Skip to content

Latest commit

 

History

History
531 lines (468 loc) · 17.9 KB

README.md

File metadata and controls

531 lines (468 loc) · 17.9 KB

DOI

LineVul Replication Package


LineVul

A Transformer-based Line-Level Vulnerability Prediction Approach

Predict Real-World Software Vulnerabilities

LineVul Performance on Top-25 Most Dangerous CWEs in 2021

Rank CWE Type TPR Proportion
1 CWE-787 75% 18/24
2 CWE-79 - -
3 CWE-125 - -
4 CWE-20 86% 98/114
5 CWE-78 - -
6 CWE-89 - -
7 CWE-416 - -
8 CWE-22 100% 4/4
9 CWE-352 - -
10 CWE-434 - -
11 CWE-306 - -
12 CWE-190 90% 27/30
13 CWE-502 - -
14 CWE-287 - -
15 CWE-476 - -
16 CWE-798 - -
17 CWE-119 88% 173/197
18 CWE-862 - -
19 CWE-276 - -
20 CWE-200 85% 45/53
21 CWE-522 - -
22 CWE-732 - -
23 CWE-611 - -
24 CWE-918 - -
25 CWE-77 100% 2/2

Top-10 Most Accurately Predicted CWE Types of LineVul

Rank CWE Type TPR Proportion
1 CWE-284 100% 11/11
2 CWE-269 100% 8/8
3 CWE-254 100% 6/6
4 CWE-415 100% 6/6
5 CWE-311 100% 4/4
6 CWE-22 100% 4/4
7 CWE-17 100% 4/4
8 CWE-617 100% 4/4
9 CWE-358 100% 3/3
10 CWE-285 100% 3/3

[MSR 2022 Technical track] [Paper #166] [7 mins talk] LineVul: Line-Level Vulnerability Prediction

Table of Contents
  1. How to replicate
  2. Appendix
  3. Acknowledgements
  4. License
  5. Citation

How to replicate

About the Environment Setup

First of all, clone this repository to your local machine and access the main dir via the following command:

git clone https://github.com/anon-ai-research/LineVul.git
cd LineVul

Then, install the python dependencies via the following command:

pip install -r requirements.txt

About the Datasets

All of the dataset has the same number of columns (i.e., 39 cols), we focus on the following 3 columns to conduct our experiments:

  1. processed_func (str): The original function written in C/C++
  2. target (int): The function-level label that determines whether a function is vulnerable or not
  3. vul_func_with_fix (str): The fixed function with added in deleted lines labeled
processed_func target vul_func_with_fix
... ... ...

For more information of our dataset, please refer to this paper and this repository.

About the Models

Model Naming Convention

All of the models in the Google Drive are named based on the convention described in the following table:

Model Name Model Specification
LineVul BPE Tokenizer + Pre-training (Codesearchnet) + BERT
BPEBERT BPE Tokenizer + No Pre-training + BERT
WordlevelPretrainedBERT Wordlevel Tokenizer + Pre-training (Codesearchnet) + BERT
WordlevelBERT Wordlevel Tokenizer + No Pre-training + BERT

How to access the models

  • All of the models included in our experiments can be downloaded from public Google Drive.

About the Experiment Replication

We provide a csv file that contains all of the raw function-level predictions by LineVul, run the following commands to download:

cd linevul
cd results
gdown https://drive.google.com/uc?id=1WqvMoALIbL3V1KNQpGvvTIuc3TL5v5Q8
cd ../..

We recommend to use GPU with 8 GB up memory for training since BERT architecture is very computing intensive.

Note. If the specified batch size is not suitable for your device, please modify --eval_batch_size and --train_batch_size to fit your GPU memory.

Before replicating the experiment results, please download the dataset as described below, if you want to retrain the model, you need to download training, evaluation, and testing dataset. If you just need to reproduce the results (inference only), then downloading testing dataset alone is enough.

To download the testing dataset used for evaluation in our experiments, run the following commands:

cd data
cd big-vul_dataset
gdown https://drive.google.com/uc?id=1h0iFJbc5DGXCXXvvR6dru_Dms_b2zW4V
cd ../..

To download the training and evaluation dataset used for evaluation in our experiments, run the following commands:

cd data
cd big-vul_dataset
gdown https://drive.google.com/uc?id=1ldXyFvHG41VMrm260cK_JEPYqeb6e6Yw
gdown https://drive.google.com/uc?id=1yggncqivMcP0tzbh8-8Eu02Edwcs44WZ
cd ../..

To download the whole (i.e., train+val+test) unsplit dataset dataset, run the following commands:

cd data
cd big-vul_dataset
gdown https://drive.google.com/uc?id=10-kjbsA806Zdk54Ax8J3WvLKGTzN8CMX
cd ../..

How to replicate RQ1

Please first download the model "12heads_linevul_model.bin" through the following commands:

cd linevul
cd saved_models
cd checkpoint-best-f1
gdown https://drive.google.com/uc?id=1oodyQqRb9jEcvLMVVKILmu8qHyNwd-zH
cd ../../..

