-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain-sparse-tlp.py
698 lines (595 loc) · 31.9 KB
/
train-sparse-tlp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
import argparse
import numpy as np
import math
import torch.distributed as dist
import torch.optim as optim
import torch.optim.lr_scheduler as lr_scheduler
import test # import test.py to get mAP after each epoch
from models import *
from utils.datasets import *
from utils.utils import *
from utils.prune_utils import *
import os
os.environ['CUDA_VISIBLE_DEVICES']='2,3'
mixed_precision = True
try: # Mixed precision training https://github.com/NVIDIA/apex
from apex import amp
except:
mixed_precision = False # not installed
wdir = 'sparse-group-tlp' + os.sep # weights dir
last = wdir + 'last.pt'
best = wdir + 'best.pt'
results_file = wdir +'results.txt'
# Hyperparameters (j-series, 50.5 mAP yolov3-320) evolved by @ktian08 https://github.com/ultralytics/yolov3/issues/310
hyp = {'giou': 1.582, # giou loss gain
'cls': 27.76, # cls loss gain (CE=~1.0, uCE=~20)
'cls_pw': 1.446, # cls BCELoss positive_weight
'obj': 21.35, # obj loss gain (*=80 for uBCE with 80 classes)
'obj_pw': 3.941, # obj BCELoss positive_weight
'iou_t': 0.2635, # iou training threshold
'lr0': 0.002324, # initial learning rate (SGD=1E-3, Adam=9E-5)
'lrf': -4., # final LambdaLR learning rate = lr0 * (10 ** lrf)
'momentum': 0.97, # SGD momentum
'weight_decay': 0.0004569, # optimizer weight decay
'fl_gamma': 0.5, # focal loss gamma
'hsv_h': 0.10, # image HSV-Hue augmentation (fraction)
'hsv_s': 0.5703, # image HSV-Saturation augmentation (fraction)
'hsv_v': 0.3174, # image HSV-Value augmentation (fraction)
'degrees': 1.113, # image rotation (+/- deg)
'translate': 0.06797, # image translation (+/- fraction)
'scale': 0.1059, # image scale (+/- gain)
'shear': 0.5768} # image shear (+/- deg)
# Overwrite hyp with hyp*.txt (optional)
f = glob.glob('hyp*.txt')
if f:
for k, v in zip(hyp.keys(), np.loadtxt(f[0])):
hyp[k] = v
def train():
cfg = opt.cfg
t_cfg = opt.t_cfg #teacher model cfg for knowledge distillation
data = opt.data
img_size = opt.img_size
epochs = 1 if opt.prebias else opt.epochs # 500200 batches at bs 64, 117263 images = 273 epochs
batch_size = opt.batch_size
accumulate = opt.accumulate # effective bs = batch_size * accumulate = 16 * 4 = 64
weights = opt.weights # initial training weights
t_weights = opt.t_weights #teacher model weights
map_list=[]
bn_list=[]
pinTLp=1
#sparse=[0.003]*25920
if 'pw' not in opt.arc: # remove BCELoss positive weights
hyp['cls_pw'] = 1.
hyp['obj_pw'] = 1.
# Initialize
init_seeds()
multi_scale = opt.multi_scale
if multi_scale:
img_sz_min = round(img_size / 32 / 1.5) + 1
img_sz_max = round(img_size / 32 * 1.5) - 1
img_size = img_sz_max * 32 # initiate with maximum multi_scale size
print('Using multi-scale %g - %g' % (img_sz_min * 32, img_size))
# Configure run
data_dict = parse_data_cfg(data)
train_path = data_dict['train']
nc = int(data_dict['classes']) # number of classes
# Remove previous results
for f in glob.glob('*_batch*.jpg') + glob.glob(results_file):
os.remove(f)
# Initialize model
model = Darknet(cfg, (img_size, img_size), arc=opt.arc).to(device)
if t_cfg:
t_model = Darknet(t_cfg, (img_size, img_size), arc=opt.arc).to(device)
# Optimizer
pg0, pg1 = [], [] # optimizer parameter groups
for k, v in dict(model.named_parameters()).items():
if 'Conv2d.weight' in k:
pg1 += [v] # parameter group 1 (apply weight_decay)
else:
pg0 += [v] # parameter group 0
if opt.adam:
optimizer = optim.Adam(pg0, lr=hyp['lr0'])
# optimizer = AdaBound(pg0, lr=hyp['lr0'], final_lr=0.1)
else:
optimizer = optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)
optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']}) # add pg1 with weight_decay
del pg0, pg1
cutoff = -1 # backbone reaches to cutoff layer
start_epoch = 0
best_fitness = 0.
