-
Notifications
You must be signed in to change notification settings - Fork 0
/
MAINTENANCE_PHASE_DECISIONTREE.py
62 lines (47 loc) · 1.7 KB
/
MAINTENANCE_PHASE_DECISIONTREE.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
# -*- coding: utf-8 -*-
"""
Created on Tue Mar 3 15:10:59 2020
@author: Windows
"""
#importing libraries
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from IPython.display import Image
from sklearn import tree
import pydotplus
#importing the datatset
dataset=pd.read_csv('MAINTENANCE_PHASE.csv')
X = dataset.iloc[:,:-1].values
y = dataset.iloc[:,10].values
#encoding categorical data
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
labelencoder_X = LabelEncoder()
X[:,8]=labelencoder_X.fit_transform(X[:,8]) #different label assigned
onehotencoder = OneHotEncoder(categorical_features = [8])
X = onehotencoder.fit_transform(X).toarray() #different column for diff. label
#and bin.val inject & make numarry
#splittting the dataset into the Training set and Test set
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)
#fitting decisiontree regression to the dataset
from sklearn.tree import DecisionTreeRegressor
regressor = DecisionTreeRegressor(min_samples_leaf=5,
random_state = 0)
regressor.fit(X_train,y_train)
regressor.feature_importances_
regressor.get_n_leaves()
#create DOT data
dot_data = tree.export_graphviz(regressor, out_file=None)
#draw graph
graph = pydotplus.graph_from_dot_data(dot_data)
#show graph
Image(graph.create_png())
#create PDF
graph.write_pdf("MAINTENACEPHASE.pdf")
#create PNG
graph.write_png("MAINTENACEPHASE.png")
#predict
predictedval=regressor.predict(X_test)
#find_accuracy
acc_score = regressor.score(X_test,y_test)*100