To reproduce the RQ1 result, run the following commands (Inference only):

cd linevul
python linevul_main.py \
  --model_name=12heads_linevul_model.bin \
  --output_dir=./saved_models \
  --model_type=roberta \
  --tokenizer_name=microsoft/codebert-base \
  --model_name_or_path=microsoft/codebert-base \
  --do_test \
  --train_data_file=../data/big-vul_dataset/train.csv \
  --eval_data_file=../data/big-vul_dataset/val.csv \
  --test_data_file=../data/big-vul_dataset/test.csv \
  --block_size 512 \
  --eval_batch_size 512

To retrain the RQ1 model, run the following commands (Training + Inference):

cd linevul
python linevul_main.py \
  --output_dir=./saved_models \
  --model_type=roberta \
  --tokenizer_name=microsoft/codebert-base \
  --model_name_or_path=microsoft/codebert-base \
  --do_train \
  --do_test \
  --train_data_file=../data/big-vul_dataset/train.csv \
  --eval_data_file=../data/big-vul_dataset/val.csv \
  --test_data_file=../data/big-vul_dataset/test.csv \
  --epochs 10 \
  --block_size 512 \
  --train_batch_size 16 \
  --eval_batch_size 16 \
  --learning_rate 2e-5 \
  --max_grad_norm 1.0 \
  --evaluate_during_training \
  --seed 123456  2>&1 | tee train.log

To reproduce the RQ1 result of BoW+RF, run the following commands:

cd bow_rf
mkdir saved_models
python rf_main.py

How to replicate RQ2

Please first download the model "12heads_linevul_model.bin" through the following commands:

cd linevul
cd saved_models
cd checkpoint-best-f1
gdown https://drive.google.com/uc?id=1oodyQqRb9jEcvLMVVKILmu8qHyNwd-zH
cd ../../..

To reproduce the RQ2 result of Top-10 Accuracy and IFA, run the following commands:

cd linevul
python linevul_main.py \
  --model_name=12heads_linevul_model.bin \
  --output_dir=./saved_models \
  --model_type=roberta \
  --tokenizer_name=microsoft/codebert-base \
  --model_name_or_path=microsoft/codebert-base \
  --do_test \
  --do_local_explanation \
  --top_k_constant=10 \
  --reasoning_method=all \
  --train_data_file=../data/big-vul_dataset/train.csv \
  --eval_data_file=../data/big-vul_dataset/val.csv \
  --test_data_file=../data/big-vul_dataset/test.csv \
  --block_size 512 \
  --eval_batch_size 512

To reproduce the RQ2 result of Top-10 Accuracy and IFA of CppCheck, run the following commands:

cd cppcheck
python run.py

Note. To install CppCheck, run the following command:

sudo apt-get install cppcheck

For more information about CppCheck, click here

How to replicate RQ3

Please first download the model "12heads_linevul_model.bin" through the following commands:

cd linevul
cd saved_models
cd checkpoint-best-f1
gdown https://drive.google.com/uc?id=1oodyQqRb9jEcvLMVVKILmu8qHyNwd-zH
cd ../../..

To reproduce the RQ3 result of Effort@20%Recall and Recall@1%LOC, run the following commands:

cd linevul
python linevul_main.py \
  --model_name=12heads_linevul_model.bin \
  --output_dir=./saved_models \
  --model_type=roberta \
  --tokenizer_name=microsoft/codebert-base \
  --model_name_or_path=microsoft/codebert-base \
  --do_test \
  --do_sorting_by_line_scores \
  --effort_at_top_k=0.2 \
  --top_k_recall_by_lines=0.01 \
  --top_k_recall_by_pred_prob=0.2 \
  --reasoning_method=all \
  --train_data_file=../data/big-vul_dataset/train.csv \
  --eval_data_file=../data/big-vul_dataset/val.csv \
  --test_data_file=../data/big-vul_dataset/test.csv \
  --block_size 512 \
  --eval_batch_size 512

To reproduce the RQ3 result of Effort@20%Recall and Recall@1%LOC of CppCheck, run the following commands:

cd cppcheck
python run.py

Note. To install CppCheck, run the following command:

sudo apt-get install cppcheck

For more information about CppCheck, click here

How to replicate the ablation study in the discussion section

Please first download the model "12heads_linevul_model.bin" through the following commands:

cd linevul
cd saved_models
cd checkpoint-best-f1
gdown https://drive.google.com/uc?id=1oodyQqRb9jEcvLMVVKILmu8qHyNwd-zH
cd ../../..

To reproduce the result of LineVul model in the ablation study, run the following commands:

cd linevul
python linevul_main.py \
  --model_name=12heads_linevul_model.bin \
  --output_dir=./saved_models \
  --model_type=roberta \
  --tokenizer_name=microsoft/codebert-base \
  --model_name_or_path=microsoft/codebert-base \
  --do_test \
  --train_data_file=../data/big-vul_dataset/train.csv \
  --eval_data_file=../data/big-vul_dataset/val.csv \
  --test_data_file=../data/big-vul_dataset/test.csv \
  --block_size 512 \
  --eval_batch_size 512

Please first download the model "bpebert.bin" through the following commands:

cd linevul
cd saved_models
cd checkpoint-best-f1
gdown https://drive.google.com/uc?id=1uABZ8lurt7YMI-3bgxH8qLbm0jWANNoo
cd ../../..

