-
Notifications
You must be signed in to change notification settings - Fork 0
/
pcb_writeup.tex
62 lines (49 loc) · 1.99 KB
/
pcb_writeup.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
\documentclass[11pt]{article}
\usepackage[margin=20mm]{geometry}
\usepackage{amsmath}
\usepackage{listings,color,enumitem}
\definecolor{mygreen}{RGB}{28,172,0} % color values Red, Green, Blue
\definecolor{mylilas}{RGB}{170,55,241}
\usepackage{graphicx}
\title{Task 6\\ \vspace{2mm}\Large{16-681 MRSD Project Course }}
\author{
Daniel Arnett \\
Karthik (Venkata Rama) Paga\\
Dicong (David) Qiu\\
Matthew Swenson\\
Abdul Zafar
}
\begin{document}
\maketitle
\newpage
\section{Regulator Efficiency} Linear voltage regulator efficiency is given by $1-\frac{V_{in}-V_{out}}{V_{in}}$. So:
$$\eta_{3.3V} = 1-\frac{24V-3.3V}{24V} = .1375$$
$$\eta_{5V} = 1-\frac{24V-5V}{24V} = .20833$$
$$\eta_{12V} = 1-\frac{24V-12V}{24V} = .5$$
\section{Input Power}
The input power for the motor at maximum rated output is
$$
P_{\textit{IN},\textit{motor}} = \frac{\textit{\textit{motor}} \times I_{\textit{motor}, \textit{max}} }{\eta_{motor}} = \frac{24V \times 10A}{1.0} = 240W
$$
The input power for the CPU board at maximum rated output is
$$
P_{\textit{IN},\textit{3.3V}} = \frac{\textit{\textit{3.3V}} \times I_{\textit{3.3V}} }{\eta_{3.3V}} = \frac{3.3V \times 1A}{0.1375} = 24W
$$
The input power for the Wifi and Encoder subsystem at maximum rated output is
$$
P_{\textit{IN},\textit{5V}} = \frac{\textit{\textit{5V}} \times I_{\textit{5V}} }{\eta_{5V}} = \frac{5V \times 1A}{0.20833} = 24W
$$
The input power for the LIDAR at maximum rated output is
$$
P_{\textit{IN},\textit{12V}} = \frac{\textit{\textit{12V}} \times I_{\textit{12V}} }{\eta_{12V}} = \frac{12V \times 2A}{0.5} = 48W
$$
\section{Total System Efficiency}
The total system efficiency at maximum rated output is
$$
\begin{align*}
\eta &= \frac{P_{\textit{motor}} + P_{3.3V} + P_{5V} + P_{12V}}{P_{\textit{IN}, \textit{motor}} + P_{\textit{IN}, 3.3V} + P_{\textit{IN}, 5V} + P_{\textit{IN}, 12V}} \\
&= \frac{24V \timex 10A + 3.3V \times 1A + 5V \times 1A + 12V \times 2A}{240W + 24W + 24W + 48W} \\
&= 0.8104
\end{align*}
$$
\end{document}