
for i in range(len(eng_dict_key)):
for j in range(len(keys)):
if keys[j] == eng_dict_key[i]: translations.append(eng_dict_word[i])
return set(translations)
##################################################################################
##################################################################################
##################################################################################
# binary similarity between two binary vectors
def sim_bin(s_vector,t_vector): return 1 - distance.jaccard(s_vector, t_vector)
# cosine similarity between two wieghted vectors
def sim_cosine(s_vector,t_vector): return 1 - distance.cosine(s_vector, t_vector)
##################################################################################
##################################################################################
##################################################################################
# computes tfidf wieghts for words in a given document. The function needs the corpus to compute idf
def tf_idf(word, document, corpus):
base = 10
corpus_size = float(len(corpus))
tf = document.count(word)
doc_freq = float ( sum(1 for doc in corpus if word in doc) )
idf = math.log( (corpus_size / doc_freq ), base )
tf_idf = tf * idf
return tf_idf
##################################################################################
##################################################################################
# Compute average number of sentences per document for a corpus collectection
def avgSenPerArticle(corpus):
avg = 0.0
for d in corpus:
n = d.splitlines()
avg += n
avg /= len(corpus)
return avg
##################################################################################
##################################################################################
# Compute average number of words per document for a corpus collectection
def avgWordsPerArticle(corpus):
avg = 0.0
for d in corpus:
n = len(d.split())
avg += n
avg /= len(corpus)
return avg
##################################################################################
##################################################################################
# Compute vocabulary size for a text
def vocab(text):
tok = text.split()
v = set(tok)
return len(v)
##################################################################################
##################################################################################
# remove empty lines and white spaces (remove empty lines and keep '\n' in the text)
def pretty_print(text):
lines = text.splitlines()
filtered1 = filter(lambda x: not re.match(r'^\s*$', x), lines)
filtered2 = [whiteSpace.sub(' ', l).strip() for l in filtered1]
cleantext = '\n'.join(filtered2)
return cleantext
##################################################################################
# clean html tages from a text
def strip_html_tags(text):
soup = BeautifulSoup(text)
doc = pretty_print(soup.get_text())
return doc
##################################################################################
# find text between two substrings
def find_between(text , first, last ):
try:
start = text.index( first ) + len( first )
end = text.index( last, start )
return text[start:end]
except ValueError:
return None
##################################################################################
def merge_source_target_docs(source_corpus, target_corpus):
merged_corpus = []
for source_doc, target_doc in zip(source_corpus, target_corpus):
merged_corpus.append(source_doc + target_doc)
return merged_corpus
##################################################################################
def load_corpus(corpus_file, corpus_type):
corpus = None
global doc_separator
if corpus_type == 'comparable':
corpus = open(corpus_file).read().decode('utf-8').split(doc_separator); del corpus[-1]
if corpus_type == 'parallel':
corpus = open(corpus_file).read().decode('utf-8').splitlines()
if not corpus:
print 'corpus type is not supported... The corpus should be parallel or comparable'
return corpus
##################################################################################
def prepare_gensim_corpus(corpus_name, corpus, output_path, min_freq=5):
if not output_path.endswith('/'): output_path = output_path + '/'
check_dir(output_path) # if directory does not exist, then create
logging.info( 'building gensim corpus and dictionary for %s corpus', corpus_name )
logging.info( 'loading corpus' )
texts = [[word for word in process_text(document, removePunct=True, removeSW=True, removeNum=True)] for document in corpus]