attempt_download(weights)
if weights.endswith('.pt'): # pytorch format
# possible weights are 'last.pt', 'yolov3-spp.pt', 'yolov3-tiny.pt' etc.
if opt.bucket:
os.system('gsutil cp gs://%s/last.pt %s' % (opt.bucket, last)) # download from bucket
chkpt = torch.load(weights, map_location=device)
# load model
# if opt.transfer:
chkpt['model'] = {k: v for k, v in chkpt['model'].items() if model.state_dict()[k].numel() == v.numel()}
model.load_state_dict(chkpt['model'], strict=False)
print('loaded weights from', weights, '\n')
# else:
# model.load_state_dict(chkpt['model'])
# load optimizer
if chkpt['optimizer'] is not None:
optimizer.load_state_dict(chkpt['optimizer'])
best_fitness = chkpt['best_fitness']
# load results
if chkpt.get('training_results') is not None:
with open(results_file, 'w') as file:
file.write(chkpt['training_results']) # write results.txt
start_epoch = chkpt['epoch'] + 1
del chkpt
# elif weights.endswith('.pth'):
# model.load_state_dict(torch.load(weights))
elif len(weights) > 0: # darknet format
# possible weights are 'yolov3.weights', 'yolov3-tiny.conv.15', 'darknet53.conv.74' etc.
cutoff = load_darknet_weights(model, weights)
print('loaded weights from', weights, '\n')
if t_cfg:
if t_weights.endswith('.pt'):
t_model.load_state_dict(torch.load(t_weights, map_location=device)['model'])
elif t_weights.endswith('.weights'):
load_darknet_weights(t_model, t_weights)
else:
raise Exception('pls provide proper teacher weights for knowledge distillation')
if not mixed_precision:
t_model.eval()
print('<.....................using knowledge distillation.......................>')
print('teacher model:', t_weights, '\n')
if opt.prune==1:
CBL_idx, _, prune_idx, shortcut_idx, _=parse_module_defs2(model.module_defs)
if opt.sr:
print('shortcut sparse training')
elif opt.prune==0:
CBL_idx, _, prune_idx= parse_module_defs(model.module_defs)
if opt.sr:
print('normal sparse training ')
if opt.transfer or opt.prebias: # transfer learning edge (yolo) layers
nf = int(model.module_defs[model.yolo_layers[0] - 1]['filters']) # yolo layer size (i.e. 255)
if opt.prebias:
for p in optimizer.param_groups:
# lower param count allows more aggressive training settings: i.e. SGD ~0.1 lr0, ~0.9 momentum
p['lr'] *= 100 # lr gain
if p.get('momentum') is not None: # for SGD but not Adam
p['momentum'] *= 0.9
for p in model.parameters():
if opt.prebias and p.numel() == nf: # train (yolo biases)
p.requires_grad = True
elif opt.transfer and p.shape[0] == nf: # train (yolo biases+weights)
p.requires_grad = True
else: # freeze layer
p.requires_grad = False
# Scheduler https://github.com/ultralytics/yolov3/issues/238
# lf = lambda x: 1 - x / epochs # linear ramp to zero
# lf = lambda x: 10 ** (hyp['lrf'] * x / epochs) # exp ramp
# lf = lambda x: 1 - 10 ** (hyp['lrf'] * (1 - x / epochs)) # inverse exp ramp
# scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
# scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=range(59, 70, 1), gamma=0.8) # gradual fall to 0.1*lr0
# if opt.sr:
# scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=[round(opt.epochs * x) for x in [0.8, 0.9]], gamma=0.1)
# else:
# scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=[round(opt.epochs * x) for x in [0.8, 0.9]], gamma=0.1)
# scheduler.last_epoch = start_epoch - 1
def adjust_learning_rate(optimizer, gamma, epoch, iteration, epoch_size):
"""调整学习率进行warm up和学习率衰减
"""
step_index = 0
if epoch < 6:
# 对开始的6个epoch进行warm up
lr = 1e-6 + (hyp['lr0'] - 1e-6) * iteration / (epoch_size * 2)
else:
if epoch > opt.epochs * 0.7:
# 在进行总epochs的70%时,进行以gamma的学习率衰减
step_index = 1
if epoch > opt.epochs * 0.9:
# 在进行总epochs的90%时,进行以gamma^2的学习率衰减
step_index = 2
lr = hyp['lr0'] * (gamma ** (step_index))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
return lr
def simulated_annealing_p(mapOld, mapNew, p,epochNow, epochsTotal=opt.epochs):
"""
:param mapOld: map of epoch-5
:param mapNew: map of epoch
:param p:
:return: p new
"""
if epochNow < 6:
return p
#
T=epochsTotal/(epochNow+1)
sumT=300*(math.log(epochsTotal+1)+0.5772156649-2.45)
bias=0.3/sumT
pNew=p+np.random.uniform(low=-0.0006-bias,high=0.0006-bias)*T
if (0<=pNew and pNew<=1):
if mapNew>mapOld:
p=pNew
else:
Pchange=math.exp(-(mapOld-mapNew)*300/T)
Punchange=np.random.uniform(low=0,high=1)
if Punchange<Pchange:
p=pNew
#print ("p in epoch: ",epochNow," is: ",p)
return p
def simulated_annealing_Sparse(bn_old, bn_new, prune_idx,size_list,sparse,epochNow, epochsTotal=opt.epochs):
# if epochNow < 2:
# return sparse
T=epochsTotal/(epochNow+1)
sumT=300*(math.log(epochsTotal+1))#+0.5772156649-2.45
bias=0.3/sumT
#C=len(sparse)
sum_old,sum_new=float(torch.sum(bn_old,0)),float(torch.sum(bn_new,0))
#print("sparse:",sum(sparse))#"new:",sum_new,"old:",sum_old,
new_l=bn_new.tolist()
old_l=bn_old.tolist()
#print(new_l,bn_new)
index = 0
for idx, size in zip(prune_idx, size_list):
sparse_idx=sparse[index:(index + size)]
for i in range(size):
sparse_new=sparse_idx[i]+np.random.uniform(low=-0.0006-bias,high=0.0006-bias)*T
if (0.0001<=sparse_new and sparse_new<=0.007):
delt_f=(new_l[i]-old_l[i])/sum_old
if delt_f>0:#按照bn的gamma值的占比来判断是否更改该channel的sparse
sparse_idx[i]=sparse_new
else:
Pchange=math.exp((delt_f)*300/T)
Punchange=np.random.uniform(low=0,high=1)
if Punchange<Pchange:
sparse_idx[i]=sparse_new
sparse[index:(index + size)]=sparse_idx
index += size
return sparse
# # Plot lr schedule
# y = []
# for _ in range(epochs):
# scheduler.step()
# y.append(optimizer.param_groups[0]['lr'])
# plt.plot(y, label='LambdaLR')
# plt.xlabel('epoch')
# plt.ylabel('LR')
# plt.tight_layout()
# plt.savefig('LR.png', dpi=300)
# Mixed precision training https://github.com/NVIDIA/apex
if mixed_precision:
if t_cfg:
[model, t_model], optimizer = amp.initialize([model, t_model], optimizer, opt_level='O1', verbosity=1)
else:
model, optimizer = amp.initialize(model, optimizer, opt_level='O1', verbosity=1)
# Initialize distributed training
if torch.cuda.device_count() > 1:
dist.init_process_group(backend='nccl', # 'distributed backend'
init_method='tcp://127.0.0.1:9999', # distributed training init method
world_size=1, # number of nodes for distributed training
rank=0) # distributed training node rank
model = torch.nn.parallel.DistributedDataParallel(model)
model.module_list = model.module.module_list
model.yolo_layers = model.module.yolo_layers # move yolo layer indices to top level
# Dataset
dataset = LoadImagesAndLabels(train_path,
img_size,
batch_size,
augment=True,
hyp=hyp, # augmentation hyperparameters
rect=opt.rect, # rectangular training
image_weights=opt.img_weights,
cache_labels=True if epochs > 10 else False,
cache_images=False if opt.prebias else opt.cache_images)
# Dataloader
dataloader = torch.utils.data.DataLoader(dataset,
batch_size=batch_size,
num_workers=min([os.cpu_count(), batch_size, 16]),
shuffle=not opt.rect, # Shuffle=True unless rectangular training is used
pin_memory=True,
collate_fn=dataset.collate_fn)
#sparse=[]
size_list = [model.module_list[idx][1].weight.data.shape[0] for idx in prune_idx]
sparse=[0.003]*sum(size_list)