To reproduce the result of "BPE+No Pretraining+BERT" model in the ablation study, run the following commands:

cd linevul
python linevul_main.py \
  --model_name=bpebert.bin \
  --output_dir=./saved_models \
  --model_type=roberta \
  --tokenizer_name=microsoft/codebert-base \
  --model_name_or_path=microsoft/codebert-base \
  --do_test \
  --train_data_file=../data/big-vul_dataset/train.csv \
  --eval_data_file=../data/big-vul_dataset/val.csv \
  --test_data_file=../data/big-vul_dataset/test.csv \
  --block_size 512 \
  --eval_batch_size 512

Please first download the model "WordlevelPretrainedBERT.bin" through the following commands:

cd linevul
cd saved_models
cd checkpoint-best-f1
gdown https://drive.google.com/uc?id=1cXeaWeBCpBuY6gPkRft2tS7SnDZrBed-
cd ../../..

To reproduce the result of "Word-Level+Pretraining(Codesearchnet)+BERT" model in the ablation study, run the following commands:

cd linevul
python linevul_main.py \
  --model_name=WordlevelPretrainedBERT.bin \
  --output_dir=./saved_models \
  --model_type=roberta \
  --tokenizer_name=microsoft/codebert-base \
  --model_name_or_path=microsoft/codebert-base \
  --do_test \
  --train_data_file=../data/big-vul_dataset/train.csv \
  --eval_data_file=../data/big-vul_dataset/val.csv \
  --test_data_file=../data/big-vul_dataset/test.csv \
  --block_size 512 \
  --eval_batch_size 512

Please first download the model "WordlevelBERT.bin" through the following commands:

cd linevul
cd saved_models
cd checkpoint-best-f1
gdown https://drive.google.com/uc?id=1yTe42JK_Z5ZB9MHb4eIKIMu-uqH0fE_m
cd ../../..

To reproduce the result of "Word-Level+No Pretraining+BERT" model in the ablation study, run the following commands:

cd linevul
python linevul_main.py \
  --model_name=WordlevelBERT.bin \
  --output_dir=./saved_models \
  --model_type=roberta \
  --tokenizer_name=microsoft/codebert-base \
  --model_name_or_path=microsoft/codebert-base \
  --do_test \
  --train_data_file=../data/big-vul_dataset/train.csv \
  --eval_data_file=../data/big-vul_dataset/val.csv \
  --test_data_file=../data/big-vul_dataset/test.csv \
  --block_size 512 \
  --eval_batch_size 512

Appendix

Results of RQ1

Model F1 Precision Recall
LineVul 0.91 0.97 0.86
IVDetect 0.35 0.23 0.72
Reveal 0.3 0.19 0.74
SySeVR 0.27 0.15 0.74
Devign 0.26 0.18 0.52
BoW+RF 0.25 0.48 0.17
Russell et al. 0.24 0.16 0.48
VulDeePecker 0.19 0.12 0.49

Results of RQ2

Model Top-10(lines) Accuracy Top-1 Accuracy Top-3 Accuracy Top-5 Accuracy Initial False Alarm
Self Attention 0.65 0.1 0.31 0.46 4.56
Layer Integrated Gradient 0.53 0.09 0.22 0.36 8.31
Saliency 0.58 0.06 0.21 0.36 6.93
DeepLift 0.57 0.08 0.23 0.35 6.27
DeepLiftShap 0.57 0.08 0.23 0.35 6.26
GradientShap 0.52 0.08 0.24 0.34 7.82
CppCheck 0.15 0.07 0.09 0.12 21.6

Results of RQ3

Model Effort@20%Recall Recall@1%loc
Self Attention 0.0075 0.24
Layer Integrated Gradient 0.0106 0.19
Saliency 0.0151 0.13
DeepLift 0.0151 0.13
DeepLiftShap 0.0151 0.13
GradientShap 0.016 0.13
CppCheck 0.13 0.04

Ablation Study Results of LineVul

Model F1 Precision Recall
LineVul (BPE+Pre-training on Code + BERT) 0.91 0.97 0.86
BPE + No Pre-training + BERT 0.80 0.86 0.75
Word-level + Pre-training on Code + BERT 0.42 0.55 0.34
Word-level + No Pre-training + BERT 0.39 0.43 0.36
IVDetect 0.35 0.23 0.72

Acknowledgements

  • Special thanks to CodeBERT's developers
  • Special thanks to BigVulDataset Provider
  • Special thanks to developers from PyTorch and HuggingFace for providing amazing frameworks to the community

License

MIT License

Citation

@inproceedings{fu2022linevul,
  title={LineVul: A Transformer-based Line-Level Vulnerability Prediction},
  author={Fu, Michael and Tantithamthavorn, Chakkrit},
  booktitle={2022 IEEE/ACM 19th International Conference on Mining Software Repositories (MSR)},
  year={2022},
  organization={IEEE}
}