logging.info( 'tokenizing' )
all_tokens = [item for sublist in texts for item in sublist]
logging.info( 'mark tokens which have frequency less than %d', min_freq )
tokens_once = set([k for k, v in collections.Counter(all_tokens).iteritems() if v < min_freq ])
logging.info( '|D|=%d' , len(texts) )
logging.info( 'filter low frequency tokens' )
texts = [[word for word in text if word not in tokens_once] for text in texts]
logging.info( '|D|=%d' , len(texts) )
logging.info( 'building dictionary' )
dictionary = corpora.Dictionary(texts)
logging.info( 'saving dictionary' )
dictFile = output_path + corpus_name + '.dict'
dictionary.save(dictFile)
logging.info( 'building corpus in mm format' )
corpus = [dictionary.doc2bow(text) for text in texts]
logging.info( 'saving corpus' )
gensim_corpus_file = output_path + corpus_name + '.mm'
corpora.MmCorpus.serialize(gensim_corpus_file, corpus)
logging.info( 'computing tfidf' )
tfidf = models.TfidfModel(corpus) # tfidf model
corpus_tfidf = tfidf[corpus] # tfidf corpus
logging.info( 'saving tfidf corpus' )
corpus_tfidf_file = output_path + corpus_name + '.tfidf.mm'
corpora.MmCorpus.serialize(corpus_tfidf_file, corpus_tfidf)
logging.info( 'gensim corpus is ready' )
##################################################################################
def build_lsi_model(corpus_name, corpus_path, topics=300):
logging.info( 'building lsi model for %s corpus', corpus_name )
dictFile = corpus_path + corpus_name + '.dict'
corpus_tfidf_file = corpus_path + corpus_name + '.tfidf.mm'
logging.info( 'loading dictionary ...' )
dictionary = corpora.Dictionary.load(dictFile)
logging.info( 'loading tfidf corpus ...' )
corpus_tfidf = corpora.MmCorpus(corpus_tfidf_file)
logging.info( 'building lsi model' )
lsi = models.LsiModel(corpus_tfidf, id2word=dictionary, num_topics=topics)
logging.info( 'saving lsi' )
lsiFile = corpus_path + corpus_name + '.lsi'
lsi.save(lsiFile)
logging.info( 'lsi model is ready' )
##################################################################################
def align_documents_lsi(source_test_corpus, target_test_corpus, model_path, model_name, output_path, top_n=20, doc_separator=x_seperator):
logging.info( 'aligning source and target documents using LSI model' )
dictionaryFile = model_path + model_name + '.dict'
lsiFile = model_path + model_name + '.lsi'
dictionary = corpora.Dictionary.load(dictionaryFile) ; logging.info( 'dictionary loaded' )
lsi = models.LsiModel.load(lsiFile) ; logging.info( 'lsi model loaded' )
logging.info( '# of source docs %d \t# of target docs %d', len(source_test_corpus), len(target_test_corpus) )
source_lsi_corpus = generateLSIvectors(source_test_corpus, dictionary, lsi)
logging.info( 'projects source corpus into LSI space' )
target_lsi_corpus = generateLSIvectors(target_test_corpus, dictionary, lsi)
logging.info( 'projects target corpus into LSI space' )
allSims = [] ; doc_tuple = [] ; source_index = 0
for d in source_lsi_corpus:
target_index, sim = getComparable(d, target_lsi_corpus)
allSims.append(sim)
source_doc = source_test_corpus[source_index] ; target_doc = target_test_corpus[target_index]
del target_lsi_corpus[target_index] ;
del target_test_corpus[target_index] # remove the already aligned document from the target corpus
doc_tuple.append((source_index,target_index, source_doc, target_doc))
if not target_lsi_corpus: break # all target docs are aligned
source_index+=1
sortedAllSims = sorted(enumerate(allSims), key=lambda item: -item[1])
topNList = sortedAllSims[:top_n]
out = open (output_path + 'results.txt', 'w')
count = 0
print '\n#, src, target, sim'
for e in topNList:
i, sim = e
srcIndx = doc_tuple[i][0] ; targetIndx = doc_tuple[i][1] ; sdoc = doc_tuple[i][2] ; tdoc = doc_tuple[i][3]
print count, srcIndx, targetIndx, '%0.2f' % sim
print>>out, count, srcIndx, targetIndx, '%0.2f' % sim
source_out = open(output_path + str(count) + '.source.txt', 'w')
target_out = open(output_path + str(count) + '.target.txt' , 'w')
print>>source_out, sdoc.encode('utf-8')
print>>target_out, tdoc.encode('utf-8')
source_out.close(); target_out.close(); count+=1
out.close();
logging.info( 'aligning source and target documents using LSI model is done!' )
##################################################################################
def align_sentences_lsi(source_sentences, target_sentences, model_path, model_name):
logging.info( 'Sentence level alignment using LSI' )
dictionaryFile = model_path + model_name + '.dict'
