This repository has been archived by the owner on Oct 17, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 239
/
Copy pathtrain.py
696 lines (628 loc) · 32.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
import os
import gc
from glob import glob
from itertools import product
from random import choice
from imageio import imwrite
import tensorflow as tf
import numpy as np
from tqdm import tqdm
from logger import get_logger
from generator import Generator
from discriminator import Discriminator
@tf.function
def gram(x):
shape_x = tf.shape(x)
b = shape_x[0]
c = shape_x[3]
x = tf.reshape(x, [b, -1, c])
return tf.matmul(tf.transpose(x, [0, 2, 1]), x) / tf.cast((tf.size(x) // b), tf.float32)
class Trainer:
def __init__(
self,
dataset_name,
light,
source_domain,
target_domain,
gan_type,
epochs,
input_size,
multi_scale,
batch_size,
sample_size,
reporting_steps,
content_lambda,
style_lambda,
g_adv_lambda,
d_adv_lambda,
generator_lr,
discriminator_lr,
data_dir,
log_dir,
result_dir,
checkpoint_dir,
generator_checkpoint_prefix,
discriminator_checkpoint_prefix,
pretrain_checkpoint_prefix,
pretrain_model_dir,
model_dir,
disable_sampling,
ignore_vgg,
pretrain_learning_rate,
pretrain_epochs,
pretrain_saving_epochs,
pretrain_reporting_steps,
pretrain_generator_name,
generator_name,
discriminator_name,
debug,
**kwargs,
):
self.debug = debug
self.ascii = os.name == "nt"
self.dataset_name = dataset_name
self.light = light
self.source_domain = source_domain
self.target_domain = target_domain
self.gan_type = gan_type
self.epochs = epochs
self.input_size = input_size
self.multi_scale = multi_scale
self.batch_size = batch_size
self.sample_size = sample_size
self.reporting_steps = reporting_steps
self.content_lambda = float(content_lambda)
self.style_lambda = float(style_lambda)
self.g_adv_lambda = g_adv_lambda
self.d_adv_lambda = d_adv_lambda
self.generator_lr = generator_lr
self.discriminator_lr = discriminator_lr
self.data_dir = data_dir
self.log_dir = log_dir
self.result_dir = result_dir
self.checkpoint_dir = checkpoint_dir
self.generator_checkpoint_prefix = generator_checkpoint_prefix
self.discriminator_checkpoint_prefix = discriminator_checkpoint_prefix
self.pretrain_checkpoint_prefix = pretrain_checkpoint_prefix
self.pretrain_model_dir = pretrain_model_dir
self.model_dir = model_dir
self.disable_sampling = disable_sampling
self.ignore_vgg = ignore_vgg
self.pretrain_learning_rate = pretrain_learning_rate
self.pretrain_epochs = pretrain_epochs
self.pretrain_saving_epochs = pretrain_saving_epochs
self.pretrain_reporting_steps = pretrain_reporting_steps
self.pretrain_generator_name = pretrain_generator_name
self.generator_name = generator_name
self.discriminator_name = discriminator_name
self.logger = get_logger("Trainer", debug=debug)
# NOTE: just minimal demonstration of multi-scale training
self.sizes = [self.input_size - 32, self.input_size, self.input_size + 32]
if not self.ignore_vgg:
self.logger.info("Setting up VGG19 for computing content loss...")
from tensorflow.keras.applications import VGG19
from tensorflow.keras.layers import Conv2D
input_shape = (self.input_size, self.input_size, 3)
# download model using kwarg weights="imagenet"
base_model = VGG19(weights="imagenet", include_top=False, input_shape=input_shape)
tmp_vgg_output = base_model.get_layer("block4_conv3").output
tmp_vgg_output = Conv2D(512, (3, 3), activation='linear', padding='same',
name='block4_conv4')(tmp_vgg_output)
self.vgg = tf.keras.Model(inputs=base_model.input, outputs=tmp_vgg_output)
self.vgg.load_weights(os.path.expanduser(os.path.join(
"~", ".keras", "models",
"vgg19_weights_tf_dim_ordering_tf_kernels_notop.h5")), by_name=True)
else:
self.logger.info("VGG19 will not be used. "
"Content loss will simply imply pixel-wise difference.")
