-
Notifications
You must be signed in to change notification settings - Fork 6
/
parse_test_res.py
174 lines (135 loc) · 4.5 KB
/
parse_test_res.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
"""
Goal
---
1. Read test results from log.txt files
2. Compute mean and std across different folders (seeds)
Usage
---
Assume the output files are saved under output/my_experiment,
which contains results of different seeds, e.g.,
my_experiment/
seed1/
log.txt
seed2/
log.txt
seed3/
log.txt
Run the following command from the root directory:
$ python tools/parse_test_res.py output/my_experiment
Add --ci95 to the argument if you wanna get 95% confidence
interval instead of standard deviation:
$ python tools/parse_test_res.py output/my_experiment --ci95
If my_experiment/ has the following structure,
my_experiment/
exp-1/
seed1/
log.txt
...
seed2/
log.txt
...
seed3/
log.txt
...
exp-2/
...
exp-3/
...
Run
$ python tools/parse_test_res.py output/my_experiment --multi-exp
"""
import re
import numpy as np
import os.path as osp
import argparse
from collections import OrderedDict, defaultdict
from dassl.utils import check_isfile, listdir_nohidden
def compute_ci95(res):
return 1.96 * np.std(res) / np.sqrt(len(res))
def parse_function(*metrics, directory="", args=None, end_signal=None):
print(f"Parsing files in {directory}")
subdirs = listdir_nohidden(directory, sort=True)
outputs = []
for subdir in subdirs:
fpath = osp.join(directory, subdir, "log.txt")
assert check_isfile(fpath)
good_to_go = False
output = OrderedDict()
with open(fpath, "r") as f:
lines = f.readlines()
for line in lines:
line = line.strip()
if line == end_signal:
good_to_go = True
for metric in metrics:
match = metric["regex"].search(line)
if match and good_to_go:
if "file" not in output:
output["file"] = fpath
num = float(match.group(1))
name = metric["name"]
output[name] = num
if output:
outputs.append(output)
assert len(outputs) > 0, f"Nothing found in {directory}"
metrics_results = defaultdict(list)
for output in outputs:
msg = ""
for key, value in output.items():
if isinstance(value, float):
msg += f"{key}: {value:.2f}%. "
else:
msg += f"{key}: {value}. "
if key != "file":
metrics_results[key].append(value)
print(msg)
output_results = OrderedDict()
print("===")
print(f"Summary of directory: {directory}")
for key, values in metrics_results.items():
avg = np.mean(values)
std = compute_ci95(values) if args.ci95 else np.std(values)
print(f"* {key}: {avg:.2f}% +- {std:.2f}%")
output_results[key] = avg
print("===")
return output_results
def main(args, end_signal):
metric = {
"name": args.keyword,
"regex": re.compile(fr"\* {args.keyword}: ([\.\deE+-]+)%"),
}
if args.multi_exp:
final_results = defaultdict(list)
for directory in listdir_nohidden(args.directory, sort=True):
directory = osp.join(args.directory, directory)
results = parse_function(
metric, directory=directory, args=args, end_signal=end_signal
)
for key, value in results.items():
final_results[key].append(value)
print("Average performance")
for key, values in final_results.items():
avg = np.mean(values)
print(f"* {key}: {avg:.2f}%")
else:
parse_function(
metric, directory=args.directory, args=args, end_signal=end_signal
)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("directory", type=str, help="path to directory")
parser.add_argument(
"--ci95", action="store_true", help=r"compute 95\% confidence interval"
)
parser.add_argument("--test-log", action="store_true", help="parse test-only logs")
parser.add_argument(
"--multi-exp", action="store_true", help="parse multiple experiments"
)
parser.add_argument(
"--keyword", default="accuracy", type=str, help="which keyword to extract"
)
args = parser.parse_args()
end_signal = "Finish training"
if args.test_log:
end_signal = "=> result"
main(args, end_signal)