lsiFile = model_path + model_name + '.lsi'
dictionary = corpora.Dictionary.load(dictionaryFile) ; logging.info( 'dictionary loaded' )
lsi = models.LsiModel.load(lsiFile) ; logging.info( 'lsi model loaded' )
source_lsi_sentences = generateLSIvectors(source_sentences, dictionary, lsi);
logging.info( 'projects source sentences into LSI space')
target_lsi_sentences = generateLSIvectors(target_sentences, dictionary, lsi);
logging.info( 'projects target sentences into LSI space' )
source_index = 0
new_source_doc = [] ; new_target_doc = []
for d in source_lsi_sentences:
target_index, sim = getComparable(d, target_lsi_sentences)
source_sent = source_sentences[source_index] ; target_sent = target_sentences[target_index]
del target_lsi_sentences[target_index] ;
del target_sentences[target_index] # remove the already aligned sentences from the target document
new_source_doc.append(source_sent)
new_target_doc.append(target_sent)
if not target_lsi_sentences: break # all target sentences are aligned
source_index+=1
return new_source_doc, new_target_doc
##################################################################################
# projecting a corpus into LSI space
def generateLSIvectors(corpus, dictionary, lsi):
LSIcorpus = []
for d in corpus:
vec_bow = dictionary.doc2bow(process_text(d))
vec_lsi = lsi[vec_bow]
LSIcorpus.append(vec_lsi)
return LSIcorpus
##################################################################################
# given a source doc, get the most comparable document from the target corpus
# returns the index of the target document in the the target corpus
def getComparable(source_lsi_doc, target_lsi_corpus):
sims = []
for i in range(len(target_lsi_corpus)):
sims.append( matutils.cossim(source_lsi_doc, target_lsi_corpus[i]) )
sortedSims = sorted(enumerate(sims), key=lambda item: -item[1])
topIndex = sortedSims[0][0]
topSim = sortedSims[0][1]
return sortedSims[0]
##################################################################################
##################################################################################
# takses wiki text and a list of language codes, and returns the interlanguage links
# language code list:
# ar arabic
# en english
# fr french
# es Español
# de Deutsch
# it Italiano
# pt portuguese
# fa farsi
# ur urdo
# he hebrew
# ps peshto (Afghānī)
# sd Sindhi (sindi)
# ug Uyghur أويغورية
# pnb punjabi (Pakistan - India)
# ckb kurdi
# arz egyptian
lang_list = ['ar', 'en', 'fr', 'es', 'it', 'de', 'fa', 'he', 'ur', 'ps', 'sd', 'ug', 'pnb', 'ckb', 'arz', 'simple']
def get_interlanguage_links_from_wikitext(wiki_text, language_code_list=lang_list):
interlinks = []
for code in language_code_list:
link = find_between(wiki_text, '[[' + code + ':', ']]')
if link: interlinks.append('[[' + code + ':' + link + ']]')
return interlinks
##################################################################################
def get_interlanguage_links_sql(doc_id, db_cursor, lang_code):
interlinks = []
sql = '''
SELECT ll_lang, ll_title
FROM %s_langlinks
where
ll_from = '%d' ''' % (lang_code, doc_id)
db_cursor.execute(sql)
results = db_cursor.fetchall()
for row in results:
lang = row[0] ; title = row[1]
interlinks.append('[[' + lang + ':' + title + ']]')
return interlinks
##################################################################################
def load_interlanguage_links(wiki_doc):
links = find_between(wiki_doc , '<interlanguage_links>', '</interlanguage_links>' )
return links
##################################################################################
def get_title_from_interlanguage_links(links, language_code):
title = find_between(links, '[[' + language_code + ':' , ']]')
return title
##################################################################################
def aligning_documents_by_interlanguage_links(source_corpus_file, target_corpus_file, source_language, target_language, output_path):
if not output_path.endswith('/'): output_path = output_path + '/'
check_dir(output_path) # if directory does not exist, then create
logging.info( 'aliging %s and %s wikipeida documents using interlanguage links', source_language, target_language)
source_docs = split_wikipedia_docs_into_array(source_corpus_file)
logging.info( 'source corpus is loaded')
target_docs = split_wikipedia_docs_into_array(target_corpus_file)
logging.info( 'target corpus is loaded')
target_titles = [get_title_from_interlanguage_links(d, source_language) for d in target_docs]
logging.info( 'start aligning...')