self.vgg = None
self.logger.info(f"Setting up objective functions and metrics using {self.gan_type}...")
self.mae = tf.keras.losses.MeanAbsoluteError()
self.generator_loss_object = tf.keras.losses.BinaryCrossentropy(from_logits=True)
if self.gan_type == "gan":
self.discriminator_loss_object = tf.keras.losses.BinaryCrossentropy(
from_logits=True)
elif self.gan_type == "lsgan":
self.discriminator_loss_object = tf.keras.losses.MeanSquaredError()
else:
wrong_msg = f"Non-recognized 'gan_type': {self.gan_type}"
self.logger.critical(wrong_msg)
raise ValueError(wrong_msg)
self.g_total_loss_metric = tf.keras.metrics.Mean("g_total_loss", dtype=tf.float32)
self.g_adv_loss_metric = tf.keras.metrics.Mean("g_adversarial_loss", dtype=tf.float32)
if self.content_lambda != 0.:
self.content_loss_metric = tf.keras.metrics.Mean("content_loss", dtype=tf.float32)
if self.style_lambda != 0.:
self.style_loss_metric = tf.keras.metrics.Mean("style_loss", dtype=tf.float32)
self.d_total_loss_metric = tf.keras.metrics.Mean("d_total_loss", dtype=tf.float32)
self.d_real_loss_metric = tf.keras.metrics.Mean("d_real_loss", dtype=tf.float32)
self.d_fake_loss_metric = tf.keras.metrics.Mean("d_fake_loss", dtype=tf.float32)
self.d_smooth_loss_metric = tf.keras.metrics.Mean("d_smooth_loss", dtype=tf.float32)
self.metric_and_names = [
(self.g_total_loss_metric, "g_total_loss"),
(self.g_adv_loss_metric, "g_adversarial_loss"),
(self.d_total_loss_metric, "d_total_loss"),
(self.d_real_loss_metric, "d_real_loss"),
(self.d_fake_loss_metric, "d_fake_loss"),
(self.d_smooth_loss_metric, "d_smooth_loss"),
]
if self.content_lambda != 0.:
self.metric_and_names.append((self.content_loss_metric, "content_loss"))
if self.style_lambda != 0.:
self.metric_and_names.append((self.style_loss_metric, "style_loss"))
self.logger.info("Setting up checkpoint paths...")
self.pretrain_checkpoint_prefix = os.path.join(
self.checkpoint_dir, "pretrain", self.pretrain_checkpoint_prefix)
self.generator_checkpoint_dir = os.path.join(
self.checkpoint_dir, self.generator_checkpoint_prefix)
self.generator_checkpoint_prefix = os.path.join(
self.generator_checkpoint_dir, self.generator_checkpoint_prefix)
self.discriminator_checkpoint_dir = os.path.join(
self.checkpoint_dir, self.discriminator_checkpoint_prefix)
self.discriminator_checkpoint_prefix = os.path.join(
self.discriminator_checkpoint_dir, self.discriminator_checkpoint_prefix)
def _save_generated_images(self, batch_x, image_name, nrow=2, ncol=4):
# NOTE: 0 <= batch_x <= 1, float32, numpy.ndarray
if not isinstance(batch_x, np.ndarray):
batch_x = batch_x.numpy()
n, h, w, c = batch_x.shape
out_arr = np.zeros([h * nrow, w * ncol, 3], dtype=np.uint8)
for (i, j), k in zip(product(range(nrow), range(ncol)), range(n)):
out_arr[(h * i):(h * (i+1)), (w * j):(w * (j+1))] = batch_x[k]
if not os.path.isdir(self.result_dir):
os.makedirs(self.result_dir)
imwrite(os.path.join(self.result_dir, image_name), out_arr)
gc.collect()
return out_arr
@tf.function
def random_resize(self, x):
size = choice(self.sizes)
return tf.image.resize(x, (size, size))
@tf.function
def image_processing(self, filename, is_train=True):
crop_size = self.input_size
if self.multi_scale and is_train:
crop_size += 32
x = tf.io.read_file(filename)
x = tf.image.decode_jpeg(x, channels=3)
if is_train:
sizes = tf.cast(
crop_size * tf.random.uniform([2], 0.9, 1.1), tf.int32)
shape = tf.shape(x)[:2]
sizes = tf.minimum(sizes, shape)
x = tf.image.random_crop(x, (sizes[0], sizes[1], 3))
x = tf.image.random_flip_left_right(x)
x = tf.image.resize(x, (crop_size, crop_size))
img = tf.cast(x, tf.float32) / 127.5 - 1
return img
def get_dataset(self, dataset_name, domain, _type, batch_size):
files = glob(os.path.join(self.data_dir, dataset_name, f"{_type}{domain}", "*"))
num_images = len(files)
self.logger.info(
f"Found {num_images} domain{domain} images in {_type}{domain} folder."