#print(len(sparse[item]) for item in range(len(sparse)))
with open('size.txt','a') as f7:
f7.write(str(size_list)+' ')
for idx in prune_idx:
bn_weights = gather_bn_weights(model.module_list, [idx])
tb_writer.add_histogram('before_train_perlayer_bn_weights/hist', bn_weights.numpy(), idx, bins='doane')
#bn_module = model.module_list[idx][1]
#size=bn_module.weight.data.shape
#print(size[0],idx)
#sparse.append([0.003]*size_list[idx])
# with open('size.txt','a') as f7:
# f7.write(str(size_list[idx])+' ')
# Start training
model.nc = nc # attach number of classes to model
model.arc = opt.arc # attach yolo architecture
model.hyp = hyp # attach hyperparameters to model
# model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) # attach class weights
torch_utils.model_info(model, report='summary') # 'full' or 'summary'
nb = len(dataloader)
maps = np.zeros(nc) # mAP per class
results = (0, 0, 0, 0, 0, 0, 0) # 'P', 'R', 'mAP', 'F1', 'val GIoU', 'val Objectness', 'val Classification'
t0 = time.time()
print('Starting %s for %g epochs...' % ('prebias' if opt.prebias else 'training', epochs))
for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
model.train()
#print('learning rate:',optimizer.param_groups[0]['lr'])
print(('\n' + '%10s' * 10) % ('Epoch', 'gpu_mem', 'GIoU', 'obj', 'cls', 'total', 'soft', 'rratio', 'targets', 'img_size'))
# Freeze backbone at epoch 0, unfreeze at epoch 1 (optional)
freeze_backbone = False
if freeze_backbone and epoch < 2:
for name, p in model.named_parameters():
if int(name.split('.')[1]) < cutoff: # if layer < 75
p.requires_grad = False if epoch == 0 else True
# Update image weights (optional)
if dataset.image_weights:
w = model.class_weights.cpu().numpy() * (1 - maps) ** 2 # class weights
image_weights = labels_to_image_weights(dataset.labels, nc=nc, class_weights=w)
dataset.indices = random.choices(range(dataset.n), weights=image_weights, k=dataset.n) # rand weighted idx
mloss = torch.zeros(4).to(device) # mean losses
msoft_target = torch.zeros(1).to(device)
pbar = tqdm(enumerate(dataloader), total=nb) # progress bar
sr_flag = get_sr_flag(epoch, opt.sr)
for i, (imgs, targets, paths, _) in pbar: # batch -------------------------------------------------------------
ni = i + nb * epoch # number integrated batches (since train start)
# 调整学习率,进行warm up和学习率衰减
lr = adjust_learning_rate(optimizer, 0.1, epoch, ni, nb)
if i == 0:
print('learning rate:', lr)
imgs = imgs.to(device)
targets = targets.to(device)
# Multi-Scale training
if multi_scale:
if ni / accumulate % 10 == 0: # adjust (67% - 150%) every 10 batches
img_size = random.randrange(img_sz_min, img_sz_max + 1) * 32
sf = img_size / max(imgs.shape[2:]) # scale factor
if sf != 1:
ns = [math.ceil(x * sf / 32.) * 32 for x in imgs.shape[2:]] # new shape (stretched to 32-multiple)
imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)
#Plot images with bounding boxes
#if ni == 0:
#fname = 'train_batch%g.jpg' % i
#plot_images(imgs=imgs, targets=targets, paths=paths, fname=fname)
#if tb_writer:
#tb_writer.add_image(fname, cv2.imread(fname)[:, :, ::-1], dataformats='HWC')
# Hyperparameter burn-in
# n_burn = nb - 1 # min(nb // 5 + 1, 1000) # number of burn-in batches
# if ni <= n_burn:
# for m in model.named_modules():
# if m[0].endswith('BatchNorm2d'):
# m[1].momentum = 1 - i / n_burn * 0.99 # BatchNorm2d momentum falls from 1 - 0.01
# g = (i / n_burn) ** 4 # gain rises from 0 - 1
# for x in optimizer.param_groups:
# x['lr'] = hyp['lr0'] * g
# x['weight_decay'] = hyp['weight_decay'] * g
# Run model
pred = model(imgs)