source_out = open(output_path + source_language + '-wiki.txt', 'w')
target_out = open(output_path + target_language + '-wiki.txt', 'w')
count = 1
my_prperc = pyprind.ProgPercent(len(source_docs))
for i in range(len(source_docs)):
my_prperc.update() # print progress
source_title = get_title_from_interlanguage_links(source_docs[i], source_language)
try:
index = target_titles.index(source_title)
text_out = source_docs[i]
print>>source_out, text_out.encode('utf-8')
text_out = target_docs[index]
print>>target_out, text_out.encode('utf-8')
count += 1
except: continue
logging.info( 'aliging by document interlanguage links is done! ... \n %d documents are aligned', count)
##################################################################################
##################################################################################
def aligning_doc_by_interlanguage_links(source_doc, target_corpus, source_language, target_language, output_path):
source = None
target = None
source_title = get_title_from_interlanguage_links(source_doc, source_language)
for d in target_corpus:
target_title = get_title_from_interlanguage_links(d, target_language)
if source_title == target_title:
source = source_doc
target = d
return source, target
##################################################################################
# takes a wikipedia corpus (extracted by WikiExtractor.py) and splits the corpus into documents and clean them
def split_wikipedia_docs(corpus_file, output_path, doc_len=30):
corpus = open(corpus_file).read().split('</doc>')
logging.info( 'processing %d wikipedia documents...', len(corpus))
count = 1
for d in corpus:
doc = strip_html_tags(d)
if len(doc.split()) > doc_len: # if the number of words in the document is greater than doc_len, then the document will be extracted
out = open(output_path + os.path.basename(corpus_file) + str('-%07d' % count) + '.txt', 'w')
print>>out, doc.encode('utf-8')
out.close(); count+=1
logging.info('%d documents are extracted', count)
##################################################################################
# takes a wikipedia corpus (extracted by WikiExtractor.py) and splits the corpus into documents and clean them and returns an array
def split_wikipedia_docs_into_array(corpus_file, doc_len=30):
documents = []
corpus = open(corpus_file).read().decode('utf-8').split('</doc>')
for d in corpus:
#d = strip_html_tags(d)
# if the number of words in the document is greater than doc_len, then the document will be extracted
if len(d.split()) > doc_len:
documents.append(d + '\n</doc>')
return documents
##################################################################################
def check_dir(path):
if not path.endswith('/'): path = path + '/'
if not os.path.exists(path): # if directory does not exist, then create
print path, 'does not exist... creating ....'
os.makedirs(path)
##################################################################################
# TODO: group words according to their synset IDs
def omw_syn(word, language):
syn = omw.synsets(word, language)[0]
return syn.lemma_names(lang=language)
##################################################################################
def split_list(L, n_parts):
chunk_size = len(L) / n_parts
chunks=[L[x:x+chunk_size] for x in xrange(0, len(L), chunk_size)]
return chunks
##################################################################################
##################################################################################
##################################################################################