)
ds = tf.data.Dataset.from_tensor_slices(files)
ds = ds.apply(tf.data.experimental.shuffle_and_repeat(num_images))
def fn(fname):
if self.multi_scale:
return self.random_resize(self.image_processing(fname, True))
else:
return self.image_processing(fname, True)
ds = ds.apply(tf.data.experimental.map_and_batch(fn, batch_size))
steps = int(np.ceil(num_images/batch_size))
# user iter(ds) to avoid generating iterator every epoch
return iter(ds), steps
@tf.function
def pass_to_vgg(self, tensor):
# NOTE: self.vgg should be fixed
if self.vgg is not None:
tensor = self.vgg(tensor)
return tensor
@tf.function
def content_loss(self, input_images, generated_images):
return self.mae(input_images, generated_images)
@tf.function
def style_loss(self, input_images, generated_images):
input_images = gram(input_images)
generated_images = gram(generated_images)
return self.mae(input_images, generated_images)
@tf.function
def discriminator_loss(self, real_output, fake_output, smooth_output):
real_loss = self.discriminator_loss_object(tf.ones_like(real_output), real_output)
fake_loss = self.discriminator_loss_object(tf.zeros_like(fake_output), fake_output)
smooth_loss = self.discriminator_loss_object(
tf.zeros_like(smooth_output), smooth_output)
total_loss = real_loss + fake_loss + smooth_loss
return real_loss, fake_loss, smooth_loss, total_loss
@tf.function
def generator_adversarial_loss(self, fake_output):
return self.generator_loss_object(tf.ones_like(fake_output), fake_output)
@tf.function
def pretrain_step(self, input_images, generator, optimizer):
with tf.GradientTape() as tape:
generated_images = generator(input_images, training=True)
c_loss = self.content_lambda * self.content_loss(
self.pass_to_vgg(input_images), self.pass_to_vgg(generated_images))
gradients = tape.gradient(c_loss, generator.trainable_variables)
optimizer.apply_gradients(zip(gradients, generator.trainable_variables))
self.content_loss_metric(c_loss)
@tf.function
def train_step(self, source_images, target_images, smooth_images,
generator, discriminator, g_optimizer, d_optimizer):
with tf.GradientTape() as g_tape, tf.GradientTape() as d_tape:
real_output = discriminator(target_images, training=True)
generated_images = generator(source_images, training=True)
fake_output = discriminator(generated_images, training=True)
smooth_out = discriminator(smooth_images, training=True)
d_real_loss, d_fake_loss, d_smooth_loss, d_total_loss = \
self.discriminator_loss(real_output, fake_output, smooth_out)
g_adv_loss = self.g_adv_lambda * self.generator_adversarial_loss(fake_output)
g_total_loss = g_adv_loss
# NOTE: self.*_lambdas are fixed
if self.content_lambda != 0. or self.style_lambda != 0.:
vgg_generated_images = self.pass_to_vgg(generated_images)
if self.content_lambda != 0.:
c_loss = self.content_lambda * self.content_loss(
self.pass_to_vgg(source_images), vgg_generated_images)
g_total_loss = g_total_loss + c_loss
if self.style_lambda != 0.:
s_loss = self.style_lambda * self.style_loss(
self.pass_to_vgg(target_images[:vgg_generated_images.shape[0]]),
vgg_generated_images)
g_total_loss = g_total_loss + s_loss
d_grads = d_tape.gradient(d_total_loss, discriminator.trainable_variables)
g_grads = g_tape.gradient(g_total_loss, generator.trainable_variables)
d_optimizer.apply_gradients(zip(d_grads, discriminator.trainable_variables))
g_optimizer.apply_gradients(zip(g_grads, generator.trainable_variables))
self.g_total_loss_metric(g_total_loss)
self.g_adv_loss_metric(g_adv_loss)
if self.content_lambda != 0.:
self.content_loss_metric(c_loss)
if self.style_lambda != 0.:
self.style_loss_metric(s_loss)
self.d_total_loss_metric(d_total_loss)
self.d_real_loss_metric(d_real_loss)
self.d_fake_loss_metric(d_fake_loss)
self.d_smooth_loss_metric(d_smooth_loss)
def pretrain_generator(self):
summary_writer = tf.summary.create_file_writer(os.path.join(self.log_dir, "pretrain"))
self.logger.info(f"Starting to pretrain generator with {self.pretrain_epochs} epochs...")