# Compute loss
loss, loss_items = compute_loss(pred, targets, model)
if not torch.isfinite(loss):
print('WARNING: non-finite loss, ending training ', loss_items)
return results
soft_target = 0
reg_ratio = 0 #表示有多少target的回归是不如老师的,这时学生会跟gt再学习
if t_cfg:
if mixed_precision:
with torch.no_grad():
output_t = t_model(imgs)
else:
_, output_t = t_model(imgs)
#soft_target = distillation_loss1(pred, output_t, model.nc, imgs.size(0))
#这里把蒸馏策略改为了二,想换回一的可以注释掉loss2,把loss1取消注释
soft_target, reg_ratio = distillation_loss2(model, targets, pred, output_t)
loss += soft_target
# Scale loss by nominal batch_size of 64
loss *= batch_size / 64
# Compute gradient
if mixed_precision:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
idx2mask = None
# change this 0729
if opt.sr and opt.prune==1 and epoch > opt.epochs * 0.5:
idx2mask = get_mask2(model, prune_idx, 0.85) #0.95
# change end
#SPARSE change every batch according to the bn percent:
bn_weights=gather_bn_weights(model.module_list, prune_idx)
#print(bn_weights)
bn_list.append(bn_weights)#获取bn值存入记录
if i>=1:
sparse=simulated_annealing_Sparse(bn_list[-2],bn_list[-1],prune_idx,size_list,sparse,epoch,opt.epochs)
#print(len(bn_list[-1]))
with open('sparse.txt', 'a') as f:
f.write(str(sparse)+'\n')
BNOptimizer.updateBN_Sparse_tlp_SA(pinTLp,sr_flag, model.module_list, sparse, prune_idx, epoch, idx2mask, opt)
else:
BNOptimizer.updateBN_Sparse_tlp_SA(pinTLp,sr_flag, model.module_list, sparse, prune_idx, epoch, idx2mask, opt)
#更改bn方式
#BNOptimizer.updateBN_Sparse_SA(sr_flag, model.module_list, sparse, prune_idx, epoch, idx2mask, opt)
#BNOptimizer.updateBN(sr_flag, model.module_list, opt.s, prune_idx, epoch, idx2mask, opt)
# Accumulate gradient for x batches before optimizing
if ni % accumulate == 0:
optimizer.step()
optimizer.zero_grad()
# Print batch results
mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
msoft_target = (msoft_target * i + soft_target) / (i + 1)
mem = torch.cuda.memory_cached() / 1E9 if torch.cuda.is_available() else 0 # (GB)
s = ('%10s' * 2 + '%10.3g' * 8) % (
'%g/%g' % (epoch, epochs - 1), '%.3gG' % mem, *mloss, msoft_target, reg_ratio, len(targets), img_size)
pbar.set_description(s)
# end batch ------------------------------------------------------------------------------------------------
# Update scheduler
# scheduler.step()
# Process epoch results
final_epoch = epoch + 1 == epochs
if opt.prebias:
print_model_biases(model)
else:
# Calculate mAP (always test final epoch, skip first 10 if opt.nosave)
if not (opt.notest or (opt.nosave and epoch < 10)) or final_epoch:
with torch.no_grad():
results, maps = test.test(cfg,
data,
batch_size=batch_size,
img_size=opt.img_size,
model=model,
conf_thres=0.001 if final_epoch and epoch > 0 else 0.1, # 0.1 for speed
save_json=final_epoch and epoch > 0 and 'coco.data' in data)
map_list.append(results[2])
if epoch > 5 :
pinTLp=simulated_annealing_p(map_list[epoch-5],map_list[epoch],pinTLp,epoch,opt.epochs)
print("pinTLp is: ", pinTLp)
map_list.append(results[2])
with open(wdir+'sparse_epoch.txt', 'a') as f:
f.write(str(sparse)+'\n')
#print("TOTOAL sparse:",sum(sparse))
with open(wdir+'sparse_total.txt', 'a') as f2:
f2.write(str(sum(sparse))+'\n')
# if epoch > 5 :
# sparse=simulated_annealing_Sparse(map_list[epoch-5],map_list[epoch],sparse,epoch,opt.epochs)
# print("sparse is: ", sparse)
# with open('sparse.txt','a') as f4:
# f4.write(str(sparse)+'\n')
#print(num_no_increase_epoch)
# Write epoch results
with open(results_file, 'a') as f:
f.write(s + '%10.3g' * 7 % results + '\n') # P, R, mAP, F1, test_losses=(GIoU, obj, cls)
# Write Tensorboard results
if tb_writer:
x = list(mloss) + list(results) + [msoft_target]
titles = ['GIoU', 'Objectness', 'Classification', 'Train loss',
'Precision', 'Recall', 'mAP', 'F1', 'val GIoU', 'val Objectness', 'val Classification', 'soft_loss']
for xi, title in zip(x, titles):
tb_writer.add_scalar(title, xi, epoch)
bn_weights = gather_bn_weights(model.module_list, prune_idx)
tb_writer.add_histogram('bn_weights/hist', bn_weights.numpy(), epoch, bins='doane')
# Update best mAP
fitness = results[2] # mAP
if fitness > best_fitness:
best_fitness = fitness
# Save training results
save = (not opt.nosave) or (final_epoch and not opt.evolve) or opt.prebias
if save:
with open(results_file, 'r') as f:
# Create checkpoint
chkpt = {'epoch': epoch,
'best_fitness': best_fitness,
'training_results': f.read(),
'model': model.module.state_dict() if type(
model) is nn.parallel.DistributedDataParallel else model.state_dict(),
'optimizer': None if final_epoch else optimizer.state_dict()}
# Save last checkpoint
torch.save(chkpt, last)
if opt.bucket and not opt.prebias:
os.system('gsutil cp %s gs://%s' % (last, opt.bucket)) # upload to bucket
# Save best checkpoint
if best_fitness == fitness:
torch.save(chkpt, best)
# Save backup every 10 epochs (optional)
if epoch > 0 and epoch % 10 == 0:
torch.save(chkpt, wdir + 'backup%g.pt' % epoch)
# Delete checkpoint
del chkpt
# end epoch ----------------------------------------------------------------------------------------------------
for idx in prune_idx:
bn_weights = gather_bn_weights(model.module_list, [idx])
tb_writer.add_histogram('after_train_perlayer_bn_weights/hist', bn_weights.numpy(), idx, bins='doane')
# end training
if len(opt.name):
os.rename('results.txt', 'results_%s.txt' % opt.name)
#plot_results() # save as results.png
print('%g epochs completed in %.3f hours.\n' % (epoch - start_epoch + 1, (time.time() - t0) / 3600))
dist.destroy_process_group() if torch.cuda.device_count() > 1 else None
torch.cuda.empty_cache()
return results
def prebias():
# trains output bias layers for 1 epoch and creates new backbone
if opt.prebias:
train() # transfer-learn yolo biases for 1 epoch
create_backbone(last) # saved results as backbone.pt
opt.weights = wdir + 'backbone.pt' # assign backbone
opt.prebias = False # disable prebias
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--epochs', type=int, default=273) # 500200 batches at bs 16, 117263 images = 273 epochs
parser.add_argument('--batch-size', type=int, default=16) # effective bs = batch_size * accumulate = 16 * 4 = 64
parser.add_argument('--accumulate', type=int, default=2, help='batches to accumulate before optimizing')
parser.add_argument('--cfg', type=str, default='cfg/yolov3-spp.cfg', help='cfg file path')
parser.add_argument('--t_cfg', type=str, default='', help='teacher model cfg file path for knowledge distillation')
parser.add_argument('--data', type=str, default='data/coco.data', help='*.data file path')
parser.add_argument('--multi-scale', action='store_true', help='adjust (67% - 150%) img_size every 10 batches')
parser.add_argument('--img_size', type=int, default=416, help='inference size (pixels)')
parser.add_argument('--rect', action='store_true', help='rectangular training')
parser.add_argument('--resume', action='store_true', help='resume training from last.pt')
parser.add_argument('--transfer', action='store_true', help='transfer learning')
parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
parser.add_argument('--notest', action='store_true', help='only test final epoch')
parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters')
parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
parser.add_argument('--img-weights', action='store_true', help='select training images by weight')
parser.add_argument('--cache-images', action='store_true', help='cache images for faster training')
parser.add_argument('--weights', type=str, default='', help='initial weights') # i.e. weights/darknet.53.conv.74
parser.add_argument('--t_weights', type=str, default='', help='teacher model weights')
parser.add_argument('--arc', type=str, default='defaultpw', help='yolo architecture') # defaultpw, uCE, uBCE
parser.add_argument('--prebias', action='store_true', help='transfer-learn yolo biases prior to training')
parser.add_argument('--name', default='', help='renames results.txt to results_name.txt if supplied')
parser.add_argument('--device', default='', help='device id (i.e. 0 or 0,1) or cpu')
parser.add_argument('--adam', action='store_true', help='use adam optimizer')
parser.add_argument('--var', type=float, help='debug variable')
parser.add_argument('--sparsity-regularization', '-sr', dest='sr', action='store_true',
help='train with channel sparsity regularization')
parser.add_argument('--s', type=float, default=0.003, help='scale sparse rate')
parser.add_argument('--prune', type=int, default=1, help='0:nomal prune 1:other prune ')
opt = parser.parse_args()
opt.weights = last if opt.resume else opt.weights
print(opt)
device = torch_utils.select_device(opt.device, apex=mixed_precision)
tb_writer = None
if not opt.evolve: # Train normally
# try:
# Start Tensorboard with "tensorboard --logdir=runs", view at http://localhost:6006/
from torch.utils.tensorboard import SummaryWriter
tb_writer = SummaryWriter()
# except:
# pass
prebias() # optional
train() # train normally
else: # Evolve hyperparameters (optional)
opt.notest = True # only test final epoch
opt.nosave = True # only save final checkpoint
if opt.bucket:
os.system('gsutil cp gs://%s/evolve.txt .' % opt.bucket) # download evolve.txt if exists
for _ in range(1): # generations to evolve
if os.path.exists('evolve.txt'): # if evolve.txt exists: select best hyps and mutate
# Select parent(s)
x = np.loadtxt('evolve.txt', ndmin=2)
parent = 'weighted' # parent selection method: 'single' or 'weighted'
if parent == 'single' or len(x) == 1:
x = x[fitness(x).argmax()]
elif parent == 'weighted': # weighted combination
n = min(10, x.shape[0]) # number to merge
x = x[np.argsort(-fitness(x))][:n] # top n mutations
w = fitness(x) - fitness(x).min() # weights
x = (x[:n] * w.reshape(n, 1)).sum(0) / w.sum() # new parent
for i, k in enumerate(hyp.keys()):
hyp[k] = x[i + 7]
# Mutate
np.random.seed(int(time.time()))
s = [.2, .2, .2, .2, .2, .2, .2, .0, .02, .2, .2, .2, .2, .2, .2, .2, .2] # sigmas
for i, k in enumerate(hyp.keys()):
x = (np.random.randn(1) * s[i] + 1) ** 2.0 # plt.hist(x.ravel(), 300)
hyp[k] *= float(x) # vary by sigmas
# Clip to limits
keys = ['lr0', 'iou_t', 'momentum', 'weight_decay', 'hsv_s', 'hsv_v', 'translate', 'scale', 'fl_gamma']
limits = [(1e-5, 1e-2), (0.00, 0.70), (0.60, 0.98), (0, 0.001), (0, .9), (0, .9), (0, .9), (0, .9), (0, 3)]
for k, v in zip(keys, limits):
hyp[k] = np.clip(hyp[k], v[0], v[1])
# Train mutation
prebias()
results = train()
# Write mutation results
print_mutation(hyp, results, opt.bucket)
# Plot results
# plot_evolution_results(hyp)