forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmnist_eager.py
209 lines (178 loc) · 7.51 KB
/
mnist_eager.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""MNIST model training with TensorFlow eager execution.
See:
https://research.googleblog.com/2017/10/eager-execution-imperative-define-by.html
This program demonstrates training of the convolutional neural network model
defined in mnist.py with eager execution enabled.
If you are not interested in eager execution, you should ignore this file.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import os
import sys
import time
import tensorflow as tf # pylint: disable=g-bad-import-order
import tensorflow.contrib.eager as tfe # pylint: disable=g-bad-import-order
from official.mnist import dataset as mnist_dataset
from official.mnist import mnist
from official.utils.arg_parsers import parsers
def loss(logits, labels):
return tf.reduce_mean(
tf.nn.sparse_softmax_cross_entropy_with_logits(
logits=logits, labels=labels))
def compute_accuracy(logits, labels):
predictions = tf.argmax(logits, axis=1, output_type=tf.int64)
labels = tf.cast(labels, tf.int64)
batch_size = int(logits.shape[0])
return tf.reduce_sum(
tf.cast(tf.equal(predictions, labels), dtype=tf.float32)) / batch_size
def train(model, optimizer, dataset, step_counter, log_interval=None):
"""Trains model on `dataset` using `optimizer`."""
start = time.time()
for (batch, (images, labels)) in enumerate(tfe.Iterator(dataset)):
with tf.contrib.summary.record_summaries_every_n_global_steps(
10, global_step=step_counter):
# Record the operations used to compute the loss given the input,
# so that the gradient of the loss with respect to the variables
# can be computed.
with tfe.GradientTape() as tape:
logits = model(images, training=True)
loss_value = loss(logits, labels)
tf.contrib.summary.scalar('loss', loss_value)
tf.contrib.summary.scalar('accuracy', compute_accuracy(logits, labels))
grads = tape.gradient(loss_value, model.variables)
optimizer.apply_gradients(
zip(grads, model.variables), global_step=step_counter)
if log_interval and batch % log_interval == 0:
rate = log_interval / (time.time() - start)
print('Step #%d\tLoss: %.6f (%d steps/sec)' % (batch, loss_value, rate))
start = time.time()
def test(model, dataset):
"""Perform an evaluation of `model` on the examples from `dataset`."""
avg_loss = tfe.metrics.Mean('loss')
accuracy = tfe.metrics.Accuracy('accuracy')
for (images, labels) in tfe.Iterator(dataset):
logits = model(images, training=False)
avg_loss(loss(logits, labels))
accuracy(
tf.argmax(logits, axis=1, output_type=tf.int64),
tf.cast(labels, tf.int64))
print('Test set: Average loss: %.4f, Accuracy: %4f%%\n' %
(avg_loss.result(), 100 * accuracy.result()))
with tf.contrib.summary.always_record_summaries():
tf.contrib.summary.scalar('loss', avg_loss.result())
tf.contrib.summary.scalar('accuracy', accuracy.result())
def main(argv):
parser = MNISTEagerArgParser()
flags = parser.parse_args(args=argv[1:])
tfe.enable_eager_execution()
# Automatically determine device and data_format
(device, data_format) = ('/gpu:0', 'channels_first')
if flags.no_gpu or tfe.num_gpus() <= 0:
(device, data_format) = ('/cpu:0', 'channels_last')
# If data_format is defined in FLAGS, overwrite automatically set value.
if flags.data_format is not None:
data_format = data_format
print('Using device %s, and data format %s.' % (device, data_format))
# Load the datasets
train_ds = mnist_dataset.train(flags.data_dir).shuffle(60000).batch(
flags.batch_size)
test_ds = mnist_dataset.test(flags.data_dir).batch(flags.batch_size)
# Create the model and optimizer
model = mnist.Model(data_format)
optimizer = tf.train.MomentumOptimizer(flags.lr, flags.momentum)
# Create file writers for writing TensorBoard summaries.
if flags.output_dir:
# Create directories to which summaries will be written
# tensorboard --logdir=<output_dir>
# can then be used to see the recorded summaries.
train_dir = os.path.join(flags.output_dir, 'train')
test_dir = os.path.join(flags.output_dir, 'eval')
tf.gfile.MakeDirs(flags.output_dir)
else:
train_dir = None
test_dir = None
summary_writer = tf.contrib.summary.create_file_writer(
train_dir, flush_millis=10000)
test_summary_writer = tf.contrib.summary.create_file_writer(
test_dir, flush_millis=10000, name='test')
# Create and restore checkpoint (if one exists on the path)
checkpoint_prefix = os.path.join(flags.model_dir, 'ckpt')
step_counter = tf.train.get_or_create_global_step()
checkpoint = tfe.Checkpoint(
model=model, optimizer=optimizer, step_counter=step_counter)
# Restore variables on creation if a checkpoint exists.
checkpoint.restore(tf.train.latest_checkpoint(flags.model_dir))
# Train and evaluate for a set number of epochs.
with tf.device(device):
for _ in range(flags.train_epochs):
start = time.time()
with summary_writer.as_default():
train(model, optimizer, train_ds, step_counter, flags.log_interval)
end = time.time()
print('\nTrain time for epoch #%d (%d total steps): %f' %
(checkpoint.save_counter.numpy() + 1,
step_counter.numpy(),
end - start))
with test_summary_writer.as_default():
test(model, test_ds)
checkpoint.save(checkpoint_prefix)
class MNISTEagerArgParser(argparse.ArgumentParser):
"""Argument parser for running MNIST model with eager training loop."""
def __init__(self):
super(MNISTEagerArgParser, self).__init__(parents=[
parsers.BaseParser(
epochs_between_evals=False, multi_gpu=False, hooks=False),
parsers.ImageModelParser()])
self.add_argument(
'--log_interval', '-li',
type=int,
default=10,
metavar='N',
help='[default: %(default)s] batches between logging training status')
self.add_argument(
'--output_dir', '-od',
type=str,
default=None,
metavar='<OD>',
help='[default: %(default)s] Directory to write TensorBoard summaries')
self.add_argument(
'--lr', '-lr',
type=float,
default=0.01,
metavar='<LR>',
help='[default: %(default)s] learning rate')
self.add_argument(
'--momentum', '-m',
type=float,
default=0.5,
metavar='<M>',
help='[default: %(default)s] SGD momentum')
self.add_argument(
'--no_gpu', '-nogpu',
action='store_true',
default=False,
help='disables GPU usage even if a GPU is available')
self.set_defaults(
data_dir='/tmp/tensorflow/mnist/input_data',
model_dir='/tmp/tensorflow/mnist/checkpoints/',
batch_size=100,
train_epochs=10,
)
if __name__ == '__main__':
main(argv=sys.argv)