self.logger.info(
f"Building `{self.dataset_name}` dataset with domain `{self.source_domain}`..."
)
dataset, steps_per_epoch = self.get_dataset(dataset_name=self.dataset_name,
domain=self.source_domain,
_type="train",
batch_size=self.batch_size)
if self.multi_scale:
self.logger.info(f"Initializing generator with "
f"batch_size: {self.batch_size}, input_size: multi-scale...")
else:
self.logger.info(f"Initializing generator with "
f"batch_size: {self.batch_size}, input_size: {self.input_size}...")
generator = Generator(base_filters=2 if self.debug else 64, light=self.light)
generator(tf.keras.Input(
shape=(self.input_size, self.input_size, 3),
batch_size=self.batch_size))
generator.summary()
self.logger.info("Setting up optimizer to update generator's parameters...")
optimizer = tf.keras.optimizers.Adam(
learning_rate=self.pretrain_learning_rate,
beta_1=0.5)
self.logger.info(f"Try restoring checkpoint: `{self.pretrain_checkpoint_prefix}`...")
try:
checkpoint = tf.train.Checkpoint(generator=generator)
status = checkpoint.restore(tf.train.latest_checkpoint(
os.path.join(self.checkpoint_dir, "pretrain")))
status.assert_consumed()
self.logger.info(f"Previous checkpoints has been restored.")
trained_epochs = checkpoint.save_counter.numpy()
epochs = self.pretrain_epochs - trained_epochs
if epochs <= 0:
self.logger.info(f"Already trained {trained_epochs} epochs. "
"Set a larger `pretrain_epochs`...")
return
else:
self.logger.info(f"Already trained {trained_epochs} epochs, "
f"{epochs} epochs left to be trained...")
except AssertionError:
self.logger.info(f"Checkpoint is not found, "
f"training from scratch with {self.pretrain_epochs} epochs...")
trained_epochs = 0
epochs = self.pretrain_epochs
if not self.disable_sampling:
val_files = glob(os.path.join(
self.data_dir, self.dataset_name, f"test{self.source_domain}", "*"))
val_real_batch = tf.map_fn(
lambda fname: self.image_processing(fname, False),
tf.constant(val_files), tf.float32, back_prop=False)
real_batch = next(dataset)
while real_batch.shape[0] < self.sample_size:
real_batch = tf.concat((real_batch, next(dataset)), 0)
real_batch = real_batch[:self.sample_size]
with summary_writer.as_default():
img = np.expand_dims(self._save_generated_images(
tf.cast((real_batch + 1) * 127.5, tf.uint8),
image_name="pretrain_sample_images.png"), 0,)
tf.summary.image("pretrain_sample_images", img, step=0)
img = np.expand_dims(self._save_generated_images(
tf.cast((val_real_batch + 1) * 127.5, tf.uint8),
image_name="pretrain_val_sample_images.png"), 0,)
tf.summary.image("pretrain_val_sample_images", img, step=0)
gc.collect()
else:
self.logger.info("Proceeding pretraining without sample images...")
self.logger.info("Starting pre-training loop, "
"setting up summary writer to record progress on TensorBoard...")
