-
Notifications
You must be signed in to change notification settings - Fork 0
/
thesis_SVM_granular.py
44 lines (36 loc) · 1.38 KB
/
thesis_SVM_granular.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
# -*- coding: utf-8 -*-
"""
Created on Mon Feb 10 21:32:41 2020
@author: Windows
"""
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
#Importing the datatset
dataset=pd.read_csv('INIT_CONSTR_6_Granular_layer_prepared.csv')
X = dataset.iloc[:,:-1].values
y = dataset.iloc[:,5].values
##Encoding categorical data
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
labelencoder_X = LabelEncoder()
X[:,0]=labelencoder_X.fit_transform(X[:,0]) #different label assigned
onehotencoder = OneHotEncoder(categorical_features = [0])
X = onehotencoder.fit_transform(X).toarray() #different column for diff. label
#and bin.val inject & make numarry
#Splittting the dataset into the Training set and Test set
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)
#feature scaling
from sklearn.preprocessing import StandardScaler
sc_X = StandardScaler()
sc_Y = StandardScaler()
X_train_scaled=sc_X.fit_transform(X_train)
y_train_scaled=sc_Y.fit_transform(y_train.reshape(-1,1))
#fitting SVR ro the dataset
from sklearn import svm
regressor = svm.SVR(kernel = 'linear')
regressor.fit(X_train_scaled,y_train_scaled)
#predicting a new result
y_pred = sc_Y.inverse_transform(regressor.predict(sc_X.transform(X_test)))
#wight vectors
regressor.coef_