for epoch in range(epochs):
epoch_idx = trained_epochs + epoch + 1
for step in tqdm(
range(1, steps_per_epoch + 1),
desc=f"Pretrain Epoch {epoch + 1}/{epochs}"):
# NOTE: not following official "for img in dataset" example
# since it generates new iterator every epoch and can
# hardly be garbage-collected by python
image_batch = dataset.next()
self.pretrain_step(image_batch, generator, optimizer)
if step % self.pretrain_reporting_steps == 0:
global_step = (epoch_idx - 1) * steps_per_epoch + step
with summary_writer.as_default():
tf.summary.scalar('content_loss',
self.content_loss_metric.result(),
step=global_step)
if not self.disable_sampling:
fake_batch = tf.cast(
(generator(real_batch, training=False) + 1) * 127.5, tf.uint8)
img = np.expand_dims(self._save_generated_images(
fake_batch,
image_name=(f"pretrain_generated_images_at_epoch_{epoch_idx}"
f"_step_{step}.png")),
0,
)
tf.summary.image('pretrain_generated_images', img, step=global_step)
self.content_loss_metric.reset_states()
with summary_writer.as_default():
if not self.disable_sampling:
val_fake_batch = tf.cast(
(generator(val_real_batch, training=False) + 1) * 127.5, tf.uint8)
img = np.expand_dims(self._save_generated_images(
val_fake_batch,
image_name=("pretrain_val_generated_images_at_epoch_"
f"{epoch_idx}_step_{step}.png")),
0,
)
tf.summary.image('pretrain_val_generated_images', img, step=epoch)
if epoch % self.pretrain_saving_epochs == 0:
self.logger.info(f"Saving checkpoints after epoch {epoch_idx} ended...")
checkpoint.save(file_prefix=self.pretrain_checkpoint_prefix)
gc.collect()
del dataset
gc.collect()
def train_gan(self):
self.logger.info("Setting up summary writer to record progress on TensorBoard...")
summary_writer = tf.summary.create_file_writer(self.log_dir)
self.logger.info(
f"Starting adversarial training with {self.epochs} epochs, "
f"batch size: {self.batch_size}..."
)
self.logger.info(f"Building `{self.dataset_name}` "
"datasets for source/target/smooth domains...")
ds_source, steps_per_epoch = self.get_dataset(dataset_name=self.dataset_name,
domain=self.source_domain,
_type="train",
batch_size=self.batch_size)
ds_target, _ = self.get_dataset(dataset_name=self.dataset_name,
domain=self.target_domain,
_type="train",
batch_size=self.batch_size)
ds_smooth, _ = self.get_dataset(dataset_name=self.dataset_name,
domain=f"{self.target_domain}_smooth",
_type="train",
batch_size=self.batch_size)
self.logger.info("Setting up optimizer to update generator and discriminator...")
g_optimizer = tf.keras.optimizers.Adam(learning_rate=self.generator_lr, beta_1=.5)
d_optimizer = tf.keras.optimizers.Adam(learning_rate=self.discriminator_lr, beta_1=.5)
if self.multi_scale:
self.logger.info(f"Initializing generator with "
f"batch_size: {self.batch_size}, input_size: multi-scale...")
else:
self.logger.info(f"Initializing generator with "
f"batch_size: {self.batch_size}, input_size: {self.input_size}...")
generator = Generator(base_filters=2 if self.debug else 64, light=self.light)
generator(tf.keras.Input(
shape=(self.input_size, self.input_size, 3),
batch_size=self.batch_size))
self.logger.info(f"Searching existing checkpoints: `{self.generator_checkpoint_prefix}`...")
try:
g_checkpoint = tf.train.Checkpoint(generator=generator)
g_checkpoint.restore(
tf.train.latest_checkpoint(
self.generator_checkpoint_dir)).assert_existing_objects_matched()
self.logger.info(f"Previous checkpoints has been restored.")
trained_epochs = g_checkpoint.save_counter.numpy()
epochs = self.epochs - trained_epochs
if epochs <= 0:
self.logger.info(f"Already trained {trained_epochs} epochs. "
"Set a larger `epochs`...")
return
else:
self.logger.info(f"Already trained {trained_epochs} epochs, "
f"{epochs} epochs left to be trained...")
except AssertionError as e:
self.logger.warning(e)
self.logger.warning(
"Previous checkpoints are not found, trying to load checkpoints from pretraining..."
)
try:
g_checkpoint = tf.train.Checkpoint(generator=generator)
g_checkpoint.restore(tf.train.latest_checkpoint(
os.path.join(
self.checkpoint_dir, "pretrain"))).assert_existing_objects_matched()
self.logger.info("Successfully loaded "
f"`{self.pretrain_checkpoint_prefix}`...")
except AssertionError:
self.logger.warning("specified pretrained checkpoint is not found, "
"training from scratch...")
trained_epochs = 0
epochs = self.epochs
if self.multi_scale:
self.logger.info(f"Initializing discriminator with "
f"batch_size: {self.batch_size}, input_size: multi-scale...")
else:
self.logger.info(f"Initializing discriminator with "
f"batch_size: {self.batch_size}, input_size: {self.input_size}...")
if self.debug:
d_base_filters = 2
elif self.light:
d_base_filters = 24
else:
d_base_filters = 32
d = Discriminator(base_filters=d_base_filters)
d(tf.keras.Input(
shape=(self.input_size, self.input_size, 3),
batch_size=self.batch_size))
self.logger.info("Searching existing checkpoints: "
f"`{self.discriminator_checkpoint_prefix}`...")
try:
d_checkpoint = tf.train.Checkpoint(d=d)
d_checkpoint.restore(
tf.train.latest_checkpoint(
self.discriminator_checkpoint_dir)).assert_existing_objects_matched()
self.logger.info(f"Previous checkpoints has been restored.")
except AssertionError:
self.logger.info("specified checkpoint is not found, training from scratch...")
if not self.disable_sampling:
val_files = glob(os.path.join(
self.data_dir, self.dataset_name, f"test{self.source_domain}", "*"))
val_real_batch = tf.map_fn(
lambda fname: self.image_processing(fname, False),
tf.constant(val_files), tf.float32, back_prop=False)
real_batch = next(ds_source)
while real_batch.shape[0] < self.sample_size:
real_batch = tf.concat((real_batch, next(ds_source)), 0)
real_batch = real_batch[:self.sample_size]
with summary_writer.as_default():
img = np.expand_dims(self._save_generated_images(
tf.cast((real_batch + 1) * 127.5, tf.uint8),
image_name="gan_sample_images.png"), 0,)
tf.summary.image("gan_sample_images", img, step=0)
img = np.expand_dims(self._save_generated_images(
tf.cast((val_real_batch + 1) * 127.5, tf.uint8),
image_name="gan_val_sample_images.png"), 0,)
tf.summary.image("gan_val_sample_images", img, step=0)
gc.collect()
else:
self.logger.info("Proceeding training without sample images...")
self.logger.info("Starting training loop...")
self.logger.info(f"Number of trained epochs: {trained_epochs}, "
f"epochs to be trained: {epochs}, "
f"batch size: {self.batch_size}")
for epoch in range(epochs):
epoch_idx = trained_epochs + epoch + 1
for step in tqdm(
range(1, steps_per_epoch + 1),
desc=f'Train {epoch + 1}/{epochs}',
total=steps_per_epoch):
source_images, target_images, smooth_images = (
ds_source.next(), ds_target.next(), ds_smooth.next())
self.train_step(source_images, target_images, smooth_images,
generator, d, g_optimizer, d_optimizer)
if step % self.reporting_steps == 0:
global_step = (epoch_idx - 1) * steps_per_epoch + step
with summary_writer.as_default():
for metric, name in self.metric_and_names:
tf.summary.scalar(name, metric.result(), step=global_step)
metric.reset_states()
if not self.disable_sampling:
fake_batch = tf.cast(
(generator(real_batch, training=False) + 1) * 127.5, tf.uint8)
img = np.expand_dims(self._save_generated_images(
fake_batch,
image_name=("gan_generated_images_at_epoch_"
f"{epoch_idx}_step_{step}.png")),
0,
)
tf.summary.image('gan_generated_images', img, step=global_step)
self.logger.debug(f"Epoch {epoch_idx}, Step {step} finished, "
f"{global_step * self.batch_size} images processed.")
with summary_writer.as_default():
if not self.disable_sampling:
val_fake_batch = tf.cast(
(generator(val_real_batch, training=False) + 1) * 127.5, tf.uint8)
img = np.expand_dims(self._save_generated_images(
val_fake_batch,
image_name=("gan_val_generated_images_at_epoch_"
f"{epoch_idx}_step_{step}.png")),
0,
)
tf.summary.image('gan_val_generated_images', img, step=epoch)
self.logger.info(f"Saving checkpoints after epoch {epoch_idx} ended...")
g_checkpoint.save(file_prefix=self.generator_checkpoint_prefix)
d_checkpoint.save(file_prefix=self.discriminator_checkpoint_prefix)
generator.save_weights(os.path.join(self.model_dir, "generator"))
gc.collect()
del ds_source, ds_target, ds_smooth
gc.collect()
def main(**kwargs):
t = Trainer(**kwargs)
mode = kwargs["mode"]
if mode == "full":
t.pretrain_generator()
gc.collect()
t.train_gan()
elif mode == "pretrain":
t.pretrain_generator()
elif mode == "gan":
t.train_gan()
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--mode", type=str, default="full",
choices=["full", "pretrain", "gan"])
parser.add_argument("--dataset_name", type=str, default="realworld2cartoon")
parser.add_argument("--light", action="store_true")
parser.add_argument("--input_size", type=int, default=256)
parser.add_argument("--multi_scale", action="store_true")
parser.add_argument("--batch_size", type=int, default=1)
parser.add_argument("--sample_size", type=int, default=8)
parser.add_argument("--source_domain", type=str, default="A")
parser.add_argument("--target_domain", type=str, default="B")
parser.add_argument("--gan_type", type=str, default="lsgan", choices=["gan", "lsgan"])
parser.add_argument("--epochs", type=int, default=100)
parser.add_argument("--reporting_steps", type=int, default=100)
parser.add_argument("--content_lambda", type=float, default=10)
parser.add_argument("--style_lambda", type=float, default=1.)
parser.add_argument("--g_adv_lambda", type=float, default=1)
parser.add_argument("--d_adv_lambda", type=float, default=1)
parser.add_argument("--generator_lr", type=float, default=1e-5)
parser.add_argument("--discriminator_lr", type=float, default=1e-5)
parser.add_argument("--ignore_vgg", action="store_true")
parser.add_argument("--pretrain_learning_rate", type=float, default=1e-5)
parser.add_argument("--pretrain_epochs", type=int, default=2)
parser.add_argument("--pretrain_saving_epochs", type=int, default=1)
parser.add_argument("--pretrain_reporting_steps", type=int, default=100)
parser.add_argument("--data_dir", type=str, default="datasets")
parser.add_argument("--log_dir", type=str, default="runs")
parser.add_argument("--result_dir", type=str, default="result")
parser.add_argument("--checkpoint_dir", type=str, default="training_checkpoints")
parser.add_argument("--generator_checkpoint_prefix", type=str, default="generator")
parser.add_argument("--discriminator_checkpoint_prefix", type=str, default="discriminator")
parser.add_argument("--pretrain_checkpoint_prefix", type=str, default="pretrain_generator")
parser.add_argument("--pretrain_model_dir", type=str, default="models")
parser.add_argument("--model_dir", type=str, default="models")
parser.add_argument("--disable_sampling", action="store_true")
# TODO: rearrange the order of options
parser.add_argument(
"--pretrain_generator_name", type=str, default="pretrain_generator"
)
parser.add_argument("--generator_name", type=str, default="generator")
parser.add_argument("--discriminator_name", type=str, default="discriminator")
parser.add_argument("--not_show_progress_bar", action="store_true")
parser.add_argument("--debug", action="store_true")
parser.add_argument("--show_tf_cpp_log", action="store_true")
args = parser.parse_args()
if not args.show_tf_cpp_log:
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
args.show_progress = not args.not_show_progress_bar
kwargs = vars(args)
main(**kwargs)